STT 455 Review Session for Class Test 2

November 13, 2014

1. For a special whole life insurance on (45), you are given:

- Death benefit is payable at the end of the year of death.
- Death benefit is $\$ 10,000$ during the first 10 years, and $\$ 20,000$ thereafter.
- Mortality follows the Illustrative Life Table.
- $i=6 \%$

Calculate the actuarial present value of this insurance.
2. For a cohort of individuals all age x consisting of 80% non-smokers (ns) and 20% smokers (sm), you are given:

k	$q_{x+k}^{\text {ns }}$	$q_{x+k}^{\text {sm }}$
0	0.02	0.08
1	0.04	0.15
2	0.06	0.20

Calculate $A_{x: 21}^{1}$ for a randomly chosen individual from this cohort. You are given: $i=3 \%$.
3. For a whole life insurance of $\$ 100$ issued to (65), you are given:

- Death benefits are payable at the end of the year of death.
- Mortality follows the Illustrative Life Table with the exception of the first year where you are given that $q_{65}=0.03$.
- The annual effective interest rate is 2% in the first year, 3% in the second year, and 6% each year thereafter.

Calculate the actuarial present value of the death benefits.
4. You are given:

- $\ddot{a}_{60: \overline{10}}=6.50$;
- $A_{60: \overline{10}}^{1}=0.08$; and
- $v=0.92$.

Calculate the actuarial present value of a 10 -year pure endowment issued to (60). Calculate the variance of the present value of the benefits for this same pure endowment.
5. You are given:

- Deaths are uniformly distributed over each year of age.
- $q_{x}=0.05$
- $q_{x+1}=0.08$
- $i=5 \%$
(a) Evaluate $\bar{A}_{x: \overline{2}}^{1}$.
(b) Evaluate ${ }^{2} \bar{A}_{x: \overline{2} \mid}^{1}$.
(c) Explain verbally the benefits provided by $\bar{A}_{x: 5}^{1}$.

6. You are given:

- Z is the present value random variable for a whole life insurance of 1 payable at the moment of death of (50).
- Mortality follows de Moivre's law.
- $\delta=5 \%$
- The probability that Z exceeds 0.0734 is 0.95 .

Calculate ω in the de Moivre's law.
7. Suppose you are given the following extract from a select-and-ultimate mortality table:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
55	882	877	871	864	58
56	875	870	863	856	59
57	868	863	856	849	60
58	861	855	848	840	61
59	854	847	840	832	62
60	846	839	832	823	63

Calculate $\ddot{a}_{[57]: 31}$ if $i=5 \%$.
8. For a whole life annuity-due issued to (50), you are given:

- The annual benefit is 100 .
- Mortality follows the Illustrative Life Table.
- $i=6 \%$

Calculate the variance of the present value of the benefits for this annuity.
9. (See also Exercise 5.7) You are given:

- $\ddot{a}_{x}=11.2$
- ${ }_{15} \ddot{a}_{x}=4.5$
- $A_{x: \overline{15}}^{1}=0.212$
- ${ }_{15} E_{x}=0.255$

Calculate i.
10. For a special 10-year term insurance on (35), you are given:

- Death benefits are payable at the end of the year of death.
- The death benefit is 100 in years 1-5 and increases to 200 in years 5-10.
- Mortality follows the Illustrative Life Table.
- $i=6 \%$
- Z denotes the present value, at age 35, of these death benefits.
(a) Write an expression for Z in terms of the curtate future lifetime of (35), say K.
(b) Calculate $\operatorname{Pr}[Z=0]$.
(c) Calculate $\operatorname{Pr}[Z>85]$.
(d) Calculate $\mathrm{E}[Z]$.

