MATH 3630
Actuarial Mathematics I
Class Test 1
Wednesday, 24 September 2008
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
You are given that $\mu_{x}=0.005$ for all ages $x>0$.
The probability that (30) will survive another 10 years is p. Given that he survives another 10 years, the probability that he will survive another 10 years is q.

Evaluate p / q and give a brief intuitive explanation of the reasonableness of your answer.

Question No. 2:

You are given:

- $\ell_{x}=\omega-x$, for $0 \leq x \leq w$; and
- $\stackrel{\circ}{e}_{0}=25$.

Calculate $\operatorname{Var}\left(T_{20}\right)$ where T_{20} is the future lifetime of (20).

Question No. 3:

Suppose you are given the following force of mortality:

$$
\mu_{x}= \begin{cases}0.01, & \text { for } 0<x \leq 30 \\ 0.02, & \text { for } x>30\end{cases}
$$

Calculate ${ }_{20} p_{20}$ and interpret this probability.

Question No. 4:
You are given the following survival function:

$$
S_{X}(x)=\left(1-\frac{x}{100}\right)^{1 / 2}, \text { for } 0 \leq x \leq 100
$$

Calculate $P\left(K_{20}=10\right)$ where K_{20} is the curtate future lifetime of (20). Interpret this probability.

Question No. 5:

You are given the following extracted from a select-and-ultimate mortality table:

x	$q_{[x]}$	$q_{[x]+1}$	q_{x+2}
30	.00439	.00575	.00700
31	.00454	.00598	.00735
32	.00473	.00635	.00790
33	.00511	.00680	.00855
34	.00550	.00738	.00938

The select period is obviously two years.
Calculate ${ }_{2 \mid} q_{[30]+1}$.

Question No. 6:
Assume mortality follows the Illustrative Life Table.
Suppose that Uniform Distribution of Deaths (UDD) holds between integral ages.
Calculate ${ }_{1.5 \mid 0.5} q_{65}$.

Question No. 7:
Assume that the force of mortality follows:

$$
\mu_{x}=(1+x)^{-1}, \text { for } x>0
$$

Give a simplified expression for ${ }_{t} q_{20}$.

Question No. 8:

Prove that the following holds:

$$
\stackrel{\circ}{e}_{x: \overline{m+n}}=\stackrel{\circ}{e}_{x: \bar{m} \mid}+{ }_{m} p_{x} \cdot \stackrel{\circ}{e}_{x+m: \bar{n}} .
$$

Now, suppose you are given:

$$
\begin{aligned}
\dot{e}_{20: \overline{4}} & =3.7 \\
\dot{e}_{20: \overline{10}} & =8.2 \\
\dot{e}_{24: \overline{6}} & =5.4
\end{aligned}
$$

Use the above result to compute the probability that a life (20) will not survive to reach another 4 years.

Question No. 9:

You are given:

$$
S_{X}(x)=\left(1-\frac{x}{100}\right)^{1 / 3}, \text { for } 0 \leq x \leq 100
$$

Calculate $P\left(T_{30}>50\right)$ and interpret this probability.

Question No. 10:

Tony is currently 25 years old and his mortality follows deMoivre's law with $\omega=100$.
Tony is contemplating taking up paragliding as a recreational sport in the coming year. His assumed mortality will be adjusted for the coming year only, so that he will instead have a constant force of mortality of 0.05 .

Calculate the percentage increase in Tony's mortality rate for the coming year as a result of taking up paragliding.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

