
Supplement 9 for Section 5.3

The material here replaces Section 5.3, pages 262–270.

In the previous two sections we saw how to find the area under the graph of a function and computed that
area in one nontrivial case. In this section the same procedure is applied to any function; not just those
whose graphs lie above the x axis. The result is called the definite integral,

Definition 1. Let f be a function defined on a closed interval [a, b]. Then f is (Riemann) integrable on

[a, b] means there is a number, denoted by
∫ b

a
f(x) dx (called the definite or Riemann integral of f), such

that ∫ b

a

f(x) dx = lim
n→∞

b− a

n

n∑
k=1

f(ck)

for any selection of the numbers ck ∈ [a + (k − 1) b−a
n , a + k b−a

n ] for each n.

For example it has been shown that the function f(x) = x2 is integrable from 0 to b for any b > 0 and∫ b

0
x2 dx = 1

3b
3. Also

∫ b

0
x dx = 1

2b
2 for any b > 0. It is easy to show that for any number C, the function

f(x) = C is integrable from a to b and that
∫ b

a
C dx = C(b− a).

It could be easily concluded from the complicated nature of this definition, that only very special functions
are integrable, but the following theorem asserts that there is a very large collection of integrable functions.

Theorem 1. Let f be continuous on [a, b]. Then f is integrable from a to b.

The proof of this assertion required a deeper understanding of the nature of the set of real numbers than
we have at this point, but it does assure us that there is a substantial collection of integrable functions. The
converse of the theorem is false; that is, there are integrable functions that aren’t continuous everywhere on
[a, b]. For example, changing the value of an integrable function at one point results in a different integrable
function with the same integral. However, changing an integrable function at too many points may result in
a function that isn’t integrable. For example the function

f(x) =

{
1 if x is irrational

0 if x is rational

isn’t integrable from say 0 to 1 even though it differs from the constant (and hence integrable) function
g(x) = 1 at just the rational numbers.

The symbol used to denote the definite integral

∫
is an elongated version of the letter, “S”, because the

definite integral can be thought of as a sums of infinitely many terns. The symbol dx indicates which symbol
in the definition of f is the variable. For example, if f(x) were defined as sx3, we would know that we were
to regard s as a number and not a variable.

Properties of the Definite Integral

Some general properties of the definite integral are given in the next theorem.

Theorem 2. Let f and g be integrable on [a, b] and let C be a number.

1. Then f + g is integrable on [a, b] and
∫ b

a
(f + g)(x) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx



2. Then Cf is integrable on [a, b] and
∫ b

a
Cf(x) dx = C

∫ b

a
f(x) dx

3. Then f · g is integrable on [a, b], but there is no formula for
∫ b

a
f(x)g(x) dx

4. Then f is bounded; that is, there are two numbers m < M such that for each x ∈ [a, b], m ≤ f(x) ≤M

5. If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

6. If f(x) < g(x) for all x ∈ [a, b],, then
∫ b

a
f(x) dx <

∫ b

a
g(x) dx

7. Then |f | is integrable from a to b and
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx

From 1. and 2. it’s easy to prove, with the assumptions of the theorem, that f − g is integrable on [a, b]

and
∫ b

a
(f − g)(x) dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx. Assertions 1., 2., and 5. are fairly easy to prove but 4. and

6. are quite a bit more difficult. Numbers 3. and 7. require the same depth of knowledge as is needed to
prove Theorem 1.

Definition 2. Let f be defined on the interval [a, b] with f(x) ≥ 0 for all x ∈ [a, b]. The region R =
{(x, y);x ∈ [a, b] and 0 ≤ y ≤ f(x)} is the region under the graph of f from a to b. The area of R is∫ b

a
f(x) dx.

The next property of integrals is motivated of the geometric interpretation in terms of area.

Theorem 3. Let a ≤ b ≤ c be numbers and let f be a function. Then f is integrable from a to c if and only

if f is integrable from a to b and from b to c. Moreover
∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx

Actually with the definition of
∫ a

b
f(x) dx as −

∫ b

a
f9x) dx, the formula holds regardless of the relationship

between a, b and c.

Average Value

By a minor change in the formulation of the definition of the definite integral, the average value of a function
on an interval can be defined. Note that

1

b− a

∫ b

a

f(x) dx = lim
n→∞

1

n

n∑
k=1

f(ck)

and then observe that 1
n

∑n
k=1 f(ck) is the average of n values of the function at more or less evenly distributed

numbers in the interval. By taking the limit as n→∞ the number of terms gets large and could be interpreted
as approaching the average value of the function on that interval.

Definition 3. Let f be integrable on the interval [a, b]. The the average value of f on that interval is defined

to be 1
b−a

∫ b

a
f(x) dx.

If the integrand f is continuous, then the average value is a value of the function as is asserted in the
following theorem.

Theorem 4. Let f be continuous on [a, b]. Then there is a number c ∈ [a, b] such that 1
b−a

∫ b

a
f(x) dx = f(c).

Proof. Because f is continuous on [a, b], by the Extreme Value Theorem there are s, t ∈ [a, b] such that for
each x ∈ [a, b] f(s) ≤ f(x) ≤ f(t). Consequently by 5. of Theorem 2

f(s) =
1

b− a

∫ b

a

f(s) dx ≤ 1

b− a

∫ b

a

f(x) dx ≤ 1

b− a

∫ b

a

f(t) dx = f(t)

Now by the Intermediate Value Theorem there is a c ∈ [a, b] such that f(c) = 1
b−a

∫ b

a
f(x) dx.
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