Supplement 9 for Section 5.3

The material here replaces Section 5.3, pages 262–270.

In the previous two sections we saw how to find the area under the graph of a function and computed that area in one nontrivial case. In this section the same procedure is applied to any function; not just those whose graphs lie above the x axis. The result is called the *definite integral*,

Definition 1. Let f be a function defined on a closed interval [a, b]. Then f is (Riemann) integrable on [a, b] means there is a number, denoted by $\int_a^b f(x) dx$ (called the definite or Riemann integral of f), such that

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f(c_k)$$

for any selection of the numbers $c_k \in [a + (k-1)\frac{b-a}{n}, a + k\frac{b-a}{n}]$ for each n.

For example it has been shown that the function $f(x) = x^2$ is integrable from 0 to b for any b > 0 and $\int_0^b x^2 dx = \frac{1}{3}b^3$. Also $\int_0^b x dx = \frac{1}{2}b^2$ for any b > 0. It is easy to show that for any number C, the function f(x) = C is integrable from a to b and that $\int_a^b C dx = C(b-a)$.

It could be easily concluded from the complicated nature of this definition, that only very special functions are integrable, but the following theorem asserts that there is a very large collection of integrable functions.

Theorem 1. Let f be continuous on [a, b]. Then f is integrable from a to b.

The proof of this assertion required a deeper understanding of the nature of the set of real numbers than we have at this point, but it does assure us that there is a substantial collection of integrable functions. The converse of the theorem is false; that is, there are integrable functions that aren't continuous everywhere on [a, b]. For example, changing the value of an integrable function at one point results in a different integrable function with the same integral. However, changing an integrable function at too many points may result in a function that isn't integrable. For example the function

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational} \end{cases}$$

isn't integrable from say 0 to 1 even though it differs from the constant (and hence integrable) function g(x) = 1 at just the rational numbers.

The symbol used to denote the definite integral \int is an elongated version of the letter, "S", because the definite integral can be thought of as a sums of infinitely many terns. The symbol dx indicates which symbol in the definition of f is the variable. For example, if f(x) were defined as sx^3 , we would know that we were to regard s as a number and not a variable.

Properties of the Definite Integral

Some general properties of the definite integral are given in the next theorem.

Theorem 2. Let f and g be integrable on [a, b] and let C be a number.

1. Then f + g is integrable on [a, b] and $\int_a^b (f + g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$

- 2. Then Cf is integrable on [a, b] and $\int_a^b Cf(x) dx = C \int_a^b f(x) dx$
- 3. Then $f \cdot g$ is integrable on [a, b], but there is no formula for $\int_a^b f(x)g(x) dx$
- 4. Then f is bounded; that is, there are two numbers m < M such that for each $x \in [a, b], m \leq f(x) \leq M$
- 5. If $f(x) \leq g(x)$ for all $x \in [a, b]$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$
- 6. If f(x) < g(x) for all $x \in [a, b]$, then $\int_a^b f(x) dx < \int_a^b g(x) dx$
- 7. Then |f| is integrable from a to b and $\left|\int_a^b f(x) \, dx\right| \leq \int_a^b |f(x)| \, dx$

From 1. and 2. it's easy to prove, with the assumptions of the theorem, that f - g is integrable on [a, b] and $\int_{a}^{b} (f - g)(x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$. Assertions 1., 2., and 5. are fairly easy to prove but 4. and 6. are quite a bit more difficult. Numbers 3. and 7. require the same depth of knowledge as is needed to prove Theorem 1.

Definition 2. Let f be defined on the interval [a, b] with $f(x) \ge 0$ for all $x \in [a, b]$. The region $R = \{(x, y); x \in [a, b] \text{ and } 0 \le y \le f(x)\}$ is the region under the graph of f from a to b. The area of R is $\int_{a}^{b} f(x) dx$.

The next property of integrals is motivated of the geometric interpretation in terms of area.

Theorem 3. Let $a \le b \le c$ be numbers and let f be a function. Then f is integrable from a to c if and only if f is integrable from a to b and from b to c. Moreover $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$

Actually with the definition of $\int_{b}^{a} f(x) dx$ as $-\int_{a}^{b} f(y) dx$, the formula holds regardless of the relationship between a, b and c.

Average Value

By a minor change in the formulation of the definition of the definite integral, the *average value* of a function on an interval can be defined. Note that

$$\frac{1}{b-a} \int_a^b f(x) \, dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(c_k)$$

and then observe that $\frac{1}{n} \sum_{k=1}^{n} f(c_k)$ is the average of *n* values of the function at more or less evenly distributed numbers in the interval. By taking the limit as $n \to \infty$ the number of terms gets large and could be interpreted as approaching the average value of the function on that interval.

Definition 3. Let f be integrable on the interval [a, b]. The the average value of f on that interval is defined to be $\frac{1}{b-a} \int_{a}^{b} f(x) dx$.

If the integrand f is continuous, then the average value is a value of the function as is asserted in the following theorem.

Theorem 4. Let f be continuous on [a, b]. Then there is a number $c \in [a, b]$ such that $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$. *Proof.* Because f is continuous on [a, b], by the Extreme Value Theorem there are $s, t \in [a, b]$ such that for each $x \in [a, b]$ $f(s) \leq f(x) \leq f(t)$. Consequently by 5. of Theorem 2

$$f(s) = \frac{1}{b-a} \int_{a}^{b} f(s) \, dx \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{1}{b-a} \int_{a}^{b} f(t) \, dx = f(t)$$

Now by the Intermediate Value Theorem there is a $c \in [a, b]$ such that $f(c) = \frac{1}{b-a} \int_a^b f(x) dx$.