MATH 3630 Actuarial Mathematics I Class Test 1 - Section 2 - 3:00-4:15 PM Wednesday, 3 October 2012 Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name:

Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

For a fixed age x, you are given the following probabilities:

- $_{20}p_x = 0.40$
- ${}_5p_x = 0.78$
- ${}_5p_{x+15} = 0.75$

Calculate $_{15}q_{x+5}$.

Question No. 2:

Suppose that the survival function for a newborn is given by

$$S_0(x) = [(1+x)e^{-x}]^{1/100}$$
, for $x \ge 0$.

Calculate μ_{50} .

Question No. 3:

In a population consisting of 75% non-smokers and 25% smokers, you are given:

- Mortality for non-smokers has a constant force of μ .
- Mortality for smokers also has a constant force of 2μ , twice that of non-smokers.
- The probability a non-smoker survives a year is 0.96.

What proportion of the surviving population are smokers at the end of 10 years?

Question No. 4:

The force of mortality for a substandard life (x) is expressed as

$$\mu_{x+t}^s = \mu_{x+t} + c,$$

for some constant c > 0, where μ_{x+t} is the force of mortality of a standard life (x). You are given:

- The probability that a standard life (x) survives the next 5 years is 0.75.
- The probability that a substandard life (x) survives the next 5 years is 0.40.

Calculate the value of c.

Question No. 5:

Mortality follows Generalized De Moivre's law expressed as:

$$S_0(x) = \left(1 - \frac{x}{110}\right)^{1/4}$$
, for $0 \le x \le 110$.

Calculate $_{10|10}q_{40}$ and <u>interpret this probability</u>.

Question No. 6:

You are given the following probabilities for a life (50):

t	$_{t}p_{50}$
0.5	0.985
1.0	0.960
1.5	0.948
2.0	0.932

Using repeated Simpson's rule with n = 2 intervals, estimate the value of $\mathring{e}_{50:\overline{2}}$.

Question No. 7:

For a population which consists of 75% non-smokers (NS) and 25% smokers (SM) at age 30, you are given:

t	$S_{30}^{\rm NS}(t)$	$S_{30}^{\mathrm{SM}}(t)$
20	0.40	0.30
21	0.38	0.25

Calculate p_{50} for a randomly chosen individual from this population.

CLASS TEST 1

Question No. 8:

You are given:

 $q_{50+k} = 0.02$, for $k = 0, 1, 2, \dots$

Calculate $E[K_{50}]$, where K_{50} is the curtate future lifetime of (50).

Question No. 9:

You are given:

$$\mu_x = \begin{cases} 0.02, & 0 < x < 10\\ 0.05, & x \ge 10 \end{cases}$$

Calculate $_{10}p_5$.

Question No. 10:

You are given:

- Mortality follows De Moivre's law.
- $\mathring{e}_{50} = 27.5$

Calculate $\operatorname{Var}[X]$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK