MATH 3630
Actuarial Mathematics I
Class Test 1 - Section 2-3:00-4:15 PM
Wednesday, 3 October 2012
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
For a fixed age x, you are given the following probabilities:

- ${ }_{20} p_{x}=0.40$
- ${ }_{5} p_{x}=0.78$
- ${ }_{5} p_{x+15}=0.75$

Calculate ${ }_{15} q_{x+5}$.

Question No. 2:

Suppose that the survival function for a newborn is given by

$$
S_{0}(x)=\left[(1+x) \mathrm{e}^{-x}\right]^{1 / 100}, \quad \text { for } x \geq 0
$$

Calculate μ_{50}.

Question No. 3:

In a population consisting of 75% non-smokers and 25% smokers, you are given:

- Mortality for non-smokers has a constant force of μ.
- Mortality for smokers also has a constant force of 2μ, twice that of non-smokers.
- The probability a non-smoker survives a year is 0.96 .

What proportion of the surviving population are smokers at the end of 10 years?

Question No. 4:

The force of mortality for a substandard life (x) is expressed as

$$
\mu_{x+t}^{s}=\mu_{x+t}+c,
$$

for some constant $c>0$, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 5 years is 0.75 .
- The probability that a substandard life (x) survives the next 5 years is 0.40 .

Calculate the value of c.

Question No. 5:

Mortality follows Generalized De Moivre's law expressed as:

$$
S_{0}(x)=\left(1-\frac{x}{110}\right)^{1 / 4}, \text { for } 0 \leq x \leq 110
$$

Calculate ${ }_{10 \mid 10} q_{40}$ and interpret this probability.

Question No. 6:

You are given the following probabilities for a life (50):

t	${ }_{t} p_{50}$
0.5	0.985
1.0	0.960
1.5	0.948
2.0	0.932

Using repeated Simpson's rule with $n=2$ intervals, estimate the value of $\dot{e}_{50: \overline{2} \mid}$.

Question No. 7:

For a population which consists of 75% non-smokers (NS) and 25% smokers (SM) at age 30, you are given:

t	$S_{30}^{\mathrm{NS}}(t)$	$S_{30}^{\mathrm{SM}}(t)$
20	0.40	0.30
21	0.38	0.25

Calculate p_{50} for a randomly chosen individual from this population.

Question No. 8:

You are given:

$$
q_{50+k}=0.02, \text { for } k=0,1,2, \ldots
$$

Calculate $\mathrm{E}\left[K_{50}\right]$, where K_{50} is the curtate future lifetime of (50).

Question No. 9:
You are given:

$$
\mu_{x}= \begin{cases}0.02, & 0<x<10 \\ 0.05, & x \geq 10\end{cases}
$$

Calculate ${ }_{10} p_{5}$.

Question No. 10:
You are given:

- Mortality follows De Moivre's law.
- $\stackrel{\circ}{e}_{50}=27.5$

Calculate $\operatorname{Var}[X]$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

