MATH 3630
Actuarial Mathematics I
Sample Finals
Fall 2011
Time Allowed: 2 hours
Total Marks: $\mathbf{1 2 0}$ points
Please write your name and student number at the spaces provided:

Name: \qquad

- There are twelve (12) writtenanswer questions here and you are to answer all twelve. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100\%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.
- Good luck.

Student ID: \qquad

Question	Worth	Score

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	
$\%$	$\div 120$	

Question No. 1:

For a fully discrete whole life insurance of $\$ 1,000$ issued to (x), you are given:

- $\mu_{x+k}=0.01$, for all $k \geq 0$; and
- $\delta=3 \%$

Calculate the level annual benefit premium for this policy.

Question No. 2:

You are given:

- Mortality follows Makeham's law with $A=0.00003, B=0.0001$ and $c=1.12$.
- $\ddot{a}_{50}^{(12)}=7.7140$ based on Woolhouse's approximation with two terms.
- $\ddot{a}_{50}^{(12)}=7.7064$ based on Woolhouse's approximation with three terms.

Calculate $\ddot{a}_{50}^{(12)}$ based on the Uniform Distribution of Death (UDD) assumption.

Question No. 3:

Barbie Dahl and Bill Board are two actuaries who use the same mortality table to price a fully discrete two-year endowment insurance of 100 on (40). You are given:

- Barbie calculates level annual benefit premiums of 47.42.
- Bill calculates non-level benefit premiums of 50 for the first year, and π for the second year.
- Interest rate i is 8%.
- Both actuaries calculate benefit premiums based on the equivalence principle.

Calculate π.

Question No. 4:

For a fully discrete whole life insurance of $\$ 1$ issued to (x), you are given:

- K is the curtate future lifetime of (x).
- $\mathrm{E}\left[\ddot{a}_{\overline{K+1}}\right]=13.6$
- $\operatorname{Var}\left[\ddot{a}_{\overline{K+1}}\right]=23.0$
- L_{0} denotes the loss-at-issue random variable where premium is determined according to the equivalence principle.

Calculate $\operatorname{Var}\left[L_{0}\right]$.

Question No. 5:
You are given:

k	$\ddot{a}_{\overline{k+1}}$	${ }_{k} q_{x}$
0	1.000	0.25
1	1.962	0.20
2	2.886	0.15
3	3.775	0.10

Calculate $\ddot{a}_{x: 3}$.

Question No. 6:
Mortality follows Makeham's law with parameters

$$
\begin{aligned}
& A=0.0027 \\
& B=0.000018 \\
& c=1.04
\end{aligned}
$$

Calculate ${ }_{10 \mid 10} q_{50}$ and interpret this probability.

Question No. 7:

For a whole life insurance policy of $\$ 100$ issued to (x) where the benefit is payable at the end of the year of death, you are given:

- The single benefit premium for this policy is $\$ 52.78$.
- The level annual benefit premium for this same policy is $\$ 4.80$.
- The level annual benefit premium for the first 10 years, then reduced by 50% after 10 years and thereafter, for this same policy is $\$ 5.70$.

Calculate $A_{x: \overline{10}}$.

Question No. 8:

Get-a-Life Insurance Company decided to sell fully discrete whole life insurance of \$1,000 to individuals age 40, something it has not done before. The actuaries of the company have determined that:

- For each policy, the annual benefit premium will be $\$ 7.50$.
- Mortality follows the Standard Select Survival Model with $i=5 \%$.
- All the policyholders have independent future lifetimes.

Using Normal approximation, calculate the smallest number of policies the company must sell so that the probability of a positive loss at issue, on the aggregate, does not exceed 0.05 .

THIS PAGE FOR EXTRA SPACE TO SOLVE QUESTION 8

Question No. 9:

Suppose $i=4 \%$ and you are given the following extract from a select-and-ultimate mortality table:

$[x]$	$\ell_{[x]}$	$\ell_{[x]+1}$	$\ell_{[x]+2}$	ℓ_{x+3}	$\mathrm{x}+3$
40	75000	74511	73874	73123	43
41	74171	73668	73017	72245	44
42	73318	72801	72132	71341	45
43	72444	71910	71223	70409	46
44	71545	70994	70286	69448	47
45	70616	70046	69315	68451	48

Calculate $1000 P_{[40]: 3}$.

Question No. 10:

Brady, currently age 40, purchases a special whole life insurance that will pay him at the end of the year of his death the following benefits:

- $\$ 1$ if death occurs within the first 10 years, and
- \$5 if death occurs thereafter.

You are given:

- Level annual benefit premiums of P are to be paid at the beginning of each year for 10 years.
- Mortality follows the Illustrative Life Table.
- $i=6 \%$

Calculate P.

Question No. 11:
You are given:

- ${ }_{20} P_{35}=0.0137$
- $P_{35: 20}=0.0329$
- $A_{55}=0.3895$

Calculate $P_{35: \overline{20}}^{1}$.

Question No. 12:
For a special whole life insurance issued to (40), you are given:

- Benefit is payable at the moment of death.
- $b_{t}=100 \mathrm{e}^{0.04 t}$, for $t \geq 0$
- Mortality follows de Moivre's law with $\omega=110$.
- $\delta=5 \%$

Calculate the actuarial present value of the death benefits for this policy.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

