Supplement 9 for Section 5.3

The material here replaces Section 5.3, pages 262-270.

In the previous two sections we saw how to find the area under the graph of a function and computed that area in one nontrivial case. In this section the same procedure is applied to any function; not just those whose graphs lie above the x axis. The result is called the definite integral,

Definition 1. Let f be a function defined on a closed interval $[a, b]$. Then f is (Riemann) integrable on $[a, b]$ means there is a number, denoted by $\int_{a}^{b} f(x) d x$ (called the definite or Riemann integral of f), such that

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(c_{k}\right)
$$

for any selection of the numbers $c_{k} \in\left[a+(k-1) \frac{b-a}{n}, a+k \frac{b-a}{n}\right]$ for each n.
For example it has been shown that the function $f(x)=x^{2}$ is integrable from 0 to b for any $b>0$ and $\int_{0}^{b} x^{2} d x=\frac{1}{3} b^{3}$. Also $\int_{0}^{b} x d x=\frac{1}{2} b^{2}$ for any $b>0$. It is easy to show that for any number C, the function $f(x)=C$ is integrable from a to b and that $\int_{a}^{b} C d x=C(b-a)$.

It could be easily concluded from the complicated nature of this definition, that only very special functions are integrable, but the following theorem asserts that there is a very large collection of integrable functions.

Theorem 1. Let f be continuous on $[a, b]$. Then f is integrable from a to b.
The proof of this assertion required a deeper understanding of the nature of the set of real numbers than we have at this point, but it does assure us that there is a substantial collection of integrable functions. The converse of the theorem is false; that is, there are integrable functions that aren't continuous everywhere on $[a, b]$. For example, changing the value of an integrable function at one point results in a different integrable function with the same integral. However, changing an integrable function at too many points may result in a function that isn't integrable. For example the function

$$
f(x)= \begin{cases}1 & \text { if } x \text { is irrational } \\ 0 & \text { if } x \text { is rational }\end{cases}
$$

isn't integrable from say 0 to 1 even though it differs from the constant (and hence integrable) function $g(x)=1$ at just the rational numbers.

The symbol used to denote the definite integral \int is an elongated version of the letter, " S ", because the definite integral can be thought of as a sums of infinitely many terns. The symbol $d x$ indicates which symbol in the definition of f is the variable. For example, if $f(x)$ were defined as $s x^{3}$, we would know that we were to regard s as a number and not a variable.

Properties of the Definite Integral

Some general properties of the definite integral are given in the next theorem.
Theorem 2. Let f and g be integrable on $[a, b]$ and let C be a number.

1. Then $f+g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
2. Then $C f$ is integrable on $[a, b]$ and $\int_{a}^{b} C f(x) d x=C \int_{a}^{b} f(x) d x$
3. Then $f \cdot g$ is integrable on $[a, b]$, but there is no formula for $\int_{a}^{b} f(x) g(x) d x$
4. Then f is bounded; that is, there are two numbers $m<M$ such that for each $x \in[a, b], m \leq f(x) \leq M$
5. If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
6. If $f(x)<g(x)$ for all $x \in[a, b]$, , then $\int_{a}^{b} f(x) d x<\int_{a}^{b} g(x) d x$
7. Then $|f|$ is integrable from a to b and $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

From 1. and 2. it's easy to prove, with the assumptions of the theorem, that $f-g$ is integrable on $[a, b]$ and $\int_{a}^{b}(f-g)(x) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$. Assertions 1., 2., and 5 . are fairly easy to prove but 4. and 6. are quite a bit more difficult. Numbers 3. and 7. require the same depth of knowledge as is needed to prove Theorem 1.
Definition 2. Let f be defined on the interval $[a, b]$ with $f(x) \geq 0$ for all $x \in[a, b]$. The region $R=$ $\{(x, y) ; x \in[a, b]$ and $0 \leq y \leq f(x)\}$ is the region under the graph of f from a to b. The area of R is $\int_{a}^{b} f(x) d x$.

The next property of integrals is motivated of the geometric interpretation in terms of area.
Theorem 3. Let $a \leq b \leq c$ be numbers and let f be a function. Then f is integrable from a to c if and only if f is integrable from a to b and from b to c. Moreover $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$

Actually with the definition of $\int_{b}^{a} f(x) d x$ as $\left.-\int_{a}^{b} f 9 x\right) d x$, the formula holds regardless of the relationship between a, b and c.

Average Value

By a minor change in the formulation of the definition of the definite integral, the average value of a function on an interval can be defined. Note that

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(c_{k}\right)
$$

and then observe that $\frac{1}{n} \sum_{k=1}^{n} f\left(c_{k}\right)$ is the average of n values of the function at more or less evenly distributed numbers in the interval. By taking the limit as $n \rightarrow \infty$ the number of terms gets large and could be interpreted as approaching the average value of the function on that interval.

Definition 3. Let f be integrable on the interval $[a, b]$. The the average value of f on that interval is defined to be $\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

If the integrand f is continuous, then the average value is a value of the function as is asserted in the following theorem.

Theorem 4. Let f be continuous on $[a, b]$. Then there is a number $c \in[a, b]$ such that $\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)$.
Proof. Because f is continuous on $[a, b]$, by the Extreme Value Theorem there are $s, t \in[a, b]$ such that for each $x \in[a, b] f(s) \leq f(x) \leq f(t)$. Consequently by 5 . of Theorem 2

$$
f(s)=\frac{1}{b-a} \int_{a}^{b} f(s) d x \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{b-a} \int_{a}^{b} f(t) d x=f(t)
$$

Now by the Intermediate Value Theorem there is a $c \in[a, b]$ such that $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

