MATH 3630 Actuarial Mathematics I Class Test 2 Friday, 14 November 2008 Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

 Name:
 Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

Let T_x denote the future lifetime random variable for (x). You are given:

- T_x has an exponential distribution with parameter μ .
- Force of interest is constant at δ .
- $\bar{A}_x = 0.4118.$

Calculate ${}^{2}\bar{A}_{x}$.

Question No. 2:

You are given:

x	q_x	\ddot{a}_x
75	.03814	7.4927
76	.04196	7.2226

Calculate the interest rate *i*.

Question No. 3:

For a continuous whole life annuity of 1 on (x), you are given that:

- T_x , the future lifetime, has a constant force of mortality of 0.06;
- the force of interest is also constant at 4%.

Calculate $P\left(\bar{a}_{\overline{T_x}} > \bar{a}_x\right)$. Interpret this probability.

Question No. 4:

For a group of 25 individuals all age *x*, you are given:

- their future lifetimes are independent;
- each individual is paid 10 at the beginning of each year, if alive;
- $A_x = 0.369131;$
- ${}^{2}A_{x} = 0.1774113$; and
- *i* = 6%.

Using Normal approximation, calculate the size of the fund needed at inception in order to be 95% certain of having enough money to pay the life annuities. (Note: the 95th percentile of a standard Normal is 1.645.)

Question No. 5:

You are given the following extracted from a mortality table:

x	q_x
40	.010
41	.015
42	.020
43	.025

Calculate $\ddot{a}_{40:\overline{3}|}$ if i = 10%.

Question No. 6:

For a special type of whole life insurance issued to (40), you are given:

- death benefits are 1,000 for the first 5 years and 500 thereafter;
- death benefits are payable at the end of the year of death;
- mortality follows the *Illustrative Life table*; and
- *i* = 6%.

Calculate the actuarial present value of the benefits for this policy.

Question No. 7:

After calculating the value of \ddot{a}_x at interest rate i = 5%, a student discovers that the value of p_{x+1} is larger by 0.03 than the value used in the initial calculation.

You are given the following values used in the initial calculation:

$$q_x = 0.01$$
, $q_{x+1} = 0.05$, and $\ddot{a}_{x+1} = 6.951$.

Find the amount by which the value of \ddot{a}_x is increased when the correct value of p_{x+1} is used.

Question No. 8:

Michel is currently age 40. His survival pattern follows DeMoivre's law with $\omega = 100$.

He purchases a three-year temporary life annuity that pays a benefit of 100 at the beginning of each year.

Compute the actuarial present value of his benefits if i = 5%.

Question No. 9:

You are given:

- deaths are uniformly distributed over each year of age;
- *i* = .06;
- $q_{69} = 0.02$; and
- $\bar{A}_{70} = 0.53$.

Calculate $A_{69}^{(2)}$ and interpret this value.

Question No. 10:

You are given:

- $\ddot{a}_{60:\overline{10}} = 6.4745;$
- $A_{60:\overline{10}}^1 = 0.0786$; and
- d = 0.0909.

Calculate the actuarial present value of a 10-year pure endowment issued to (60).

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK