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Introduction Background

Background

Two-part model for pure premium calculation: decompose total
claims into claim frequency (number of claims) and claim severity
(amount of claim, given a claim occurs).

Several believe that the claim frequency, or claim counts, is the more
important component.

Past claims experience provide invaluable insight into some of the
policyholder risk characteristics for experience rating or credibility
ratemaking.

Modeling longitudinal claim counts can assist to test economic
hypothesis within the context of a multi-period contract.

It might be insightful to explicitly measure the association of claim
counts over time (intertemporal dependence).
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Introduction Background

Longitudinal data for claim count

Assume we observe claim counts, Nit, for a group of policyholders i,
for i = 1, 2, . . . ,m, in an insurance portfolio over Ti years.

For each policyholder, the observable data is a vector of claim counts
expressed as (Ni1, . . . , NiTi).

Data may be unbalanced: length of time Ti observed may differ
among policyholders.

Set of observable covariates xit useful to sub-divide the portfolio into
classes of risks with homogeneous characteristics.

Here, we present an alternative approach to modeling longitudinal
insurance claim counts using copulas and compare its performance
with standard and traditional count regression models.
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Introduction Literature

Literature

Alternative models for longitudinal counts:

Random effects models: the most popular approach

Marginal models with serial correlation

Autoregressive and integer-valued autoregressive models

Common shock models

Useful books on count regression

Cameron and Trivedi (1998): Regression Analysis of Count Data

Denuit et al. (2007): Actuarial Modelling of Claim Counts: Risk
Classification, Credibility and Bonus-Malus Systems

Frees (2009): Regression Modeling with Actuarial and Financial
Applications

Winkelmann (2010): Econometric Analysis of Count Data

The recent survey work of Boucher, Denuit and Guillén (2010)
provides for a comparison of the various models.
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Introduction Literature

Literature - continued

Copula regression for multivariate discrete data:

Increasingly becoming popular

Applications found in various disciplines:

Economics: Prieger (2002), Cameron et al. (2004), Zimmer and
Trivedi (2006)

Biostatistics: Song et al. (2008), Madsen and Fang (2010)

Actuarial science: Purcaru and Denuit (2003), Shi and Valdez (2011)

Modeling longitudinal insurance claim counts:

Frees and Wang (2006): model joint pdf of latent variables

Boucher, Denuit and Guillén (2010): model joint pmf of claim counts

Be pre-cautious when using copulas for multivariate discrete
observations: non-uniqueness of the copula, vague interpretation of
the nature of dependence. See Genest and Nešlehová (2007).

We adopt an approach close to Madsen and Fang (2010): joint
regression analysis.

E.A. Valdez (Mich State Univ) Bogota Workshop, Day 3 23-25 April 2014 6 / 56



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling Random effects models

Random effects models

To capture the intertemporal dependence within subjects, the most
popular approach is to introduce a common random effect, say αi, to
each observation.

The joint pmf for (Ni1, . . . , NiTi) can be expressed as

Pr(Ni1 = ni1, . . . , NiTi = niTi) =∫ ∞
0

Pr(Ni1 = ni1, . . . , NiTi = niTi |αi)f(αi)dαi

where f(αi) is the density function of the random effect.

Typical assumption is conditional independence as follows:

Pr(Ni1 = ni1, . . . , NiTi = niTi |αi) =

Pr(Ni1 = ni1|αi)× · · · × Pr(NiTi = niTi |αi).
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Modeling Random effects models

Some known random effects models

Poisson Nit ∼ Poisson(λ̃it)

λ̃it = ηiλit = ηiωit exp(x
′

itβ), and ηi ∼ Gamma(ψ,ψ)

λ̃it = ωit exp(αi + x
′

itβ), and αi ∼ N(0, σ2)

Negative Binomial

NB1: 1 + 1/νi ∼ Beta(a, b)

Pr(Nit = nit|νi) = Γ(nit+λit)
Γ(λit)Γ(nit+1)

(
νi

1+νi

)λit
(

1
1+νi

)nit

NB2: αi ∼ N(0, σ2)

Pr(Nit = nit|αi) = Γ(nit+ψ)
Γ(ψ)Γ(nit+1)

(
ψ

λ̃it+ψ

)ψ (
λ̃it

λ̃it+ψ

)nit

Zero-inflated models

Pr(Nit = nit|δi, αi) =

{
πit + (1− πit)f(nit|αi) if nit = 0
(1− πit)f(nit|αi) if nit > 0

.

log
(

πit

1−πit

∣∣∣δi) = δi + z
′

itγ,

ZIP (f ∼ Poisson) and ZINB (f ∼ NB)
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Modeling Copula models

Copula models

Joint pmf using copula:

Pr(Ni1 = ni1, . . . , NiT = niT ) =
2∑

j1=1

· · ·
2∑

jT=1

(−1)j1+···+jTC(u1j1 , . . . , uTjT )

Here, ut1 = Fit(nit), ut2 = Fit(nit − 1), and Fit denotes the
distribution of Nit

Downside of the above specification:

contains 2T terms and becomes unmanageable for large T

involves high-dimensional integration

other critiques for the case of multivariate discrete data: see Genest
and Něslehová (2007)
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Modeling Continuous extension with jitters

Continuous extension with jitters

Define N∗it = Nit − Uit where Uit ∼ Uniform(0, 1)

The joint pdf of jittered counts for the ith policyholder
(N∗i1, N

∗
i2, . . . , N

∗
iT ) may be expressed as:

f∗i (n∗i1, . . . , n
∗
iT ) = c(F ∗i1(n

∗
i1), . . . , F

∗
iT (n∗iT );θ)

T∏
t=1

f∗it(n
∗
it)

Retrieve the joint pmf of (Ni1, . . . , NiT ) by averaging over the jitters:

fi(ni1, . . . , niT ) =

EUi

[
c(F ∗

i1(ni1 − Ui1), . . . , F ∗
iT (niT − UiT );θ)

T∏
t=1

f∗it(nit − Uit)

]
Based on relations:

F ∗
it(n) = Fit([n]) + (n− [n])fit([n+ 1])

f∗it(n) = fit([n+ 1])
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Modeling Some properties

Some properties with jittering

It is interesting to note that with continuous extension with jitters, we
preserve:

concordance ordering:

If (Na1, Nb1) ≺c (Na2, Nb2), then (N∗a1, N
∗
b1) ≺c (N∗a2, N

∗
b2)

Kendall’s tau coefficient:

τ(Na1, Nb1) = τ(N∗a1, N
∗
b1)

Proof can be found in Denuit and Lambert (2005).
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Empirical analysis Model specification

Model specification
Assume fit follows NB2 distribution:

fit(n) = Pr(Nit = n) =
Γ(n+ ψ)

Γ(ψ)Γ(n+ 1)

(
ψ

λit + ψ

)ψ ( λit
λit + ψ

)n
,

with λit = exp(x
′
itβ).

Consider elliptical copulas for the jittered counts and examine three
dependence structure (e.g. T = 4):

autoregressive: ΣAR =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1



exchangeable: ΣEX =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1



Toeplitz: ΣTOEP =


1 ρ1 ρ2 0
ρ1 1 ρ1 ρ2
ρ2 ρ1 1 ρ1
0 ρ2 ρ1 1


Likelihood based method is used to estimate the model.
A large number of simulations are used to approximate the likelihood.

E.A. Valdez (Mich State Univ) Bogota Workshop, Day 3 23-25 April 2014 12 / 56



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical analysis Singapore data

Singapore data

For our empirical analysis, claims data are obtained from an
automobile insurance company in Singapore

Data was over a period of nine years 1993-2001.

Data for years 1993-2000 was used for model calibration; year 2001
was our hold-out sample for model validation.

Focus on “non-fleet” policy

Limit to policyholders with comprehensive coverage

Number and Percentage of Claims by Count and Year
Percentage by Year Overall

Count 1993 1994 1995 1996 1997 1998 1999 2000 2001 Number Percent

0 88.10 85.86 85.21 83.88 90.41 85.62 86.89 87.18 89.71 3480 86.9
1 10.07 12.15 13.13 14.29 8.22 13.73 11.59 11.54 9.71 468 11.7
2 1.47 2.00 1.25 1.83 0.00 0.65 1.37 0.92 0.57 50 1.25
3 0.37 0.00 0.21 0.00 1.37 0.00 0.15 0.18 0.00 6 0.15
4 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.18 0.00 2 0.05

Number 546 601 480 273 73 306 656 546 525 4006 100
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Empirical analysis Singapore data

Summary statistics
Data contain rating variables including:

vehicle characteristics: age, brand, model, make

policyholder characteristics: age, gender, marital status

experience rating scheme: no claim discount (NCD)

Number and Percentage of Claims by Age, Gender and NCD
Percentage by Count Overall

0 1 2 3 4 Number Percent

Person Age (in years)

25 and younger 73.33 23.33 3.33 0.00 0.00 30 0.75
26-35 87.49 11.12 1.19 0.10 0.10 1007 25.14
36-45 86.63 11.80 1.35 0.17 0.06 1780 44.43
46-60 86.85 11.92 1.05 0.18 0.00 1141 28.48

60 and over 91.67 6.25 2.08 0.00 0.00 48 1.20

Gender

Female 91.49 7.98 0.53 0.00 0.00 188 4.69
Male 86.64 11.86 1.28 0.16 0.05 3818 95.31

No Claims Discount (NCD)

0 84.83 13.17 1.61 0.26 0.13 1549 38.67
10 86.21 12.58 1.20 0.00 0.00 747 18.65
20 89.21 9.25 1.54 0.00 0.00 584 14.58
30 89.16 9.49 1.08 0.27 0.00 369 9.21
40 88.60 11.40 0.00 0.00 0.00 193 4.82
50 88.83 10.46 0.53 0.18 0.00 564 14.08

Number by Count 3480 468 50 6 2 4006 100
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Inference Variable selection

Variable selection

Preliminary analysis chose:

young : 1 if below 25, 0 otherwise

midfemale: 1 if mid-aged (between 30-50) female drivers, 0 otherwise

zeroncd : 1 if zero ncd, 0 otherwise

vage: vehicle age

vbrand1 : 1 for vehicle brand 1

vbrand2 : 1 for vehicle brand 2

Variable selection procedure used is beyond scope of our work.
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Inference Estimation results

Estimation Results
Estimates of standard longitudinal count regression models

RE-Poisson RE-NegBin RE-ZIP RE-ZINB
Parameter Estimate p-value Estimate p-value Estimate p-value Estimate p-value

intercept -1.7173 <.0001 1.6404 0.1030 -1.6780 <.0001 -1.7906 <.0001
young 0.6408 0.0790 0.6543 0.0690 0.6232 0.0902 0.6371 0.0853
midfemale -0.7868 0.0310 -0.7692 0.0340 -0.7866 0.0316 -0.7844 0.0319
zeroncd 0.2573 0.0050 0.2547 0.0060 0.2617 0.0051 0.2630 0.0050
vage -0.0438 0.0210 -0.0442 0.0210 -0.0436 0.0227 -0.0438 0.0224
vbrand1 0.5493 <.0001 0.5473 <.0001 0.5481 <.0001 0.5478 <.0001
vbrand2 0.1831 0.0740 0.1854 0.0710 0.1813 0.0777 0.1827 0.0755

LogLik -1498.40 -1497.78 -1498.00 -1497.50
AIC 3012.81 3013.57 3016.00 3017.00
BIC 3056.41 3062.62 3070.50 3077.00

Estimates of copula model with various dependence structures
AR(1) Exchangeable Toeplitz(2)

Parameter Estimate StdErr Estimate StdErr Estimate StdErr

intercept -1.8028 0.0307 -1.8422 0.0353 -1.7630 0.0284
young 0.6529 0.0557 0.7130 0.0667 0.6526 0.0631
midfemale -0.6956 0.0588 -0.6786 0.0670 -0.7132 0.0596
zeroncd 0.2584 0.0198 0.2214 0.0172 0.2358 0.0176
vage -0.0411 0.0051 -0.0422 0.0056 -0.0453 0.0042
vbrand1 0.5286 0.0239 0.5407 0.0275 0.4962 0.0250
vbrand2 0.1603 0.0166 0.1752 0.0229 0.1318 0.0198

φ 2.9465 0.1024 2.9395 0.1130 2.9097 0.1346
ρ1 0.1216 0.0028 0.1152 0.0027 0.1175 0.0025
ρ2 0.0914 0.0052

LogLik -1473.25 -1454.04 -1468.74
AIC 2964.49 2926.08 2957.49
BIC 3013.55 2975.13 3011.99
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Inference Model validation

Model validation

Copula validation

The specification of the copula is validated using t-plot method as
suggested in Sun et al. (2008) and Shi (2011).

In a good fit, we would expect to see a linear relationship in the t-plot.

Out-of-sample validation: based on predictive distribution calculated
using

fiT+1(niT+1|ni1, . . . , niT )

= Pr(NiT+1 = niT+1|Ni1 = ni1, . . . , NiT = niT )

=
EUi

[
c(F∗i1(ni1 − Ui1), . . . , F∗iT+1(niT+1 − UiT+1); θ)

∏T+1
t=1 f∗it(nit − Uit)

]
EUi

[
c(F∗i1(ni1 − Ui1), . . . , F∗

iT
(niT − UiT ); θ)

∏T
t=1 f

∗
it(nit − Uit)

] .

Performance measures used:

LogLik =
∑M
i=1 log (fiT+1(niT+1|ni1, · · · , niT ))

MSPE =
∑M
i=1 [niT+1 − E(NiT+1|Ni1 = ni1, · · · , NiT = niT )]

2

MAPE =
∑M
i=1 |niT+1 − E(NiT+1|Ni1 = ni1, · · · , NiT = niT )|
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Inference Model validation

Construction of the t-plot

The null hypothesis of a t-plot is that a sample comes from an elliptical
multivariate distribution. Such hypothesis could be tested according to the
procedure below:

(a) Transform the claim counts to variables on (0, 1) by
ι̂it = F ∗it(nit − uit; β̂, ψ̂) for t = 1, · · · , Ti, where β̂ and ψ̂ are the
maximum likelihood estimates. Under the null hypothesis,
ιi = (ιi1, · · · , ιiTi) is a realization of the hypothesized elliptical
copula.

(b) Compute the quantiles of ι̂it by ζ̂it = H−1t (ι̂it) for t = 1, · · · , Ti,
where Ht denotes the marginal distribution associated with the
elliptical copula. Thus, if the copula is well-specified,
ζ̂i = (ζ̂i1, · · · , ζ̂iTi)

′
follows the multivariate elliptical distribution of

ETi(0,Σ, gTi).
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Inference Model validation

- continued

(c) Calculate vector ζ̂
∗
i = (ζ̂∗i1, · · · , ζ̂∗iTi)

′
= Σ̂

−1/2
ζ̂i, and construct the t

statistic for policyholder i:

ti(ζ̂
∗
i ) =

√
Ti

¯̂
ζ∗i√

(Ti − 1)−1
∑Ti

t=1(ζ̂
∗
it −

¯̂
ζ∗i )2

,

with Σ̂ the maximum likelihood estimator of Σ and
¯̂
ζ∗i = T−1i

∑Ti
t=1 ζ̂

∗
it. Thus ti(ζ̂

∗
i ) should be from a standard t

distribution with Ti − 1 degrees of freedom.

(d) Repeat steps (a) - (c) for i = 1, · · · , I, and calculate the t statistics

ti(ζ̂
∗
i ) for all policyholders in the sample. Define the transformed

variable ςi = GTi−1(ti(ζ̂
∗
i )), where GTi−1 denotes the cdf of a t

distribution with Ti − 1 degrees of freedom.

If the copula captures the dependence structure properly, ς = (ς1, · · · , ςn)
′

should be a random sample from a uniform (0,1). This can be easily
verified using standard graphical tools or goodness-of-fit tests.
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Inference Model validation

Results of model validation

t-plot

Out-of-sample validation

Standard Models Copula Models
RE-Poisson RE-NegBin AR(1) Exchangeable Toeplitz(2)

LogLik -177.786 -177.782 -168.037 -162.717 -165.932
MSPE 0.107 0.107 0.108 0.105 0.110
MAPE 0.213 0.213 0.197 0.186 0.192
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Concluding remarks

Concluding remarks

We examined an alternative way to model longitudinal count based
on copulas:

employed a continuous extension with jitters

method preserves the concordance-based association measures

The approach avoids the criticisms often made with using copulas
directly on multivariate discrete observations.

For empirical demonstration, we applied the approach to a dataset
from a Singapore auto insurer. Our findings show:

better fit when compared with random-effect specifications

validated the copula specification based on t-plot and its performance
based on hold-out observations

Our contributions to the literature: (1) application to insurance data,
and (2) application to longitudinal count data.
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Multivariate longitudinal data analysis for actuarial applications
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Motivation

Motivation

Unlike univariate longitudinal studies, multivariate longitudinal
analysis allows for understanding the joint evolution of multivariate
responses over a period of time.

There is increasing interest on multivariate longitudinal data analysis,
especially in biostatistics, where longitudinal analysis is quite
common.

However, we found that overall, there is lack of attention devoted to
multivariate longitudinal data analysis.

We are looking into the potential of the use of this type of analysis in
insurance and actuarial science.

E.A. Valdez (Mich State Univ) Bogota Workshop, Day 3 23-25 April 2014 24 / 56



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motivation Introduction

Introduction

In the presence of repeated observations over time, the natural
approach for data analysis is univariate longitudinal model.
(e.g. Shi and Frees, 2010 and Frees et al, 1999)

Repeated observations over time for many responses require
multivariate longitudinal framework.

Model accuracy can be improved by incorporating dependency among
multiple responses.

Response variables are typically assumed to have multivariate normal
distribution.

Multivariate longitudinal data analysis is becoming a popular tool in
data analysis.

There is a developing interest on multivariate longitudinal analysis in
actuarial context (e.g Shi, 2011).
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Motivation Some literature

Some literature
Frees, E.W. (2004). Longitudinal and panel data: analysis and applications in the social
sciences. Cambridge University Press, Cambridge.

Seemingly unrelated regressions (SUR) approach
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continuous outcome variable. Biometrics 52: 740-50.

The random effects approach
Reinsel, G. (1982). Multivariate repeated-measurement or growth curve models
with multivariate random-effects covariance structure. Journal of the American
Statistical Association 77: 190-195.
Shah, A., N.M. Laird, and D. Schoenfeld (1997). A random effects model with
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Motivation Some literature

Our contribution

Methodology

We propose the use of a random effects model to capture dynamic
dependency and heterogeneity, and a copula function to incorporate
dependency among the response variables.

Multivariate longitudinal analysis for actuarial applications

We intend to explore actuarial-related problems within multivariate
longitudinal context, and apply our proposed methodology.

NOTE: Our results are very preliminary at this stage.
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The model specification Notation

Notation

Suppose we have a set of observations on n subjects collected over T time
periods for a set of m response variables. Let yit,k denote the observation
from ith individual in tth time period on kth response. Hence, for a given
subject, the matrix

Yi =


yi1,1 yi2,1 . . . yiT,1
yi1,2 yi2,2 . . . yiT,2
. . . . . .

yi1,m yi2,m . . . yiT,m

where i = 1, 2, ...n

represents observations over T time periods corresponding to m number of
response variables.

By letting yit = (yit,1, yit,2, . . . , yit,m)′ for t = 1, 2, . . . , T , we can express
Yi = (yi1,yi2, . . . ,yiT).
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The model specification Notation

Notation - continued

Collected q set of covariates associated with each observed subject i
can be represented as

Xit =


xit1,1 xit2,1 . . . xitq,1
xit1,2 xit2,2 . . . xitq,2
. . . . . .

xit1,m xit2,m . . . xitq,m


where i = 1, 2, ...n and t = 1, 2, . . . , T

If xit,k = (xit1,k, xit2,k, . . . , xitp,k) for k = 1, 2, ...m, we can similarly
express xit = (xit,1,xit,2, . . . ,xit,m).

We use αik to represent the random effects component corresponding
to the ith subject from the kth response variable.

G (αik) represents the pre-specified distribution function of random
effect αik.
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The model specification Key features of our approach

Key features of our approach

Obviously, the extension from univariate to multivariate longitudinal
analysis.

Types of dependencies captured:
the dependence structure of the response using copulas - provides
flexibility

the intertemporal dependence within subjects and unobservable
subject-specific heterogeneity captured through the random effects
component - provides tractability

The marginal distribution models:
any family of flexible enough distributions can be used

choose family so that covariate information can be easily incorporated

Other key features worth noting:
the parametric model specification provides flexibility for inference e.g.
MLE for estimation

model construction can accommodate both balanced and unbalanced
data - an important feature for longitudinal data
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The model specification Some model assumptions

Some model assumptions

While several of these model assumptions are simplified during the initial
stages of our investigation, many can be modified to make the model more
reasonable, practicable and flexible for several applications:

The observations {Yi} are independent for a given time t and
response k.

Each response variable over time is assumed to belong to the same
class of distributions.

The covariates {xit} are non-stochastic variables.

The random effects components {αik} are independent and
identically distributed.

Random effects and covariates are independent.

The same family of copula functions is applicable over time.
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The model specification Copula function

Copula function
For arbitrary m uniform random variables on the unit interval, copula
function, C, can be uniquely defined as

C(u1, u2, . . . , um) = P (U1 ≤ u1, U2 ≤ u2, . . . , Um ≤ um).

Joint distribution:

F (y1, y2, . . . , ym) = C(F1(y1), . . . , Fm(ym)),

where Fk(yk) are marginal distribution functions.

Joint density:

f(y1, y2, . . . , ym) = c(F1(y1), ..., Fm(ym))
m∏
k=1

fk(yk),

where fk(yk) are marginal density functions and c is the density
associated with copula C.
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The model specification Multivariate joint distribution

Multivariate joint distribution
Suppose we observe m number of response variables over T time periods
for n subjects. Observed data for subject i is

{(yi1,1, yi1,2, . . . , yi1,m), . . . , (yiT,1, yiT,2, . . . , yiT,m)}

so that

Yit = (yit,1, yit,2, . . . , yit,m) for i = 1, 2, . . . , n and t = 1, 2, . . . , T

is the ith observation in the tth time period corresponding to m responses.
The joint distribution of m response variables over time can be expressed
as

H(yi1, . . . ,yiT) = P(Yi1 ≤ yi1, . . . ,YiT ≤ yiT).

If {αik} represent random effects with respect to the kth response
variable, conditional joint distribution at time t is

H(yit|αi1, . . . , αim) = C(F (yit,1|αi1), . . . , F (yit,m|αim)).
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The model specification Multivariate joint distribution

- continued
Conditional joint density at time t:

h(yit|αi1, . . . , αim) = c(F (yit,1|αi1), . . . , F (yit,m|αim))

m∏
k=1

f(yit,k|αik)

where F (yit,k|αik) denotes the distribution function of kth response
variable at time t. If ω represents the set of parameters in the model, the
likelihood of the ith subject is given by

L(ω|(yi1,yi2, . . . ,yiT)) = h(yi1,yi2, . . . ,yiT|ω).

We can write

h(yi1,yi2, . . . ,yiT|ω) =

∫
αi1

. . .

∫
αim

h(yi1, . . . ,yiT|αi1, . . . , αim)

dG (αi1) · · · dG (αim)

Under independence over time for a given random effect:

h(yi1, . . . ,yiT|αi1, . . . , αim) =
T∏
t=1

h(yit|αi1, . . . , αim)
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The model specification Multivariate joint distribution

- continued

=

∫
αi1

. . .

∫
αim

T∏
t=1

h(yit|αi1, . . . , αim)dG (αi1) · · · dG (αim)

and from the previous slides, we have

=

∫
αi1

. . .

∫
αim

T∏
t=1

c(F (yit,1|αi1), . . . , F (yit,m|αim))

m∏
k=1

f(yit,k|αik)dG (αi1) · · · dG (αim)

Then, we can write the log likelihood function as

∑
i

log
{∫

αi1

. . .

∫
αim

T∏
t=1

m∏
k=1

c(F (yit,1|α1), . . . , F (yit,m|αm))

× f(yit,k|αik)dG (αi1) · · · dG (αim)
}

E.A. Valdez (Mich State Univ) Bogota Workshop, Day 3 23-25 April 2014 35 / 56



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model specification Choice for the marginals: the class of GB2

Choice for the marginals: the class of GB2
The model specification is flexible enough to accommodate any marginals;
however, for our purposes, we chose the class of GB2 distributions. For
Y ∼ GB2(a, b, p, q) with a 6= 0, b, p, q > 0:

Density function:

fy(y) =
|a| yap−1baq

B(p, q)(ba + ya)(p+q)

where B (·, ·) is the usual Beta function.

Distribution function:

Fy(y) = B

(
(y/b)a

1 + (y/b)a
; p, q

)
where B (·; ·, ·) is the incomplete Beta function.

Mean:

E(Y ) = b
B (p+ 1/a, q − 1/a)

B(p, q)
.
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The model specification Choice for the marginals: the class of GB2

GB2 regression through the scale parameter

Suppose x is a vector of known covariates:

We have: Y |x ∼ GB2(a, b(x), p, q), where

b(x) = α+ β′x

Define residuals εi = Yie
−(αi+β′xi) so that

log Yi = logαi + β′xi + log εi

where εi ∼ GB2(a, 1, p, q)).

PP plots can then be used for diagnostics.
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The model specification Choice for the marginals: the class of GB2

Some empirical work on GB2

Income or wealth distributions

McDonald (1984)

Butler and McDonald (1989)

McDonald and Mantrala (1993, 1995)

Bordley and McDonald (1993)

McDonald and Xu (1995)

Unemployment duration

McDonald and Butler (1987)

Insurance loss

Cummins, Dionne, McDonald and Pritchett (1990) - fire losses

appeared in Insurance: Mathematics and Economics
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Case study

Case study - global insurance demand

Source: Swiss Re Economic Research & Consulting

Response variables that can be used for insurance demand:

Insurance density: Premiums per capita

Insurance penetration: Ratio of insurance premiums to GDP

Insurance in force: Outstanding face amount plus dividend

Some common covariates that have appeared in the literature:

Education; Income / GDP growth; Inflation

Urbanization

Dependency ratio

Death ratio / Life expectancyE.A. Valdez (Mich State Univ) Bogota Workshop, Day 3 23-25 April 2014 39 / 56



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case study

About the data set
Data set

2 responses: life and non-life insurance

5 predictor variables

75 countries

6 years data (from year 2004 to year 2009)

Variables in the model

Dependent variables

Life density Premiums per capita in life insurance

Non-life density Premiums per capita in non-life insurance

Independent variables

GDP per capita Ratio of gross domestic product (current US dollars) to total population

Religious Percentage of Muslim population

Urbanization Percentage of urban population to total population

Death rate Percentage of death

Dependency ratio Ratio of population over 65 to working population
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Case study

Multiple time series plot
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Case study

Some summary statistics

Summary statistics of variables in year 2004 to 2009:

Variable Minimum Maximum Mean Correlation with Correlation with
Life insurance Non-life insurance

Life insurance (0.49, 1.28) (4686.8, 11460) (614.23, 886) 1.00 (0.66, 0.84)
Non-life insurance (0.74, 1.26) (2427.6, 4499.6) (445.3, 612.1) (0.66, 0.84) 1.00
GDP per capita (375.2, 550.9) (56311.5, 94567.9) (14937.3, 21791.7) (0.67, 0.82) (0.84, 0.91)
Death rate (1.5, 1.52) (16.17, 17.11) (7.8, 8) (0.03, 0.06) (0.04, 0.07)
Urbanization (11.92, 13.56) (100,100) (65.37, 66.76) (0.28, 0.36) (0.41, 0.44)
Religious (0.01,0.01) (99.61, 99.61) (21.35, 21.35) (-0.30, -0.27) (-0.32, -0.27)
Dependency ratio (1.25, 1.39) (29.31, 33.92) (15.11, 15.78) (0.39, 0.53) (0.52, 0.57)

Correlation matrix of covariates in year 2004 to 2009:

GDP per Death Urbanization Religious Dependency
capita rate ratio

GDP per capita 1.00
Death rate (0.01, 0.03) 1.00
Urbanization (0.49, 0.52) (-0.15, -0.14) 1.00
Religious (-0.30, -0.27) (-0.38, -0.35) (-0.15, -0.14) 1.00
Dependency ratio (0.58, 0.62) (0.53, 0.54) (0.32, 0.34) (-0.53, -0.53) 1.00
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Case study

Scatter plots of the two response variables
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Case study

Scatter plots of the ranked response variables
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Case study

Histograms - life insurance - years 2004 to 2009
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Case study

Histograms - non-life insurance - years 2004 to 2009
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Case study

Model calibration

Marginals: GB2 with regression on the scale parameter

Gaussian copula:

C(u1, u2; ρ) = Φρ(Φ
−1(u1),Φ

−1(u2))

Natural assumption for random effect for the kth response:

αik ∼ N
(
0, σ2k

)
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Case study

Multiple time series plot

After removing Ireland, Netherlands and the UK in the dataset:
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Case study

PP plots of the residuals for marginal diagnostics: Life
Insurance
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Case study

PP plots of the residuals for marginal diagnostics: Non-life
Insurance
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Case study

Model estimates

Univariate fitted model for insurance demand
Life insurance density Non-life insurance density

Parameter Estimate Std Error p-val Estimate Std Error p-val

Covariates
GDP per capita 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
Religious -0.0231 0.0040 0.0000 -0.0085 0.0023 0.0000
Urbanization 0.0279 0.0061 0.0000 0.0567 0.0022 0.0000
Death rate 0.0035 0.0333 0.9164
Dependency ratio (old) -0.0440 0.0297 0.1390

GB2 Marginals
a 1.0427 0.0611 0.0000 2.5636 0.1397 0.0000
p 3.7321 0.5371 0.0000 1.3957 0.1356 0.0000
q 0.5081 0.0330 0.0000 0.5369 0.0364 0.0000

Random effect
Sigmaα 0.8507 0.1088 0.0000 0.6471 0.0535 0.0000

Gaussian copula:

Parameter Estimate Std Error p-val
ρ 0.7375 0.0376 0.0000
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Additional work intended

Additional work intended

Implementing diagnostic tests for model validation

Handling unbalanced and missing data.

Identifying more actuarial related problems within a multivariate
longitudinal framework.

e.g. there is a rapid development in loss reserving using multiple loss
triangle.

Alternative approach:

Use Multivariate generalized liner models for response in each time
period and use copula to capture the inter-temporal dependence.

(Possible) handling discrete response variables incorporating jitters.
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Additional work intended Dependent loss triangles

Dependent loss triangles

In property and casualty, different lines of business and their risks are
associated with each other frequently.

Hence, the aggregate risk of the portfolio depends on the association
between different lines of business.

Understanding these associations is important for pricing, risk
management, capital allocation and loss reserving, to name a few.

The classical approach, commonly used together with several variations, is
to use univariate chain ladder method.

Ajne (1994) showed that simple additivity of loss triangles between lines of
business does not provide similar results as aggregated loss triangle under
the chain ladder approach. This indicates the importance of modeling loss
triangles that capture their dependencies.
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Additional work intended Dependent loss triangles

- continued

According to Holmberg (1994) and Schmidt (2006), there are are possible
dependencies that can be observed from a portfolio of loss triangles:

a the dependency within accident years,

b the dependency between accident years, and

c the dependency between different line of business

Some work that have appeared in the literature:

Mack (1993): extended distribution free methods like chain ladder to
multivariate stochastic reserving

Schmidt (2006): proposed multivariate chain ladder method where
the dependence structure was incorporated into parameter estimates

Zhang (2010): employed seemingly unrelated regression models

Shi (2011) and de Jong (2011): explored the flexibility of copula
functions, accommodating various correlation structures
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Additional work intended Dependent loss triangles

- continued
It is well known that in the presence of m portfolios of risks with the same
number of development years and accident years, n, incremental losses
may be represented by a loss triangle.

We intend to rearrange the classical loss triangle to facilitate a longitudinal
framework for claims from each line of business.

Development year
Calendar year 0 1 . . . k . . . n− 1 n

0 S0,0

1 S1,0 S0,1

...
...

...

k Sk,0 Sk−1,1 . . . S0,k

...
...

...
...

n− 1 Sn−1,0 Sn−2,1 . . . Sn−1−k,k . . . S0,n−1
n Sn,0 Sn−1,1 . . . Sn−k,k . . . S1,n−1 S0,n
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