
Chapter 8

Real Numbers

Mathematical study and research are very suggestive of mountaineering. Whymper made several

efforts before he climbed the Matterhorn in the 1860’s and even then it cost the life of four of his

party. Now, however, any tourist can be hauled up for a small cost, and perhaps does not appreciate

the difficulty of the original ascent. So in mathematics, it may be found hard to realise the great

initial difficulty of making a little step which now seems so natural and obvious, and it may not be

surprising if such a step has been found and lost again.

Louis Joel Mordell (1888–1972)

Before You Get Started. Just like the integers, the real numbers, which ought to

include the integers but also numbers like 1
3
, −

√
2, and π , will be defined by a set of

axioms. From what you know about real numbers, what should this set of axioms

include? How should the axioms differ from those of Chapters 1 and 2?
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76 8 Real Numbers

We start all over again. You have used the real numbers in calculus. You have pictured

them as points on an x-axis or a y-axis. You have probably been told that there is a

bijection between the set of points on the x-axis and the set of all real numbers. Even

if this was not made explicit in your calculus course, it was implied when you gave a

real-number label to an arbitrary point on the x-axis, or when you assumed that there

is a point on the x-axis for every real number.

Intuitively, you are familiar with many real numbers: examples are −
√

2, π , and 6e.

You probably thought of the integers as examples of real numbers: you calibratedThe exact relationship

between the integers and the

real numbers will require

careful discussion in

Chapter 9.

the x-axis by marking two points as “0” and “1”, thus defining one unit of length;

and, with that calibration, you knew which point on the x-axis should get the label

“7” and which should get the label “−4”.

We are now going to rebuild your knowledge of the real numbers. In the first stage,

which is this chapter, we will define the real numbers by means of axioms, just as

we did with the integers in Part I. And as we did with the set of integers Z, we will

assume without proof that a set R satisfying our axioms exists.

8.1 Axioms

We assume that there exists a set, denoted by R, whose members are called real

numbers. This set R is equipped with binary operations + and · satisfying Axioms

8.1–8.5, 8.26, and 8.52 below.

Axiom 8.1. For all x,y,z ∈ R:

(i) x+ y = y+ x .

(ii) (x+ y)+ z = x+(y+ z) .

(iii) x · (y+ z) = x · y+ x · z .

(iv) x · y = y · x .

(v) (x · y) · z = x · (y · z) .

The product x · y is often written xy.

Axiom 8.2. There exists a real number 0 such that for all x ∈ R, x+0 = x.

Axiom 8.3. There exists a real number 1 such that 1 6= 0 and whenever x ∈ R,

x ·1 = x.

Axiom 8.4. For each x ∈ R, there exists a real number, denoted by −x, such that

x+(−x) = 0.
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Axiom 8.5. For each x ∈ R−{0}, there exists a real number, denoted by x−1, such

that x · x−1 = 1.

Proposition 8.6. For all x,y ∈ R−{0}, (xy)−1 = x−1 y−1.

Proposition 8.7. Let x,y,z ∈ R and x 6= 0. If xy = xz then y = z.

Proof. Assume x,y,z ∈ R, x 6= 0, and xy = xz. By Axiom 8.5, there exists x−1, and

thus

x−1(xy) = x−1(xz)
(

x−1x
)

y =
(

x−1x
)

z
(

xx−1
)

y =
(

xx−1
)

z

1 · y = 1 · z
y = z .

Here we have used Axioms 8.1(v), 8.1(iv), 8.5, and 8.3. ut

Proposition 8.7 is the R-analogue of Axiom 1.5 for Z: the proposition asserts that

the cancellation property described in Axiom 1.5 also holds in R. And since Axioms

8.1–8.4 are the same as Axioms 1.1–1.4, any proposition we proved about Z using

only Axioms 1.1–1.5 is also true for R, with an identical proof. We will need to

refer to some of the real versions of the propositions proved for Z; so we state the

corresponding propositions for R (which again will have the same proof as those for

Z) in small font.

Proposition 8.8. If m,n, p ∈ R then (m+n)p = mp+np .

Proposition 8.9. If m ∈ R, then 0+m = m and 1 ·m = m.

Proposition 8.10. Let m,n, p ∈ R. If m+n = m+ p, then n = p.

Proposition 8.11. Let m,x1,x2 ∈ R. If m,x1,x2 satisfy the equations m+ x1 = 0 and m+ x2 = 0, then x1 = x2.

Proposition 8.12. If m,n, p,q ∈ R then

(i) (m+n)(p+q) = (mp+np)+(mq+nq).

(ii) m+(n+(p+q)) = (m+n)+(p+q) = ((m+n)+ p)+q.

(iii) m+(n+ p) = (p+m)+n.

(iv) m(np) = p(mn).

(v) m(n+(p+q)) = (mn+mp)+mq.

(vi) (m(n+ p))q = (mn)q+m(pq).

Proposition 8.13. Let x ∈ R. If x has the property that for each m ∈ R, m+ x = m, then x = 0.
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Proposition 8.14. Let x ∈ R. If x has the property that there exists m ∈ R such that m+ x = m, then x = 0.

Proposition 8.15. For all m ∈ R, m ·0 = 0 = 0 ·m.

Proposition 8.16. Let x ∈ R. If x has the property that for all m ∈ R, mx = m, then x = 1.

Proposition 8.17. Let x ∈ R. If x has the property that for some nonzero m ∈ R, mx = m, then x = 1.

Proposition 8.18. For all m,n ∈ R, (−m)(−n) = mn.

Proposition 8.19.

(i) For all m ∈ R, −(−m) = m.

(ii) −0 = 0.

Proposition 8.20. Given m,n ∈ R there exists one and only one x ∈ R such that m+ x = n.

Proposition 8.21. Let x ∈ R. If x · x = x then x = 0 or 1.

Proposition 8.22. For all m,n ∈ R:

(i) −(m+n) = (−m)+(−n).

(ii) −m = (−1)m.

(iii) (−m)n = m(−n) = −(mn).

Proposition 8.23. Let m,n ∈ R. If mn = 0, then m = 0 or n = 0.

As with Z, we define subtraction in R by

x− y := x+(−y) .

Proposition 8.24. For all m,n, p,q ∈ R:

(i) (m−n)+(p−q) = (m+ p)− (n+q).

(ii) (m−n)− (p−q) = (m+q)− (n+ p).

(iii) (m−n)(p−q) = (mp+nq)− (mq+np).

(iv) m−n = p−q if and only if m+q = n+ p.

(v) (m−n)p = mp−np.

Here is a definition that we could not make in Z: We define a new operation on R

called division byAlternative notations for
y
x

are y/x and y÷ x.

Do not confuse the division

symbol / with the symbol |
which describes the

divisibility property of

integers introduced in

Section 1.2.

y

x
:= y · x−1.

Axiom 8.5 does not assert the existence of 0−1; so division is not defined when x = 0.

In the language of Section 5.4, the division function is

division : R× (R−{0}) → R, division(y,x) = y · x−1.

Note that 1
x

= 1 · x−1 = x−1, and so we usually write x−1 as 1
x
.

Project 8.25. Think about why division by 0 ought not to be defined. Come up with

an argument that will convince a friend.
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8.2 Positive Real Numbers and Ordering

Axiom 8.26. There exists a subset R>0 ⊆ R satisfying:

(i) If x,y ∈ R>0 then x+ y ∈ R>0.

(ii) If x,y ∈ R>0 then xy ∈ R>0.

(iii) 0 /∈ R>0.

(iv) For every x ∈ R, we have x ∈ R>0 or x = 0 or −x ∈ R>0.

The members of R>0 are called positive real numbers. A negative real number is

a real number that is neither positive nor zero.

Proposition 8.27. For x ∈ R, one and only one of the following is true: x ∈ R>0, −x ∈ R>0, x = 0.

Proposition 8.28. 1 ∈ R>0.

By analogy with the definition of “less than” in Z, we write x < y (x is less than y)

or y > x (y is greater than x) if y− x ∈ R>0, and we write x ≤ y (x is less than or

equal to y) or y ≥ x (y is greater than or equal to x) if we also allow x = y. The

analogy between the < relation on R and < as previously defined on Z continues:

Proposition 8.29. Let x,y,z ∈ R. If x < y and y < z then x < z.

Proposition 8.30. For each x ∈ R there exists y ∈ R such that y > x.

Proposition 8.31. Let x,y ∈ R. If x ≤ y ≤ x then x = y.

Proposition 8.32. For all x,y,z,w ∈ R:

(i) If x < y then x+ z < y+ z.

(ii) If x < y and z < w then x+ z < y+w.

(iii) If 0 < x < y and 0 < z ≤ w then xz < yw.

(iv) If x < y and z < 0 then yz < xz.

Proposition 8.33. For each x,y ∈ R, exactly one of the following is true: x < y, x = y, x > y.

Proposition 8.34. Let x ∈ R. If x 6= 0 then x2 ∈ R>0.

Proposition 8.35. The equation x2 = −1 has no solution in R.

Proposition 8.36. Let x,z ∈ R>0, y ∈ R. If xy = z, then y ∈ R>0.

Proposition 8.37. For all x,y,z ∈ R:

(i) −x < −y if and only if x > y.
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(ii) If x > 0 and xy < xz then y < z.

(iii) If x < 0 and xy < xz then z < y.

(iv) If x ≤ y and 0 ≤ z then xz ≤ yz.

Proposition 8.38. R>0 = {x ∈ R : x > 0} .

Proposition 8.39. If x ∈ R>0 then x+1 ∈ R>0.

Proposition 8.40.

(i) x ∈ R>0 if and only if 1
x
∈ R>0.

(ii) Let x,y ∈ R>0. If x < y then 0 < 1
y

< 1
x
.

Proposition 8.41. Let x ∈ R. Then x2 < x3 if and only if x > 1.After proving this

proposition, draw graphs of

y = x2 and y = x3.

8.3 Similarities and Differences

If you compare Axioms 1.1–1.4 (for Z) with Axioms 8.1–8.4 (for R) you will see that

they are identical. They are concerned with addition, subtraction, 0, and 1. It follows

that any proposition for Z that depends only on Axioms 1.1–1.4 is automatically also

true for R. In fact, the same holds for Zn, by Proposition 6.26.A mathematical system that

satisfies Axioms 1.1–1.4 is

called a commutative ring. In the same way, Axiom 2.1 and Axiom 8.26 are identical: they concern the positive

numbers and ordering. Thus once again we can get “free” theorems for real numbers

based on proofs originally given for integers.

Now compare Axiom 1.5 (cancellation) with Axiom 8.5 (multiplicative inverse).

As we showed in Proposition 8.7, Axiom 8.5 implies Axiom 1.5. The converse

implication is false: for example, the integer 2 does not have a multiplicative inverse

in Z.

Another notable difference between Z and R involves the existence of a smallest

positive element. By Proposition 2.20, the integer 1 is the smallest positive integer.

There is no comparable statement for R:

Theorem 8.42. R>0 does not have a smallest element.Here we use the same

definition for “smallest

element” that we used in

Section 2.4.
Proof. Define the real number 2 := 1+1; by Proposition 8.28, 2 ∈ R>0. Proposition

8.40 implies that 2−1 = 1
2

is also positive.

We claim further that 1
2

< 1; otherwise, Proposition 8.32(ii) (with 0 < 1 < 2 and

0 < 1 ≤ 1
2
) would imply that 1 < 1, a contradiction.

Thus we have established 0 < 1
2

< 1 and can start the actual proof of Theorem

8.42. We will prove it by contradiction. Assume that there exists a smallest element
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s ∈ R>0. Then we can use Proposition 8.32(ii) (with 0 < 1
2

< 1 and 0 < s ≤ s) to

deduce
1

2
· s < s .

However, 1
2
· s ∈ R>0 (by Axiom 8.26(ii)), which contradicts the fact that s is the

smallest element in R>0. ut

We labeled Theorem 8.42 as a theorem rather than a proposition to emphasize its

importance. In many of your advanced mathematics courses—courses with words

like analysis and topology in their titles—the instructor will use Theorem 8.42

regularly. It may not be mentioned explicitly, but it will be used in ε–δ arguments.

We will discuss this in more detail in Chapter 10.

Theorem 8.43. Let x,y ∈ R such that x < y. There exists z ∈ R such that x < z < y. This theorem implies that

the real numbers are “all

over the place” in the sense

that no matter how close two

real numbers are, there are

infinitely many real numbers

between these two. (See

Section 13.1 for the meaning

of “infinitely many.”)

The analogous statement for Z is false—this is the content of Corollary 2.22.

The remaining axiom for Z, Axiom 2.15, is concerned with induction; it has no

analogue for the real numbers:

Project 8.44. Construct a subset A ⊆ R that satisfies

(i) 1 ∈ A and

(ii) if n ∈ A then n+1 ∈ A,

yet for which R>0 is not a subset of A.

In the next section, we will introduce one more axiom for R, called the Completeness

Axiom; it has no useful analogue for Z.

8.4 Upper Bounds

To state our last axiom for R, we need some definitions. Let A be a nonempty subset

of R.

(i) The set A is bounded above if there exists b ∈ R such that for all a ∈ A, a ≤ b.

Any such number b is called an upper bound for A.

(ii) The set A is bounded below if there exists b ∈ R such that for all a ∈ A, b ≤ a.

Any such number b is called a lower bound for A.

(iii) The set A is bounded if it is both bounded above and bounded below.

(iv) A least upper bound for A is a an upper bound that is less than or equal to

every upper bound for A.
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Least upper bounds are unique if they exist:

Proposition 8.45. If x1 and x2 are least upper bounds for A, then x1 = x2.

The least upper bound of A is denoted by sup(A), an abbreviation for supremum.sup(A) is often written as

supA, as in Example 8.46.

An alternative notation for

sup(A) is lub(A).
Example 8.46. sup{x ∈ R : x < 0} = 0 .

The least upper bound of a set might not exist. For example:

Proposition 8.47. R>0 has no upper bound.

Example 8.48. Consider the sets

{x ∈ R : 0 ≤ x ≤ 1}

and

{x ∈ R : 0 ≤ x < 1} .

In both cases, the least upper bound is 1. In the first set, the least upper bound lies

in the set, while in the second set the least upper bound lies outside. The important

fact, illustrated by this example, is that sup(A) sometimes lies in A but not always.

We will say more in the next proposition.

A real number b ∈ A is the maximum or largest element of A if for all a ∈ A, a ≤ b.Propositions 8.45 and 8.49

imply that max(A) is unique

if it exists.
In this case we write b = max(A).

Proposition 8.49. Let A ⊆ R be nonempty. If sup(A) ∈ A then sup(A) is the largest

element of A, i.e., sup(A) = max(A). Conversely, if A has a largest element then

max(A) = sup(A) and sup(A) ∈ A.

Proposition 8.50. If the sets A and B are bounded above and A ⊆ B, then sup(A) ≤
sup(B).

At this point it is useful to define intervals. They come in nine types: Let x < y. Then

[x,y] is an example of a

closed interval; (x,y) is an

open interval; and (x,y] is

half open.

Do not confuse the open

interval notation with the

coordinate description of a

point in the plane.

[x,y] := {z ∈ R : x ≤ z ≤ y}
(x,y] := {z ∈ R : x < z ≤ y}
[x,y) := {z ∈ R : x ≤ z < y}
(x,y) := {z ∈ R : x < z < y}

(−∞,x] := {z ∈ R : z ≤ x}
(−∞,x) := {z ∈ R : z < x}

[x,∞) := {z ∈ R : x ≤ z}
(x,∞) := {z ∈ R : x < z}

(−∞,∞) := R .
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Project 8.51. For a nonempty set B ⊆ R one can define the greatest lower bound An alternative notation for

inf(B) is glb(B).inf(B) (for infimum) of B. Give the precise definition for inf(B) and prove that it is

unique if it exists. Also define min(B) and prove the analogue of Proposition 8.49

for greatest lower bounds and minima.

Here is the final axiom for the real numbers.

Axiom 8.52 (Completeness Axiom). Every nonempty subset of R that is bounded

above has a least upper bound.

This axiom, which concludes our definition of R, is stated here only because those

referring back later might forget to include it in the list. It needs discussion, indeed a

chapter of its own—Chapter 10.

Proposition 8.53. Every nonempty subset of R that is bounded below has a greatest

lower bound.

Review Questions. Have you looked carefully at how the axioms for the set of

real numbers differ from the axioms for the set of integers? Do you understand the

difference between the maximum element of a set of real numbers and the least upper

bound of that set?

Weekly reminder: Reading mathematics is not like reading novels or history. You need to think

slowly about every sentence. Usually, you will need to reread the same material later, often more

than one rereading.

This is a short book. Its core material occupies about 140 pages. Yet it takes a semester for most

students to master this material. In summary: read line by line, not page by page.
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Embedding Z in R

I believe that numbers and functions of analysis are not the arbitrary result of our minds; I think

that they exist outside of us, with the same character of necessity as the things of objective reality,

and we meet them or discover them, and study them, as do the physicists, the chemists and the

zoologists.

Charles Hermite (1822–1901), quoted in Morris Kline’s Mathematical Thought from Ancient to

Modern Times, Oxford University Press, 1972, p. 1035.

We have now defined two number systems, Z and R. Intuitively, we think of the

integers as a subset of the real numbers; however, nothing in our axioms tells us

explicitly that Z can be viewed as a subset of R. In fact, at the moment we have no

axiomatic reason to think that the integers we named 0 and 1 are the same as the real

numbers we named 0 and 1.

Just for now, we will be more careful and write 0Z and 1Z for these special members

of Z, and 0R and 1R for the corresponding special members of R. Informally we are

accustomed to identifying 0Z with 0R and identifying 1Z with 1R. We will justify this

here by giving an embedding of Z into R, that is, a function that maps each integer

to the corresponding number in R.

Before You Get Started. How could such an embedding function of Z into R be

constructed? From what you know about functions, what properties will such a

function have?
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