MATH 3630 Actuarial Mathematics I Sample Test 2 Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: _____ Student ID: _____

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

For a three-year term life insurance on (x), you are given:

- *Z* is the present value random variable for the death benefits;
- death benefits are payable at the end of the year of death;
- discount rate i = 5%; and

k	b_{k+1}	q_{x+k}
0	10	0.01
1	5	0.02
2	1	0.04

Calculate E(Z).

Question No. 2:

Denote by *Y* the present value random variable for a whole life annuity-due on (x). You are given that v = 0.8 and

 $q_{x+k} = 0.1$, for all $k = 0, 1, 2, \cdots$.

Calculate the expected value of *Y*.

Question No. 3:

Cindy is currently age 35. Her mortality follows DeMoivre's law with $\omega = 120$.

She purchases a whole life insurance policy that pays a benefit of 1,000,000 at the moment of death.

Compute the actuarial present value of her death benefits if i = 10%.

Question No. 4:

For a special type of whole life insurance issued to (30), you are given:

- death benefits are 1,000 for the first 10 years and 5,000 thereafter;
- death benefits are payable at the moment of death;
- deaths are uniformly distributed over each year of age interval;
- i = 5%; and
- the following table of actuarial present values:

x	$1000A_{x}$	$1000_{5}E_{x}$
30	112.31	779.79
35	138.72	779.20
40	171.93	777.14

Calculate the actuarial present value of the benefits for this policy.

Question No. 5:

In a club of 100 membership all age *x*, the members decided to each contribute an amount of *G* to a fund which will pay 1,000 at the moment of death of each member.

You are given:

- the future lifetimes of the members are independent;
- i = 10%, $\bar{A}_x = 0.06$, and ${}^2\bar{A}_x = 0.01$; and
- the members want the total contributions to be sufficient to pay the club's promised obligations with probability 0.95.

Using Normal approximation, calculate *G*. (Note that the 95th percentile of a standard Normal is 1.645.)

Question No. 6:

A person age 40 wins 100,000 in an actuarial lottery. Rather than receiving the money at once, the winner is offered the actuarially equivalent option of receiving an annual payment of H (at the beginning of each year) guaranteed for 10 years and continuing thereafter for life.

You are given that interest rate i = 4% and the following values extracted from a mortality table:

- $A_{40} = 0.23056;$
- $A_{50} = 0.32907$; and
- $A_{40;\overline{10}}^{1} = 0.01151.$

Calculate the value of *H*.

Question No. 7:

For a whole life insurance of 1,000 on (x) with benefit payable at the moment of death, you are given:

$$\delta_t = 0.05$$
, for all $t > 0$,

and

$$\mu_{x+t} = \left\{ \begin{array}{ll} 0.006, & 0 < t \le 10 \\ 0.007, & t > 10 \end{array} \right. .$$

Calculate the actuarial present value for this insurance.

Question No. 8:

For a continuous whole life insurance issued to (x), you are given:

- forces of mortality and interest are each constant; and
- $E(v^{2T_x}) = \frac{1}{4}$ where T_x denotes the future lifetime of (x).

Calculate \bar{A}_x .

Question No. 9:

Suppose you are given that:

- mortality follows the *Illustrative Life Table;* and
- *i* = 6%.

Approximate the value of $\ddot{a}_{40:\overline{30}|}^{(2)}$ and interpret this value.

Question No. 10:

You are given:

- $A_x = 0.5263;$
- $\ddot{a}_{x+1} = 9.618$; and
- *i* = 5%.

Calculate q_x .

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK