MATH 3630
Actuarial Mathematics I
Class Test 2
Friday, 14 November 2008
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
Let T_{x} denote the future lifetime random variable for (x). You are given:

- T_{x} has an exponential distribution with parameter μ.
- Force of interest is constant at δ.
- $\bar{A}_{x}=0.4118$.

Calculate ${ }^{2} \bar{A}_{x}$.

Question No. 2:
You are given:

x	q_{x}	\ddot{a}_{x}
75	.03814	7.4927
76	.04196	7.2226

Calculate the interest rate i.

Question No. 3:

For a continuous whole life annuity of 1 on (x), you are given that:

- T_{x}, the future lifetime, has a constant force of mortality of 0.06 ;
- the force of interest is also constant at 4%.

Calculate $P\left(\bar{a}_{\overline{T_{x}}}>\bar{a}_{x}\right)$. Interpret this probability.

Question No. 4:

For a group of 25 individuals all age x, you are given:

- their future lifetimes are independent;
- each individual is paid 10 at the beginning of each year, if alive;
- $A_{x}=0.369131$;
- ${ }^{2} A_{x}=0.1774113 ;$ and
- $i=6 \%$.

Using Normal approximation, calculate the size of the fund needed at inception in order to be 95% certain of having enough money to pay the life annuities. (Note: the $95^{\text {th }}$ percentile of a standard Normal is 1.645.)

Question No. 5:

You are given the following extracted from a mortality table:

x	q_{x}
40	.010

41.015
42.020
$43 \quad .025$
Calculate $\ddot{a}_{40: 3 \mid}$ if $i=10 \%$.

Question No. 6:
For a special type of whole life insurance issued to (40), you are given:

- death benefits are 1,000 for the first 5 years and 500 thereafter;
- death benefits are payable at the end of the year of death;
- mortality follows the Illustrative Life table; and
- $i=6 \%$.

Calculate the actuarial present value of the benefits for this policy.

Question No. 7:

After calculating the value of \ddot{a}_{x} at interest rate $i=5 \%$, a student discovers that the value of p_{x+1} is larger by 0.03 than the value used in the initial calculation.
You are given the following values used in the initial calculation:

$$
q_{x}=0.01, \quad q_{x+1}=0.05, \text { and } \ddot{a}_{x+1}=6.951 .
$$

Find the amount by which the value of \ddot{a}_{x} is increased when the correct value of p_{x+1} is used.

Question No. 8:

Michel is currently age 40. His survival pattern follows DeMoivre's law with $\omega=100$.
He purchases a three-year temporary life annuity that pays a benefit of 100 at the beginning of each year.

Compute the actuarial present value of his benefits if $i=5 \%$.

Question No. 9:

You are given:

- deaths are uniformly distributed over each year of age;
- $i=.06$;
- $q_{69}=0.02 ;$ and
- $\bar{A}_{70}=0.53$.

Calculate $A_{69}^{(2)}$ and interpret this value.

Question No. 10:
You are given:

- $\ddot{a}_{60: \overline{10}}=6.4745$;
- $A_{60: \overline{10}}^{1}=0.0786 ;$ and
- $d=0.0909$.

Calculate the actuarial present value of a 10-year pure endowment issued to (60).

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

