MATH 3630
Actuarial Mathematics I
Class Test 1
Wednesday, 29 September 2010
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
A class of species follows a mortality pattern described by

$$
S_{X}(x)=\left(\frac{2}{2+x}\right)^{2}, \text { for } x \geq 0
$$

where x is measured in years.
Calculate \dot{e}_{1} and interpret this value.

Question No. 2:

Assume the Uniform Distribution of Death (UDD) assumption holds between integral ages. You are given:

$$
\begin{aligned}
& 0.5 q_{50}=0.005 \\
& { }_{0.4} q_{51}=0.008
\end{aligned}
$$

Calculate the probability that a life (50) will survive the next two years.

Question No. 3:

A cohort of newborn currently has mortality pattern described by

$$
\mu_{x}= \begin{cases}0.015, & \text { for } 0<x \leq 35 \\ 0.04, & \text { for } x>35\end{cases}
$$

A medical breakthrough will reduce the force of mortality for age beyond 35 by 25%, but will not affect mortality prior to, and including, age 35.
Calculate the percentage improvement in the probability of a 30-year-old reaching to age 65 as a result of this medical breakthrough.

Question No. 4:

Assume mortality follows the Illustrative Life Table.
Suppose that constant force of mortality assumption holds between integral ages.
Calculate ${ }_{1.5 \mid 0.75} q_{40}$ and interpret this probability.

Question No. 5:

For a portfolio of life insurance policies, you are given that substandard lives have force of mortality twice that of standard lives. You are given that mortality for standard lives is described according to

$$
\ell_{x}=500(110-x), \text { for } 0 \leq x \leq 110
$$

Calculate the probability that a substandard life (30) will die within 10 years.

Question No. 6:
Suppose you are given the following select-and-ultimate mortality table:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
20	35,600	35,591	35,583	35,572	23
21	35,587	35,576	35,562	35,553	24
22	35,574	35,561	35,547	35,534	25

Calculate the probability that a life with select age 20 will survive for two years but die the following two years.

Question No. 7:
You are given:

$$
S_{X}(x)=1-\frac{1}{8} x, \text { for } 0 \leq x \leq 8
$$

Calculate ${ }_{2} m_{4}$.

Question No. 8:

The following Generalized de Moivre's law holds:

$$
S_{X}(x)=\left(1-\frac{x}{\omega}\right)^{1 / 2}, \text { for } 0 \leq x \leq \omega
$$

In addition, you are given that the probability a life (25) survives another 10 years is 0.8944 . Calculate ω.

Question No. 9:
You are given:

- Mortality follows de Moivre's law.
- $\stackrel{\circ}{e}_{20}=35$.

Compute q_{30}.

Question No. 10:
You are given:

$$
{ }_{k} \left\lvert\, q_{x}=\frac{1}{9}(2 k+1)\right., \text { for } k=0,1 \text { and } 2
$$

Suppose UDD holds between integral ages.
Calculate the probability that a life (x) will survive another 1.5 years.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

