Supplement 7 for Section 4.4

Replace the definition on page 203 with the definition presented here.

Definition 1. Let f be defined on an interval I.

1. Then f is concave up on I means for each pair $a<b \in I$, the graph of f between a and b lies below the line segment joining $(a, f(a))$ and $(b, f(b))$.
2. Then f is concave down on I means for each pair $a<b \in I$, the graph of f between a and b lies above the line segment joining $(a, f(a))$ and $(b, f(b))$.

It should be obvious that f is concave up on an interval I if and only if $-f$ is concave down on I. What isn't so obvious is that a function can be concave up on an interval without being differentiable everywhere on that interval. For example the function defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 0 \\ (x+1)^{3}-1 & \text { if } x>0\end{cases}
$$

is concave up on $(-\infty, \infty)$ which can easily be seen by sketching its graph. However, $\lim _{x \rightarrow 0^{-}} \frac{f(x)-0}{x-0}=$ $\left.\frac{d}{d x} x^{2}\right|_{x=0}=0$ while $\lim _{x \rightarrow 0^{+}} \frac{f(x)-0}{x-0}=\left.\frac{d}{d x}\left((x+1)^{3}-1\right)\right|_{x=0}=1$. Consequently $f^{\prime}(0)$ doesn't exist. But if f is differentiable, then it's possible to determine whether or not the function is concave up or down from the derivative as the following theorem indicates.

Theorem 1. Let f be continuous on an interval I and differentiable on the interior of I.

1. If f^{\prime} is increasing on the interior of I, then f is concave up on I.
2. If f^{\prime} is decreasing on the interior of I, then f is concave down on I.

The next test for concavity is a consequence of Corollary 3 on page 119.
Corollary 1. Let f be continuous on an interval I and twice differentiable on the interior of I.

1. If $f^{\prime \prime}(x)>0$ for each x in the interior of I, then f is concave up on I.
2. If $f^{\prime \prime}(x)<0$ for each x in the interior of I, then f is concave down on I.
