STT 455 Review Problems for Finals

December 3, 2014

1. A 100,000 fully discrete whole life insurance policy is issued to (45). You are given:

- Expenses are paid at the beginning of each year consisting of:

	\% of Premium	Per Policy
First year	20%	55
Renewal years	5%	10

- Mortality follows the Illustrative Life Table.
- $i=6 \%$

Calculate the gross annual premium.
2. For a fully continuous whole life insurance of 100 issued to (x), you are given:

- $\mu_{x+t}=0.01$, for $t>0$
- The force of interest at time t is $\delta_{t}= \begin{cases}0.04, & \text { for } 0<t \leq 10, \\ 0.05, & \text { for } t>10\end{cases}$

Calculate the annual benefit premium.
3. For a fully continuous whole life insurance of 1 on (x), you are given:

- $\delta=0.05$
- $\bar{A}_{x}=0.50$
- ${ }^{2} \bar{A}_{x}=0.30$
- Expenses are: (a) 0.02 initial expense, and (b) 0.005 per year, payable continuously.
- The gross premium is the benefit premium plus 0.007.
- L_{0}^{g} is the loss-at-issue random variable for this policy.

Calculate $\operatorname{Var}\left[L_{0}^{g}\right]$.
4. For a 2-year term life insurance policy on (x), you are given:

- The benefit is 10 payable at the end of the year of death.
- The premium is payable once each year at the beginning of the year.
- The expenses are 0.40 at policy issue and 0.10 at the beginning of the second year.
- $q_{x}=0.05$
- $q_{x+1}=0.08$
- $i=5 \%$

Calculate the gross annual premium.
5. For a special fully discrete whole life insurance on (50), you are given:

- The benefit is 200,000 if death occurs for years 1 to 10 and reduces to 150,000 if death occurs thereafter.
- The annual benefit premium is P for years 1 to $10,0.75 P$ for years 11 to 20 , and 0 thereafter.
- Mortality follows the Illustrative Life Table.
- $i=6 \%$

Calculate P.
6. For a fully discrete whole life insurance of 1000 on (40), you are given:

- The annual premium is 11.35 .
- Mortality follows the Illustrative Life Table.
- $i=6 \%$
- L_{0} is the loss-at-issue for this policy.

Calculate $\operatorname{Pr}\left[L_{0}>200\right]$.

