MATH 3630
Actuarial Mathematics I
Class Test 1
Wednesday, 30 September 2009
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
Suppose you are given that

$$
\ell_{x}=10000(100-x)^{2}, \text { for } 0 \leq x \leq 100
$$

Calculate the probability that a person now age 20 will reach retirement age 65 .

Question No. 2:

Two friends, Daniel and Brian, are of the same age x. Denote their respective future lifetimes by T_{x}^{D} and T_{x}^{B}.
You are given:

- Daniel has a constant force of mortality $\mu_{x}^{\mathrm{D}}=0.010$ for all $x>0$.
- Brian has a constant force of mortality $\mu_{x}^{\mathrm{B}}=0.015$ for all $x>0$.

Calculate the probability that Daniel's future lifetime will exceed Brian's expected future lifetime.

Question No. 3:

You are given the following force of mortality:

$$
\mu_{x}= \begin{cases}0.02, & \text { for } 0<x \leq 25 \\ 0.03, & \text { for } x>25\end{cases}
$$

Calculate the probability that a life (20) will die between the ages of 25 and 35 .

Question No. 4:

In a certain population where $3 / 4$ are females and $1 / 4$ are males, the survival function for a female newborn is given by

$$
S_{X}^{f}(x)=\left(1-\frac{x}{100}\right)^{1 / 2}, \text { for } 0 \leq x \leq 100
$$

and that for a male newborn is

$$
S_{X}^{m}(x)=\left(1-\frac{x}{90}\right)^{1 / 2}, \text { for } 0 \leq x \leq 90
$$

For a randomly selected member of this population, calculate $P\left(K_{50}=10\right)$ where K_{50} is the curtate future lifetime of (50).

Question No. 5:

Suppose you are given the following select-and-ultimate mortality table:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
20	35,600	35,591	35,583	35,572	23
21	35,587	35,576	35,562	35,553	24
22	35,574	35,561	35,547	35,534	25

Assuming UDD between integral ages, calculate ${ }_{1 \mid 0.4} q_{[20]}$.

Question No. 6:
Assume mortality follows the Illustrative Life Table.
Suppose that constant force of mortality assumption holds between integral ages.
Calculate ${ }_{1.75 \mid 0.75} q_{25}$ and interpret this probability.

Question No. 7:
Suppose you are given the following survival function

$$
S_{X}(x)=e^{-.015 x}, \text { for } x>0
$$

Calculate e_{30} and interpret this value.

Question No. 8:

Prove that the following holds:

$$
\dot{e}_{x}=\stackrel{\circ}{e}_{x: \bar{n}}+{ }_{n} p_{x} \cdot \stackrel{\circ}{e}_{x+n}
$$

Now, suppose you are given:

$$
\begin{aligned}
\stackrel{\circ}{e}_{20} & =5.00 \\
\dot{e}_{20: 5} & =3.75 \\
{ }_{5} p_{20} & =0.50
\end{aligned}
$$

Use the above result to compute ${ }^{2} 25$.

Question No. 9:

Justin is currently 40 years old and his mortality follows deMoivre's law with $\omega=100$.
Justin is contemplating taking up rock climbing as a recreational sport in the coming year. His assumed mortality will be adjusted for the coming year only, so that he will instead have a constant force of mortality of 0.04 .

Calculate the percentage decrease in Justin's survival probability for the coming year as a result of taking up rock climbing.

Question No. 10:
You are given the survival function:

$$
S_{X}(x)=\left(1-\frac{x}{\omega}\right)^{r}, \text { for } 0 \leq x \leq \omega, \text { and } r>0
$$

If $\mu_{y}=0.10$ and $\dot{e}_{y}=8.75$ for some $0<y<\omega$, calculate the value of r.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

