MATH 3630
Actuarial Mathematics I
Class Test 2
Wednesday, 18 November 2009
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
For a whole life insurance of a benefit of 100 on (30) payable at the moment of death, you are given:

$$
\mu_{30+t}=0.01, \text { for all } t>0
$$

and

$$
\delta_{t}= \begin{cases}0.04, & \text { for } 0<t \leq 5 \\ 0.05, & \text { for } t>5\end{cases}
$$

Calculate the Actuarial Present Value of the benefit for this life insurance.

Question No. 2:

Let Z_{1} denote the present value random variable of an n-year term insurance of $\$ 1$, while Z_{2} that of an n-year deferred insurance of $\$ 1$, with death benefit payable at the moment of death of (x).
You are given:

$$
\bar{A}_{x: \bar{n} \mid}^{1}=0.01 \quad{ }^{2} \bar{A}_{x: \bar{n} \mid}^{1}=0.0005
$$

and

$$
{ }_{n \mid} \bar{A}_{x}=0.10 \quad{ }_{n \mid}^{2} \bar{A}_{x}=0.0136
$$

Calculate the correlation coefficient of Z_{1} and Z_{2}.
In case you forgot: $\operatorname{Corr}\left(Z_{1}, Z_{2}\right)=\frac{\operatorname{Cov}\left(Z_{1}, Z_{2}\right)}{\sqrt{\operatorname{Var}\left(Z_{1}\right) \operatorname{Var}\left(Z_{2}\right)}}$.

Question No. 3:

For a special life insurance on (30), you are given:

- mortality follows the Illustrative Life Table with $i=6 \%$;
- death benefit is payable at the end of the year of death; and
- death benefit is 100 for the first 10 years, and 300 thereafter.

Calculate the Actuarial Present Value of this insurance.

Question No. 4:

An insurance company has a portfolio of 100 whole life insurance policies all issued to age x. You are given:

- The future lifetimes of the policyholders are independent.
- The benefit of each policyholder is $\$ 5$ payable at the end of the year of death.
- $A_{x}=0.35$
- ${ }^{2} A_{x}=0.15$
- $i=4 \%$

Using Normal approximation, calculate the amount of the fund needed at issue in order to be 95% certain of having enough money to pay the death benefits. (Note: the $95^{\text {th }}$ percentile of a standard Normal is 1.645.)

Question No. 5:

Suppose you are given:

$$
{ }_{k} p_{x}=(0.95)^{k}, \text { for } k=0,1, \ldots
$$

Let Y denote the present value random variable of a whole life annuity-due of $\$ 1$ each year issued to (x). Calculate the expected value of Y if $i=10 \%$.

Question No. 6:
For a group of insured individuals all age x, let Z be the present value random variable of a whole life insurance that pays $\$ 1$ at the end of the year of death. The group is made up of half male and half female.

You are given:

$$
A_{x}^{\mathrm{M}}=0.16 \quad A_{x}^{\mathrm{F}}=0.08
$$

and

$$
\operatorname{Var}(Z \mid M)=0.04 \quad \operatorname{Var}(Z \mid \mathrm{F})=0.05
$$

where ' M ' denotes male and ' F ' denotes female.
Calculate the (unconditional) variance $\operatorname{Var}(Z)$ for an individual randomly selected from the group.

Question No. 7:

For a whole life annuity-due of $\$ 100$ on (x), payable annually, you are given:

- $q_{x}=0.01$
- $q_{x+1}=0.05$
- $i=0.05$
- $\ddot{a}_{x+1}=6.951$

Calculate the change in the Actuarial Present Value of this annuity-due if p_{x+1} is increased by 0.02. Did the Actuarial Present Value increase of decrease? Use your intuition to explain why.

Question No. 8:
You are given:

- T_{x} has an exponential distribution with mean 20.
- ${ }^{2} \bar{a}_{x}=5.75$

Calculate the force of interest δ.

Question No. 9:

For a special 20-year temporary life annuity-due issued to (55), you are given:

- Mortality follows the Illustrative Life Table with $i=6 \%$.
- The benefits are $\$ 100$ each year for the first 10 years, and $\$ 500$ each year the last 10 years.

Calculate the Actuarial Present Value of the benefits for this life annuity.

Question No. 10:
Raul is currently age 40 . His mortality follows DeMoivre's law with $\omega=100$. He purchases a whole life insurance policy that pays a benefit of $\$ 1$ at the moment of death.

Compute the variance of the present value of his death benefit if $\delta=5 \%$.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

