MATH 3630
Actuarial Mathematics I
Sample Test 2
Time Allowed: 1 hour
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: $\qquad$ Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
For a three-year term life insurance on $(x)$, you are given:

- Z is the present value random variable for the death benefits;
- death benefits are payable at the end of the year of death;
- discount rate $i=5 \%$; and

| $k$ | $b_{k+1}$ | $q_{x+k}$ |
| :---: | :---: | :---: |
| 0 | 10 | 0.01 |
| 1 | 5 | 0.02 |
| 2 | 1 | 0.04 |

Calculate $\mathrm{E}(Z)$.

## Question No. 2:

Denote by $Y$ the present value random variable for a whole life annuity-due on $(x)$. You are given that $v=0.8$ and

$$
q_{x+k}=0.1, \text { for all } k=0,1,2, \cdots
$$

Calculate the expected value of $Y$.

## Question No. 3:

Cindy is currently age 35 . Her mortality follows DeMoivre's law with $\omega=120$.
She purchases a whole life insurance policy that pays a benefit of $1,000,000$ at the moment of death.

Compute the actuarial present value of her death benefits if $i=10 \%$.

## Question No. 4:

For a special type of whole life insurance issued to (30), you are given:

- death benefits are 1,000 for the first 10 years and 5,000 thereafter;
- death benefits are payable at the moment of death;
- deaths are uniformly distributed over each year of age interval;
- $i=5 \%$, and
- the following table of actuarial present values:

| $x$ | $1000 A_{x}$ | $1000_{5} E_{x}$ |
| :---: | :---: | :---: |
| 30 | 112.31 | 779.79 |
| 35 | 138.72 | 779.20 |
| 40 | 171.93 | 777.14 |

Calculate the actuarial present value of the benefits for this policy.

## Question No. 5:

In a club of 100 membership all age $x$, the members decided to each contribute an amount of $G$ to a fund which will pay 1,000 at the moment of death of each member.
You are given:

- the future lifetimes of the members are independent;
- $i=10 \%, \bar{A}_{x}=0.06$, and ${ }^{2} \bar{A}_{x}=0.01$; and
- the members want the total contributions to be sufficient to pay the club's promised obligations with probability 0.95 .

Using Normal approximation, calculate G. (Note that the $95^{\text {th }}$ percentile of a standard Normal is 1.645.)

Question No. 6:
A person age 40 wins 100,000 in an actuarial lottery. Rather than receiving the money at once, the winner is offered the actuarially equivalent option of receiving an annual payment of $H$ (at the beginning of each year) guaranteed for 10 years and continuing thereafter for life.

You are given that interest rate $i=4 \%$ and the following values extracted from a mortality table:

- $A_{40}=0.23056 ;$
- $A_{50}=0.32907 ;$ and
- $A_{40: \overline{10}}^{1}=0.01151$.

Calculate the value of $H$.

## Question No. 7:

For a whole life insurance of 1,000 on $(x)$ with benefit payable at the moment of death, you are given:

$$
\delta_{t}=0.05, \text { for all } t>0,
$$

and

$$
\mu_{x+t}= \begin{cases}0.006, & 0<t \leq 10 \\ 0.007, & t>10\end{cases}
$$

Calculate the actuarial present value for this insurance.

## Question No. 8:

For a continuous whole life insurance issued to $(x)$, you are given:

- forces of mortality and interest are each constant; and
- $\mathrm{E}\left(v^{2 T_{x}}\right)=\frac{1}{4}$ where $T_{x}$ denotes the future lifetime of $(x)$.

Calculate $\bar{A}_{x}$.

## Question No. 9:

Suppose you are given that:

- mortality follows the Illustrative Life Table; and
- $i=6 \%$.

Approximate the value of $\ddot{a}_{40: \overline{301}}^{(2)}$ and interpret this value.

Question No. 10:
You are given:

- $A_{x}=0.5263 ;$
- $\ddot{a}_{x+1}=9.618 ;$ and
- $i=5 \%$.

Calculate $q_{x}$.

## EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

