
Supplement 8 for Section 5.1

The material here replaces the material on page 259 starting with, “Riemann
Sums”.

The material just developed is used to show that the area under the graph of the function f(x) = x2 on the
interval [0, b] for any b > 0 is 1
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(See the formulas near the bottom of page 258.)
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special choices of the numbers ck are identical, the limit will be the common value for any choice for the

numbers ck. Thus the area under the graph of f(x) = x2 on [0, b] is b3

3 .
Using a very similar procedure, it can be shown that the area under the graph of f(x) = x on the interval

[0, b] for any b > 0 is 1
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2, which can also be determined by geometric considerations.


