MATH 3630
Actuarial Mathematics I
Sample Test 1
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
Let X be the age-at-death random variable.
Assume X follows deMoivre's law with $\omega=100$.
Calculate ${ }_{10} m_{20}$.

Question No. 2:
Assume that mortality follows the Illustrative Life Table.
Calculate the probability that a life (65) will die between ages 80 and 90.

Question No. 3:
You are given:

$$
{ }_{k} \mid q_{0}=0.1(k+1), \text { for } k=0,1,2 \text { and } 3 .
$$

Suppose UDD holds between integral ages.
Compute the value of ${ }_{2.75} p_{0}$ and interpret this probability.

Question No. 4:
You are given:

$$
\begin{aligned}
{ }_{5} p_{40} & =\frac{4}{5} \\
{ }_{10} p_{45} & =\frac{3}{5} \\
{ }_{10} p_{55} & =\frac{2}{5}
\end{aligned}
$$

Find the probability that a life (40) will die between ages 55 and 65.

Question No. 5:

Suppose you are given the survival function:

$$
S_{X}(x)=\left(1-\frac{x}{\omega}\right)^{\alpha}, \text { for } 0 \leq x \leq \omega
$$

Prove the following: $\mu_{x} \cdot \dot{e}_{x}=\frac{\alpha}{\alpha+1}$.

Question No. 6:
Suppose that for an 80-year-old fellow, his force of mortality is given by

$$
\mu_{80+t}=\frac{1}{10-t}, \text { for } 0 \leq t<10
$$

Calculate the probability that this fellow will die between ages 85 and 90 .

Question No. 7:

The following is an extract from a standard mortality table:

x	q_{x}
40	.00278
41	.00298
42	.00320

A substandard table is obtained from this standard table by adding a constant $c=0.10$ to the force of mortality. This results in mortality rates denoted by q_{x}^{s}, with the superscript s denoting substandard.

Calculate the probability that a substandard life (40) will die between ages 41 and 42 .

Question No. 8:
Suppose you are given the following select-and-ultimate mortality table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}
95	300	60	15
96	175	10	0
97	15	0	0
98	1	0	0

Assuming UDD between integral ages, calculate ${ }_{2 \mid 0.5} q_{[95]}$.

Question No. 9:

Suppose you are given that:

$$
\ell_{x}=1000\left(27-\frac{3}{10} x\right)^{1 / 3}, \text { for } 0 \leq x \leq 90
$$

Calculate the average future lifetime of a newborn.

Question No. 10:
You are given the survival function:

$$
S_{X}(x)=\left(1-\frac{x}{\omega}\right)^{5 / 2}, \text { for } 0 \leq x \leq \omega
$$

If $\mu_{80}=0.05$, calculate $\stackrel{\circ}{e}_{60: \overline{25}}$ and interpret this value.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

