MATH 3630 Actuarial Mathematics I Sample Test 1 Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: _____ Student ID: _____

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

Let *X* be the age-at-death random variable. Assume *X* follows deMoivre's law with $\omega = 100$.

Calculate $_{10}m_{20}$.

Question No. 2:

Assume that mortality follows the *Illustrative Life Table*.

Calculate the probability that a life (65) will die between ages 80 and 90.

Question No. 3:

You are given:

 $_{k|}q_{0} = 0.1(k+1), \text{ for } k = 0, 1, 2 \text{ and } 3.$

Suppose UDD holds between integral ages.

Compute the value of $_{2.75}p_0$ and interpret this probability.

Question No. 4:

You are given:

$${}_{5}p_{40} = \frac{4}{5}$$

 ${}_{10}p_{45} = \frac{3}{5}$
 ${}_{10}p_{55} = \frac{2}{5}$

Find the probability that a life (40) will die between ages 55 and 65.

Question No. 5:

Suppose you are given the survival function:

$$S_X(x) = \left(1 - \frac{x}{\omega}\right)^{lpha}$$
, for $0 \le x \le \omega$.

Prove the following: $\mu_x \cdot \mathring{e}_x = \frac{\alpha}{\alpha+1}$.

Question No. 6:

Suppose that for an 80-year-old fellow, his force of mortality is given by

$$\mu_{80+t} = \frac{1}{10-t}, \text{ for } 0 \le t < 10.$$

Calculate the probability that this fellow will die between ages 85 and 90.

Question No. 7:

The following is an extract from a *standard* mortality table:

x	q_x
40	.00278
41	.00298
42	.00320

A *substandard* table is obtained from this *standard* table by adding a constant c = 0.10 to the force of mortality. This results in mortality rates denoted by q_x^s , with the superscript *s* denoting *substandard*.

Calculate the probability that a *substandard* life (40) will die between ages 41 and 42.

Question No. 8:

Suppose you are given the following select-and-ultimate mortality table:

x	$\ell_{[x]}$	$\ell_{[x]+1}$	ℓ_{x+2}
95	300	60	15
96	175	10	0
97	15	0	0
98	1	0	0

Assuming UDD between integral ages, calculate $_{2|0.5}q_{[95]}$.

Question No. 9:

Suppose you are given that:

$$\ell_x = 1000 \left(27 - \frac{3}{10}x\right)^{1/3}$$
, for $0 \le x \le 90$.

Calculate the average future lifetime of a newborn.

Question No. 10:

You are given the survival function:

$$S_X(x) = \left(1 - rac{x}{\omega}
ight)^{5/2}$$
, for $0 \le x \le \omega.$

If $\mu_{80} = 0.05$, calculate $\mathring{e}_{60:\overline{25}|}$ and interpret this value.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK