
Math 310-001 Review for Final Fall, 2014

I. Review homework problems.

II. Review quizzes.

III. Be able to prove short and straightforward theorems.

IV. Refer to the reviews for Exams I and II, as well as the exams themselves.

Some practice problems to review sections covered in Chapter 6 and Chapter 7

1. Show that the set of all polynomials with a constant coefficient which is divisible by 5 is
an ideal in Z[x]. On the other hand, show that the set P of all polynomials with a leading
coefficient which is divisible by 5 is NOT an ideal in Z[x].

Solution: Let J = {f(x) = anx
n + ... + a1x + a0 ∈ Z[x] : 5 | a0}. Note that Z[x] is a

commutative ring, so to show J is an ideal, it is sufficient to show that for all f(x), g(x) ∈ J ,
f(x)− g(x) ∈ J and for all h(x) ∈ Z[x] and all f(x) ∈ J , f(x)h(x) ∈ J . Let f(x), g(x) ∈ J be
defined by f(x) = anx

n+...+a1x+a0 and g(x) = bmxm+...+b1x+b0. We have 5 | a0 and 5 | b0.
Define k = max{m,n}, ak = 0 for all k > n and bk = 0 for all k > m. Then f(x) − g(x) =
(ak−bk)xk+...+(a1−b1)x+a0−b0. Since 5 | (a0−b0), f(x)−g(x) ∈ J . Now, take an arbitrary
h(x) ∈ Z[x] and f(x) ∈ J . Assume f(x) = anx

n+...+a1x+a0 and h(x) = cmxm+...+c1x+c0.
Then h(x)f(x) = f(x)h(x) = ancmxn+m+(ancm−1+an−1cm)xn+m−1+ ...+a0c0. Since 5 | a0,
then 5 | a0c0 and so f(x)h(x) ∈ J . Thus, we conclude that J is an ideal.

For the second part, consider f(x) = 5x2 + 2x + 3 and g(x) = 5x2 + x− 1, both of which are
elements of P , however, f(x)− g(x) = x+ 4 is not an element of P , thus P is not a ring, and
thus not an ideal.

2. Show that the set of non-units is an ideal in Z8.

Solution: Let M denote the set of nonunits in Z8, i.e., M = {0, 2, 4, 6}. Note that for any
m,n ∈ M , m − n ∈ M . Also, it is easy to show that ∀k ∈ Z8 and ∀m ∈ M , mk = km ∈
M . Thus, M is closed under subtraction and possesses the absorbtion condition, so we can
conclude it is an ideal in Z8.

3. If I and J are ideals in a ring R, show that I ∩ J is an ideal in R. Is this the case for I ∪ J?

4. Give an example of a subring in a given ring, which is not an ideal. Are there ideals which
are not subrings?

5. If F is a field, R a nonzero ring, and f : F → R a surjective homomorphism, prove that f is
an isomorphism.

6. Let I = {0, 5} in Z10. Verify that I is an ideal. What are the elements in Z10/I? Show that
Z10/I ∼= Z5.



7. (a) Prove that the set T of matrices of the form

(
a b
0 a

)
with a, b ∈ R is a subring of

M2(R).

(b) Prove that the set I of matrices of the form

(
0 b
0 0

)
with b ∈ R is an ideal in the ring

T .

(c) What are the cosets in T/I?

(d) Prove that T/I ∼= R.

8. Let X be a rigid rhombus in the plane, and G = Sym(X) its symmetry group (consisting of
rotations and reflections).

(a) List the elements of G. Name each by a letter and sketch the symmetry it represents.

(b) Construct the operation table for G. Is G an abelian group?

(c) List all the subgroups H of G.

9. Let G be the set of ordered triples of integers (a, b, c) with the following operation

(a, b, c) ∗ (a′, b′, c′) = (a + a′, b + b′, c + c′ + ab′)

(a) Show that G is a group under ∗.
(b) Is G abelian?

10. Let GL(2,R) denote the group of units in the ring M2(R) if 2×2 matrices with real coefficients.
What is the identity element in the group M2(R)? How about in GL(2,R)? What is the order

of

(
0 1
−1 −1

)
in GL(2,R)? What is the order of

(
0 1
−1 −1

)
in M2(R)?

11. Prove that if G is a group, its identity element is unique.

12. Let H be a subgroup of a group G. If eG is the identity element of G and eH is the identity
element of H, prove that eG = eH .

Solution: Note that heH = h for all elements h ∈ H, so in particular we have eHeH = eH .
Similarly, geG = g for all elements g ∈ G, so in particular we have eHeG = eH . Thus,
eHeH = eHeG. Since G is a group, every element has an inverse, thus we have

e−1H (eHeH) = e−1H (eHeG)

(e−1H eH)eH = (e−1H eH)eG

eH = eG

13. Let a and n be two integers, such that n > 1 and gcd(a, n) = 1. Let ā denote the congruence
class of a modulo n. Prove that ā generates all of Zn, i.e. 〈ā〉 = Zn.

14. Prove that the additive group Z2 × Z4 is not cyclic.

Solution: Recall that

Z2×Z4 = {([0]2, [0]4), ([0]2, [1]4), ([0]2, [2]4), ([0]2, [3]4), ([1]2, [0]4), ([1]2, [1]4), ([1]2, [2]4), ([1]2, [3]4)}

and the order of each element is either 1, 2 or 4. Thus, the cyclic group generated by each
element is of order 1, 2, or 4. Thus, no single element can generate the whole group Z2 ×Z4.



15. List all cyclic subgroups of (i) S3, (ii) of U9, (iii) of Z9.

Solution: The cyclic subgroups of S3 are as follows.

G1 =

{(
1 2 3
1 2 3

)}
=

〈(
1 2 3
1 2 3

)〉

G2 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
=

〈(
1 2 3
2 3 1

)〉
=

〈(
1 2 3
3 1 2

)〉
G3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)}
=

〈(
1 2 3
1 3 2

)〉
G4 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
3 2 1

)}
=

〈(
1 2 3
3 2 1

)〉
G5 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
2 1 3

)}
=

〈(
1 2 3
2 1 3

)〉
The cyclic subgroups of U9 = {1̄, 2̄, 4̄, 5̄, 7̄, 8̄} are as follows.

G1 = 〈1̄〉 = {1̄}

G2 = 〈2̄〉 = {1̄, 2̄, 4̄, 8̄, 7̄, 5̄} = U9 = 〈5̄〉

G3 = 〈4̄〉 = {1̄, 4̄, 7̄} = 〈7̄〉

G4 = 〈8̄〉 = {1̄, 8̄}

The cyclic subgroups of Z9 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄} are as follows.

G1 = 〈0̄〉 = {0̄}

G2 = 〈1̄〉 = Z9 = 〈2̄〉 = 〈4̄〉 = 〈5̄〉 = 〈7̄〉 = 〈8̄〉

G3 = 〈3̄〉 = {0̄, 3̄, 6̄} = 〈6̄〉

16. Challenge: If (ab)3 = a3b3 and (ab)5 = a5b5 for all a, b in G, prove that G is abelian.


