Survival Models

Lecture: Weeks 2-3

Chapter summary

- Survival models
- Age-at-death random variable
- Time-until-death random variables
- Force of mortality (or hazard rate function)
- Some parametric models
- De Moivre's (Uniform), Exponential, Weibull, Makeham, Gompertz
- Generalization of De Moivre's
- Curtate future lifetime
- Chapter 2 (Dickson, Hardy and Waters = DHW)

Produced with a Trial Version of PDF Annotator - www.\&DFAnno Age-at-death random variable

- X is the age-at-death random variable; continuous, non-negative
- X is interpreted as the lifetime of a newborn (individual from birth)
- Distribution of X is often described by its survival distribution function (SDF):

$$
S_{0}(x)=\operatorname{Pr}[X>x]
$$

- other term used: survival function
- Properties of the survival function:

- $S_{0}(0)=1$: probability a newborn survives 0 years is 1 .
- $S_{0}(\infty)=\lim _{x \rightarrow \infty} S_{0}(x)=0$: all lives eventually die.
- non-increasing function of x : not possible to have a higher probability of surviving for a longer period.

$$
=1-S_{0}(x)
$$

- Cumulative distribution function (CDF): $F_{0}(x)=\operatorname{Pr}[X \leq x]$
- nondecreasing; $F_{0}(0)=0$; and $F_{0}(\infty)=1$.
- Clearly we have: $F_{0}(x)=1-S_{0}(x)$
- Density function: $f_{0}(x)=\frac{d F_{0}(x)}{d x}=-\frac{d S_{0}(x)}{d x}$
- non-negative: $f_{0}(x) \geq 0$ for any $x \geq 0$
- in terms of CDF: $F_{0}(x)=\int_{0}^{x} f_{0}(z) d z$
- in terms of SDF: $S_{0}(x)=\int_{x}^{\infty} f_{0}(z) d z$

Produced with a Trial Version of PDF Annotator - www.PDFAnno

 Force of mortality

- The force of mortality for a newborn at age x :

$$
\mu_{x}=\frac{f_{0}(x)}{1-F_{0}(x)}=\frac{f_{0}(x)}{S_{0}(x)}=-\frac{1}{S_{0}(x)} \frac{d S_{0}(x)}{d x}=-\frac{d \log) S_{0}(x)}{d x}
$$

- Interpreted as the conditional instantaneous measure of death at x.
- For very small $\Delta x, \mu_{x} \Delta x$ can be interpreted as the probability that a newborn who has attained age x dies between x and $x+\Delta x$:

$$
\mu_{x} \Delta x \approx \operatorname{Pr}[x<X \leq x+\Delta x \mid X>x]
$$

- Other term used: hazard rate at age x.

$$
\begin{aligned}
& \lim _{\Delta x \rightarrow 0} \frac{1}{\Delta x} \underbrace{\frac{\operatorname{Pr}[x<x \leqslant x+\Delta x, x>x]}{[x<x \leqslant x+\Delta x|x\rangle x]}} \underset{\operatorname{Pr}[x>x] \rightarrow \text { Sol }(x)}{ } \\
& \frac{\text { perg }}{x+\Delta x} \\
& \frac{f_{0}(x)}{S_{1}(x)-} \\
& =\frac{1}{S_{0}(x)} \lim _{x x \rightarrow 0} \frac{1}{\Delta x}\left(S_{1}(x)-S_{0}(x+\Delta x)\right) \\
& =\frac{-1}{S_{0}(x)} \underbrace{\lim _{\Delta x \rightarrow 0}}_{\frac{d S_{.}(x)}{d x}} \frac{\frac{S_{.}(x+\Delta x)-S_{0}(x)}{\Delta x} .}{}
\end{aligned}
$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Some properties of μ_{x}

$$
-\frac{d}{d x} \log g_{0}(x)
$$

Some important properties of the force of mortality:

- non-negative: $\mu_{x} \geq 0$ for every $x>0$
- divergence: $\int_{0}^{\infty} \mu_{x} d x=\infty$.
- in terms of SDF: $S_{0}(x)=\exp \left(-\int_{0}^{x} \mu_{z} d z\right)^{0} \cdot \begin{aligned} & \mu_{z}=-\frac{d}{d z} \log S_{0}(z) \\ & \int_{0}^{x} \mu_{z} d z=\int_{0}^{x} d \log \dot{S}_{0}(z)\end{aligned}$
- in terms of PDF: $\frac{f_{0}(x)}{S_{0}(x)}=\underbrace{\left.\mu_{x}\right)} \underbrace{\exp \left(-\int_{0}^{x} \mu_{z} d z\right)}_{S_{0}(x)}$.

$$
=e^{\log _{6} S_{6}(x)} .
$$

Produced with a Trial Version of PDF Annotator - wherDF loments of age-at-death random variable - The mean of X is called the complete expectation of life at birth:

$$
\underset{\substack{e_{0} \\ \int_{\text {brth }}}}{\downarrow} \mathrm{E}[X]=\overbrace{\int_{0}^{\infty}}^{\infty} x f_{0}(x) d x=\int_{0}^{\infty} \underline{S_{0}(x)} d x .
$$

- The RHS of the equation can be derived using integration by parts.
- Variance:

$$
\text { 乙 } \operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\mathrm{E}\left[X^{2}\right]-\left(\stackrel{e}{0}_{0}\right)^{2} .
$$

- The median age-at-death m is the solution to

$$
S_{0}(m)=F_{0}(m)=\frac{1}{2} .
$$

Produced with a Trial Version of PDFAAnnotafor ${ }_{d}^{\infty} S_{0}$ wiv. ${ }_{(x)}$.PDFAnno

$$
\begin{aligned}
& f_{0}(x)=\frac{d F_{0}(x)}{d x}=\frac{-d S_{0}(x)}{d x} \\
& \int \underbrace{u d v=u v-\int v d u} \\
& \downarrow \int^{\infty} d S_{0}(x) \\
& \int_{0}^{\infty} x \underbrace{f_{0}(x) d x}_{-d S_{0}(x)}=-\int_{0} x d x \\
& =-\left.x S_{0}(x)\right|_{0} ^{\infty}+\int_{0}^{\infty} S_{0}^{x}(x) d \underbrace{\frac{L}{x}} d \\
& =-\sum_{L}^{\infty} S_{0}(\infty)+0 \delta_{0}(0) \\
& \text { fosis than } x \\
& \stackrel{\sigma}{e}_{0}^{\sigma}=\int_{0}^{\infty} S_{1}(x) d x
\end{aligned}
$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Some special parametric laws of mortality

Law/distribution $\underset{\mu_{x}}{ }>\frac{f_{0}(x)}{\mathrm{f}_{0}(x)} \Rightarrow \mu_{x} S_{0}(x)=f_{0}(x)$			
$\text { * } \begin{aligned} & \text { De Moivre } \\ & \text { (untionni) } \end{aligned}$	$1 /(\omega-x)$	$1-(x / \omega)=\frac{\omega x}{x_{0}} \quad \frac{1}{\omega}$	$0 \leq x<\omega>$ gone
Constant force * (exponential)	${ }^{\mu}$	$\exp (-\mu x)$	$x \geq 0, \mu>0$
Gompertz		$\left[-\frac{B}{\log c}\left(c^{x}-1\right)\right]$	$x \geq 0, B>0, c>1$
Makeham	$\begin{aligned} & A+B c^{x} \\ & \text { accidut } \end{aligned}$	$\exp \left[-A x-\frac{B}{\log c}\left(c^{x}-1\right)\right]$	$\begin{aligned} & x \geq 0, B>0, c>1, \\ & A \geq-B \end{aligned}$
Weibull	$k x^{n}$	$\exp \left(-\frac{k}{n+1} x^{n+1}\right)$	$x \geq 0, k>0, n>1$

$$
\begin{aligned}
S_{0}(x) & =e^{-\int_{0}^{x} B C^{z} d z} \\
& =e^{-B \int_{0}^{x} e^{z(\log c)} d z} \\
& =\left.e^{-\left.\frac{B}{\log c} e^{z \log (c)}\right|_{0} ^{x}}\right|_{0} ^{C^{x}} \\
& =e^{-\frac{B}{\log c}\left(c^{x}-c^{0}\right)} \\
& =e^{-\frac{B}{\log c}\left(c^{x}-1\right)} \\
f_{0}(x) & =M_{x} S_{0}(x)
\end{aligned}
$$

$$
\begin{aligned}
& -S_{0}(x)=e^{-\int_{0}^{x} \frac{1}{\omega-z} d z}=e^{\left.\log (\omega-z)\right|_{0} ^{x}} \\
& =e^{(\log (\omega-x)-\log (\omega))} \\
& =e^{\log \frac{\omega-x}{\omega}}=\frac{\omega-x}{\omega}=1-\frac{x}{\omega} \\
& -f_{0}(x)=\mu_{x} S_{0}(x)=\frac{1}{\omega} \\
& \text { Exponmtial (Constant rec) } \\
& \text { Mortality follows } \\
& \text { de Moire } \\
& \text { with } W \\
& \mu_{x}=\mu \\
& S_{\gamma}(x)=e^{-\mu x} \\
& f_{0}(x)=\mu_{x} S_{0}(x)=\mu e^{-\mu x}, x>0
\end{aligned}
$$

Figure: Makeham's law: $A=0.002, B=10^{-4.5}, c=1.10$

Suppose X has survival function defined by

$$
S_{0}(x)=\underbrace{\frac{1}{10}(100-x)}_{\left(\frac{100-x}{100}\right)^{1 / 2}} \text { for } 0 \leq x \leq 100
$$

(1) Explain why this is a legitimate survival function.
(2) Find the corresponding expression for the density of X.
(3) Find the corresponding expression for the force of mortality at x.
(9) Compute the probability that a newborn with survival function defined above will die between the $\underbrace{\text { ages } 65 \text { and } 7 .}$
Solution to be discussed in lecture.

$$
\operatorname{Pr}[65<X \leqslant 75]=\overbrace{S_{0}(65)-S_{0}(75)}^{\operatorname{Pr}[X>65]}-\operatorname{Pr}[x>75]
$$

(1),$S_{0}(\infty)=S_{0}(100)=\frac{1}{10}(100-100)^{1 / 2}=0$
$-\underbrace{\text { nondincreasing }} \frac{d}{d x} S_{0}(x) \leqslant 0$

$$
\begin{aligned}
& S_{0}(x)=\frac{1}{10}(100-x)^{1 / 2} \\
& \frac{d}{d x} S_{0}(x)=\frac{\frac{1}{10} \cdot \frac{1}{2}(100-x)^{-1 / 2}(-1)}{1} \leqslant 0
\end{aligned}
$$

(2) $f_{0}(x)=\frac{-d}{d x} S_{0}(x)=\frac{1}{20}(100-x)^{-1 / 2}$
(3) $\mu_{x}=\frac{f_{\cdot}(x)}{S_{0}(x)}=\frac{\frac{1}{20}(100-x)^{-1 / 2}}{\frac{1}{10}(100-x)^{1 / 2}}=\frac{1}{2} \frac{1}{100-x}$

- For a person now age x, its future lifetime is $\underline{T}_{x}=\underbrace{X-x}$. For a newborn, $x=0$, so that we have $T_{0}=X . \quad{ }_{x=0} \Rightarrow T_{0}=X$,
- Life-age- x is denoted by (x).
- SDF: It refers to the probability that (x) will survive for another $g=$ duth years.

$$
T_{0}>x+t \cap T_{0}>x \Rightarrow
$$

$\operatorname{Pr}\left[T_{x}>t\right]=S_{x}(t)=\operatorname{Pr}\left[\stackrel{\mathrm{A}}{T_{0}>x}+t \mid T_{0}>x\right]=\frac{S_{0}(x+t)}{S_{0}(x)}={ }_{t} p_{x}=1-{ }_{t} q_{x}$.

- CDF: It refers to the probability that (x) will die within t years.
$\operatorname{Pr}\left[T_{x} \leq t\right] \quad F_{x}(t)=\operatorname{Pr}\left[T_{0} \leq x+t \mid T_{0}>x\right]=\frac{S_{0}(x)-S_{0}(x+t)}{S_{0}(x)}={ }_{t} q_{x}$

$$
X \rightarrow f_{0}(x), S_{0}(x), \mu_{x}, F_{0}(x)
$$

describes X

$$
\begin{aligned}
f_{x}(t) & =\frac{-d}{d t} S_{x}(t)=\frac{d}{d t} F_{x}(t) \\
& =-\frac{d}{d t}\left(\frac{S_{0}(x+t)}{S_{0}(x)}\right) \\
& =\frac{-1}{S_{0}(x)} S_{0}^{\prime}(x+t)=\frac{f_{0}^{\prime}(x+t)}{f_{x}(t)}, S_{x}^{(x)}, \mu_{x}(t), F_{x} \\
\mu_{x}(t) & =\frac{S_{x}^{\prime}(x)}{S_{x}(t)}=\frac{S_{0}}{S_{0}(x+t)} \\
S_{0}(x) & \frac{S_{0}(x+t)}{S_{0}(x)}=\frac{f_{0}(x+t)}{S_{0}(x+t)}=\mu_{x+t}
\end{aligned}
$$

Exponential cose
$\mu_{x}=\mu$, constant induurdat of x

$$
t q_{x}=\operatorname{Pr}\left[T_{x} \leq t\right]
$$

$$
\begin{aligned}
& S_{0}(x)=e^{-\int_{0}^{x} \mu d z}=e^{-\mu x} \\
& f_{0}(x)=\mu e^{-\mu x}, x \geqslant 0 \Rightarrow \text { Exponematial } \\
& S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=\frac{e^{-\mu(x+t)}=e^{-\mu t}}{e^{-\mu x}} \\
& f_{x}(t)=\mu e^{-\mu t}, t \geqslant 0 \Rightarrow \operatorname{Exp}^{-\mu}(\mu) \\
& T_{x} \sim \operatorname{Exp}(\mu)
\end{aligned}
$$

$$
\mu_{x+t}=\mu_{x}=\mu
$$

$$
\begin{aligned}
& \mu_{x}(t)=\frac{f_{x}(t)}{S_{x}(t)} \quad T_{x} \\
& \begin{array}{cc}
T_{x} & T_{x}^{L} \\
\frac{1}{g\left(T_{x}\right)}
\end{array} \\
& =t p_{x} \mu_{x+t} \\
& \underbrace{\int_{\operatorname{Var}\left[\xi\left(k_{x}\right)\right]}^{\infty} \dot{g}(t) f_{x}(t) d t}_{\frac{f_{0}(x+t)}{S_{0}(x)}}=E\left[\xi\left(T_{x}\right)\right] \\
& q=1-p \\
& p=1-9
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{\infty} \underbrace{t p_{x} \mu_{x+t}}_{f_{x}(t)} d t=1,0 \\
{ }_{n} q_{x}=\int_{0}^{n} t p_{x} \mu_{x+t} d t \\
\underbrace{n p_{x}-n+m q_{x}}_{n+m}=\int_{n \mid m}^{n+m} q_{x}
\end{gathered}
$$

$$
\begin{aligned}
& n \operatorname{lm} q_{x}=n p_{x} \cdot m q_{x+n} \\
& \text { p's are multiphicative } \\
& n+m q_{x} \neq n g_{x} \cdot n g_{x+n} \\
& \Leftarrow q_{s}^{\prime} \text { are not multiplicion } \\
& n+m q_{x}=n q_{x}+{ }_{n} p_{x} m q_{x+n} \\
& \overbrace{\underbrace{1} \underbrace{x+n \quad x+n+n}}^{1} \\
& t q_{x} \Rightarrow t=1 \\
& P_{x} P_{x+1} P_{x+2} \ldots P_{x+n+m-1} \\
& p_{x} p_{x} \cdot p_{x+1} \cdot p_{x+2} \cdots \cdot p_{x+n+m-1}=e^{-\int_{0}^{n+m} \mu_{x+s} d s}
\end{aligned}
$$

$$
\begin{aligned}
& t=1 \quad i P_{x}=P_{x} \\
& 1 q_{x}=q_{x} \\
& u \operatorname{lt} g_{x} \quad u / 1 q_{x}=u 1 q_{x}=p_{x+u}-p_{x+u+1} \\
& =q_{x+u+1}-q_{x+u}
\end{aligned}
$$

Survival model: $S_{0}(x)=\frac{1}{x+1}, x \geqslant 0$

$$
\begin{aligned}
& \text { Calculate: }{ }_{10} \mathrm{P}_{10} \\
& 5110 g_{20} \quad \frac{d}{d x}(x+1)^{-1}=-(x+1)^{-2} \\
& \text { legitimate } \\
& S_{0}(0)=1 \\
& S_{0}(\infty)=0 \\
& \text { nonincuasing } \\
& \mu_{20} \rightarrow \\
& 10 \rho_{10}=\frac{S_{0}(20)}{S_{0}(10)}=\frac{1 / 21}{1 / 11}=\frac{11}{21}=\text { ? } \\
& 510 q_{20}={ }_{5} p_{20}-{ }_{15} p_{20}=\frac{21}{26}-\frac{21}{36}= \\
& t P_{x}=\frac{S_{0}(x+t)}{S_{0}(x)} \\
& \mu_{x}=\frac{-d S_{0}(x)}{S_{0}(x) d x}=\frac{+(x+1)^{-2}}{(x+1)^{-1}} \\
& =\frac{1}{x+1}=\frac{1}{21}
\end{aligned}
$$

- Density:

$$
f_{x}(t)=\frac{d F_{x}(t)}{d t}=-\frac{d S_{x}(t)}{d t}=\frac{f_{0}(x+t)}{S_{0}(x)} .
$$

- Remark: If $t=1$, simply use $\left(p_{x}\right)$ and q_{x}.
- p_{x} refers to the probability that (x) survives for another year.
- $q_{x}=1-p_{x}$, on the other hand, refers to the probability that (x) dies within one year.

2.3 Force of mortality of T_{x}

- In deriving the force of mortality, we can use the basic definition:

$$
\begin{aligned}
\mu_{x}(t) & =\frac{f_{x}(t)}{S_{x}(t)}=\frac{f_{0}(x+t)}{S_{0}(x)} \cdot \frac{S_{0}(x)}{S_{0}(x+t)} \\
& =\frac{f_{0}(x+t)}{S_{0}(x+t)}=\mu_{x+t .}
\end{aligned}
$$

- This is easy to see because the condition of survival to age $x+t$ supercedes the condition of survival to age x.
- This results implies the following very useful formula for evaluating the density of T_{x} :

$$
f_{x}(t)={ }_{t} p_{x} \times \mu_{x+t}
$$

Special probability symbol

- The probability that (x) will survive for t years and die within the next u years is denoted by ${ }_{t \mid u} q_{x}$. This is equivalent to the probability that (x) will die between the ages of $x+t$ and $x+t+u$.
- This can be computed in several ways:

$$
\begin{aligned}
\overbrace{t \mid u} q_{x} & =\operatorname{Pr}\left[t<T_{x} \leq t+u\right] \\
& =\operatorname{Pr}\left[T_{x} \leq t+u\right]-\operatorname{Pr}\left[T_{x}<t\right] \\
& ={ }_{t+u} q_{x}-{ }_{t} q_{x} \\
& ={ }_{t} p_{x}-{ }_{t+u} p_{x} \\
& ={ }_{t} p_{x} \times{ }_{u} q_{x+t} .
\end{aligned}
$$

- If $u=1$, prefix is deleted and simply use ${ }_{t \mid} q_{x}$.

Other useful formulas

- It is easy to see that

$$
F_{x}(t)=\int_{0}^{t} f_{x}(s) d s
$$

which in actuarial notation can be written as

$$
{ }_{t} q_{x}=\int_{0}^{t}{ }_{s} p_{x} \mu_{x+s} d s
$$

- See Figure 2.3 for a very nice interpretation.

$$
\int_{d}^{n} t P_{x} \mu_{x+t} d t
$$

- We can generalize this to

$$
{ }_{t \mid u} q_{x}=\int_{t}^{t+u}{ }_{s} p_{x} \mu_{x+s} d s
$$

$S_{0}(x) \quad f_{0}(x) \quad \mu_{x} \quad F_{0}(x)$
To derive the distribution of T_{x} :

$$
\begin{aligned}
& -\int_{0}^{x+t} u_{z d z} f_{x}(t)=\frac{f_{0}(x+t)}{S_{0}(x)} \\
& \begin{aligned}
\frac{e}{e^{-s_{0}^{x} \mu_{2} d z}} S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=t p_{x} & =e^{-\int_{x}^{x+t} \mu_{z} d z} \\
& =e^{-\int_{0}^{t} \mu_{x+s} d s} \operatorname{liver}_{\substack{j_{y} \\
x}}
\end{aligned} \\
& +q_{x}=F_{x}(t)=1-S_{x}(t) \\
& 1-t p_{x}^{\prime} \quad \mu_{x+t}=\mu_{x}(t)
\end{aligned}
$$

2.6 Curtate future lifetime
 Discrete

- Curtate future lifetime of (x) is the number of future years completed by (x) prior to death.
- $\bar{K}_{x}=\left\lfloor T_{x}\right\rfloor$, the greatest integer of T_{x}. $0,1,2,3, \ldots \ldots$
- Its probability mass function is

$$
\begin{aligned}
\operatorname{Pr}\left[K_{x}=k\right] & =\operatorname{Pr}\left[k \leq T_{x}<k+1\right]=\operatorname{Pr}\left[k<T_{x} \leq k+1\right] \\
& =S_{x}(k)-S_{x}(k+1)={ }_{k+1} q_{x}-{ }_{k} q_{x}={ }_{k \mid} q_{x},
\end{aligned}
$$

for $k=0,1,2, \ldots$

- Its distribution function is

$$
\operatorname{Pr}\left[K_{x} \leq k\right]=\sum_{h=0}^{k}{ }_{h \mid} q_{x}={ }_{k+1} q_{x}
$$

$$
\begin{aligned}
& \frac{1}{4}+ \\
& \operatorname{Pr}\left[k_{x}=k\right]=\operatorname{Pr}\left[k<T_{x} \leqslant k+1\right]
\end{aligned}
$$

$$
\begin{aligned}
& L=k\left|1 q_{x}=k\right| q_{x}=k+1 q_{x}-k q_{x}=k p_{x}-k+1 p_{x} \\
& =k p_{x} g_{x+k} \\
& \sum_{k=0}^{\infty} \operatorname{Pr}\left[K_{x}=k\right]=1=\sum_{k=0}^{\infty} k \mid q_{x} \\
& \operatorname{Pr}\left[K_{x} \leqslant k\right]=\sum_{j=0}^{K} \operatorname{Pr}\left[K_{x}=j\right]=\sum_{j=0}^{k} \underbrace{j 1 q_{x}}_{j+1 q_{x}-j q_{x}^{\prime}}=k+1 q_{x} \\
& =\begin{array}{l}
19 g_{x}+2 q_{x}+\cdots+\left(k+1 q_{x}\right) \\
-\left(0 q_{x}+19 x+\mu+1 q_{x}\right)
\end{array}=k+1 q_{x}-0 q_{x}
\end{aligned}
$$

2.5/2.6 Expectation of life

$$
E(x)=\dot{e}_{0}=\int_{0}^{\infty} S_{0}(x) d x
$$

- The expected value of T_{x} is called the complete expectation of life ${ }_{\dot{\theta}}$

$$
\mathcal{Q}_{x}=\mathrm{E}\left[T_{x}\right]=\int_{0}^{\infty} t f_{x}(t) d t=\int_{0}^{\infty} t_{t} p_{x} \mu_{x+t} d t=\left(\int_{t}^{\infty} p_{x} d t .\right.
$$

- The expected value of K_{x} is called the curtate expectation of Hife:

$$
e_{x}=\mathrm{E}\left[K_{x}\right]=\sum_{k=0}^{\infty} k \cdot \operatorname{Pr}\left[K_{x}=k\right]=\sum_{k=0}^{\infty} k \cdot{ }_{k \mid} q_{x}=\left(\sum_{k=1}^{\infty}{ }_{k} p_{x} .\right.
$$

- Proof can be derived using discrete counterpart of integration by parts (summation by parts). Alternative proof will be provided in class.
- Variances of future lifetime can be similarly defined.

$$
e_{x}<\stackrel{0}{e}_{x} \Rightarrow \stackrel{0}{e}_{x} \approx e_{x}+1 / 2
$$

$$
\begin{aligned}
& =-\left.t S_{\downarrow}(t)\right|_{0} ^{\infty}+\int_{0}^{\infty} S_{x}(t) d t=\int_{0}^{\infty} \underbrace{S_{x}(t) d t}_{t P_{x}}=\underbrace{\int_{0}^{\infty} t P_{x} d t} \\
& \lim _{t \rightarrow \infty} t \delta_{x}(t)=0 \text { anenuptim } \\
& e_{x}=\sum_{k=0}^{\infty} k \cdot \underbrace{k 1 q_{x}}+\underbrace{0_{k}^{k}} \\
& =\sum_{k=1}^{\infty} k\left(\left.\frac{\sum_{k}^{\prime}-k+1}{1}\right|_{x}\right) \approx \\
& =\sum_{k=1}^{\infty} k k p_{x}-\sum_{k=1}^{\infty} k \cdot \frac{k+1}{=} p_{x} \\
& =p_{x}+2_{2} p_{x}+3_{3} p_{x}+\cdots \\
& -\left(\quad 2 p_{x}+2 \cdot 3 p_{x}+\right. \\
& \begin{array}{l}
e_{x}=\sum_{k=1}^{\infty} k p_{x}=p_{x}+2 p_{x}+3 p_{x}+\cdots
\end{array}
\end{aligned}
$$

Remember: $\dot{e}_{x}=\int_{0}^{\infty} t p_{x} d t$ and $\int e_{x}=\sum_{k=1}^{\infty} k P_{x}$

Example 2.6 of DHW [Notes rewritten!!]
Given $F_{0}(x)=1-(1-x / 120)^{1 / 6}, 0 \leq x \leq 120$
Evaluate $\dot{e}_{x}=E\left[T_{x}\right]$ and $\operatorname{Var}\left[T_{x}\right] \quad x=30$ and 80
First evaluate $t p_{x}=\frac{S_{0}(x+t)}{S_{0}(x)}=\frac{\left(1-\frac{x+t}{120}\right)^{1 / 6}}{(1-x / 120)^{1 / 6}}=\left(\frac{120-x-t}{120-x}\right)^{1 / 6}$

$$
\begin{aligned}
& \dot{e}_{x}=\int_{0}^{\infty} t p_{x} d t=\int_{0}^{120-x}(1-t / 120-x)^{1 / 6} d t \\
&\text { substitution } \left.\begin{array}{l}
u=1-t / 120-x \\
d u
\end{array}\right)=-\frac{1}{120-x} d t
\end{aligned} \quad \begin{aligned}
& 0 \\
&=-(120-x) \int_{1}^{0} u^{1 / 6} d u=-\left.(120-x) \frac{u^{7 / 6}}{7 / 6}\right|_{1} ^{0}=\frac{6}{7}(120-x) \\
& \dot{e}_{30}^{0} \Rightarrow \frac{6}{7}(120.30)=\frac{6}{7}(90)=\frac{540}{7}=77.14286
\end{aligned}
$$

$$
\operatorname{Var}\left[T_{x}\right]=E\left[T_{x}^{2}\right]-\left(E\left[T_{x}\right]\right)^{2}=E\left[T_{x}^{2}\right]-\left(\frac{540}{7}\right)^{2}
$$

need density of T_{x}

$$
f_{x}(t)=\frac{f_{0}(x+t)}{s_{0}(x)}
$$

Substitute $x=30$

$$
\begin{aligned}
& S_{0}(x)=(1-x / 120)^{1 / 6} \\
& f_{0}(x)=-\frac{d}{d x} S_{0}(x)=\frac{1}{120}\left(1-\frac{x}{120}\right)^{-5 / 6}\left(\frac{1}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
f_{30}(t)=\frac{\frac{1}{120}\left(1-\frac{30+t}{120}\right)^{-5 / 6}\left(\frac{1}{6}\right)}{(1-30 / 120)^{1 / 6}}=\frac{\frac{1}{126} 120}{1200\left(\frac{1}{6}\right)}(90-t)^{-5 / 6} & =\frac{1}{6} \frac{1}{90}\left(\frac{90-t}{90}\right)^{-5 / 6} \\
& =\frac{1}{500}(1-t / 90)^{-5 / 6}
\end{aligned}
$$

$$
\begin{aligned}
& E\left[T_{30}^{2}\right]=\int_{0}^{90} t^{2} \frac{1}{540}(1-t / 90)^{-5 / 6} d t=\frac{1}{510} \int_{G}^{0} 90(1-u)^{2} u^{-5 / 6}(190) d u \\
& u=1-t / 90 \quad d u=-\frac{1}{90} d .
\end{aligned}
$$

apply substitution $u=1-t / 90 \quad d u=-\frac{1}{90} d t$

$$
\begin{gathered}
=-\frac{1}{6} 90^{2}\left[\int_{1}^{0}\left(1-2 u+u^{2}\right) u^{-5 / 6} d u\right]=\frac{90^{2}}{6}\left[\frac{u^{1 / 6}}{1 / 6}-\frac{2 u^{7 / 6}}{7 / 6}+\frac{u^{3 / 6}}{13 / 6}\right]_{1}^{0} \\
=-\frac{90^{2}}{6} \cdot 8\left(-1+\frac{2}{7}-\frac{1}{13}\right)=90^{2}\left(\frac{72}{91}\right)=\frac{583200}{91}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{Var}\left[T_{30}\right]=E\left[T_{30}^{2}\right]-\left(\frac{540}{7}\right)^{2} & =\frac{583200}{91}-\left(\frac{540}{7}\right)^{2} \\
& =457.7708
\end{aligned}
$$

Illustrative Example 2

Let X be the age-at-death random variable with

$$
\mu_{x}=\frac{1}{2(100-x)}, \quad \text { for } 0 \leq x<100
$$

(1) Give an expression for the survival function of X.
(2) Find $f_{36}(t)$, the density function of future lifetime of (36).
(3) Compute ${ }_{20} p_{36}$, the probability that life (36) will survive to reach age 56.
(9) Compute \dot{e}_{36}, the average future lifetime of (36).

Solution to p. 18 Illustrative Example \#2

$$
\mu_{x}=\frac{1}{2} \frac{1}{100-x}, 0 \leqslant x<100
$$

(1)

$$
\begin{aligned}
& S_{0}(x)=e^{-\int_{0}^{x} \mu_{z} d z}=e^{-\frac{1}{2} \int_{0}^{x} \frac{1}{100-z} d z}=e^{\frac{1}{2}[\log (100-x)-\log (100)]} \\
&=\left(\frac{100-x}{100}\right)^{1 / 2}, 0 \leq x<100 \\
&-1 / 2
\end{aligned}
$$

(2)

$$
\begin{aligned}
f_{36}(t) & =\frac{f_{0}(36+t)}{S_{0}(36)} \quad f_{0}(x)=\frac{-d}{d x} S_{0}(x)=\frac{1}{2} \frac{1}{100}\left(\frac{100-x}{100}\right. \\
& =\frac{\frac{1}{200}\left(\frac{64-t}{100}\right)^{-1 / 2}}{\left(\frac{64}{100}\right)^{1 / 2}}=\frac{\frac{1}{200} 100^{1 / 2}(64-t)^{-1 / 2}}{\left(\frac{64}{100}\right)^{1 / 2}}=\frac{1}{16}(64-t)^{-1 / 2}
\end{aligned}
$$

(3) $z_{0} P_{36}=\frac{S_{0}(20+36)}{S_{0}(36)}=\frac{S_{0}(56)}{S_{0}(36)}=\left(\frac{\frac{44}{640}}{\frac{64}{100}}\right)^{1 / 2}=\left(\frac{11}{16}\right)^{1 / 2}=.8291562$
(4)

$$
\begin{aligned}
& \dot{e}_{36}=\int_{0}^{64} t p_{36} d t=\int_{0}^{64} \frac{S_{0}(36+t)}{S_{0}(36)} d t=\int_{0}^{64}\left(\frac{\frac{64-t}{100}}{\frac{64}{100}}\right)^{1 / 2} d t \\
& =\frac{1}{8} \int_{0}^{64}(64-t)^{1 / 2} d t \\
& =-\left.\frac{1}{8} \frac{(64-t)^{3 / 2}}{3 / 2}\right|_{0} ^{64} \\
& =\frac{1}{8} \frac{2}{3} 64^{3 / 2}=\frac{264(8)}{8(3)}=\frac{2}{3}(64) \\
& =\frac{128}{3} \\
& =42.6667
\end{aligned}
$$

years to live on avenage

Illustrative Example 3

$$
S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}
$$

$$
\begin{aligned}
E(x) & =\int_{0}^{\infty} S_{0}(x) d x \\
& =\int_{0}^{\omega}\left(1-\frac{x}{\omega}\right) d x
\end{aligned}
$$

Suppose you are given that:

$$
\begin{aligned}
=w-\frac{1}{w s} \cdot \frac{1}{2}\left(w^{2}\right) & =\frac{w}{2} \\
& =30
\end{aligned}
$$

- $\dot{e}_{0}=30$; and

$$
\Rightarrow w=60
$$

Evaluate ${ }^{\circ}{ }_{15}$.

$$
\operatorname{limiting}_{\text {age }}
$$

Solution to be discussed in lecture.

$$
\begin{aligned}
& \text { d in lecture. } \\
& \begin{aligned}
=\int_{0}^{45}(1-t / 45) d t & =45-\frac{1}{45} \cdot \frac{1}{2} 45^{x} \\
& =\frac{45}{2}=22.5
\end{aligned}
\end{aligned}
$$

$$
\frac{S_{0}(15-t)}{S_{0}(15)}=\frac{45-t}{45}
$$

$$
=1-t / 45
$$

$$
0 \leqslant t \leqslant 45
$$

$$
S_{0}(x)=1-\frac{x}{\omega} \quad f_{0}(x)=\frac{-d}{d x} S_{0}(x)=\frac{1}{\omega}, 0 \leqslant x \leqslant \omega
$$

aliform

$$
E(x)=\frac{\omega}{2}
$$

$$
\begin{gathered}
S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=\frac{1-\frac{x+t}{\omega}}{1-\frac{x}{\omega}}=\frac{\frac{\omega-x-t}{\omega}}{\frac{\omega-x}{\omega}}=1-\frac{t}{\omega-x}, 0 \leq t \leqslant \omega-x \\
T_{x} \tilde{\imath}^{\text {Unifrim }}
\end{gathered}
$$

De Moivrés law distributed as on $0 \leqslant t \leqslant \omega-x$

$$
E\left[T_{x}\right]=\frac{w-x}{2}
$$

Simplest Solution: $\frac{\omega}{2}=30 \Rightarrow \omega=60$

$$
\dot{e}_{15}^{2}=\frac{\omega-15}{2}=\frac{c_{0-15}^{2}}{2}=22.51
$$

X is exponential with $\mu=$ constant

$$
\begin{array}{r}
\mu e^{-x \mu}=f_{0}(x)=, x \geqslant 0 \\
E(x)=\frac{1}{\mu} \quad \operatorname{Var}(x)=\frac{1}{\mu^{2}}
\end{array}
$$

T_{x} is also exponential with $\mu=$ cmistant

$$
\begin{aligned}
& f_{x}(t)=\mu e^{-\mu t} \\
& E\left(T_{x}\right)=\frac{1}{\mu} \quad \Rightarrow \text { independent of } x! \\
& \text { memoryless }
\end{aligned}
$$

$$
S_{0}(x)=\int_{x}^{\infty} f_{0}(z) d z=e^{-\mu x}
$$

$$
S_{x}(t)=e^{-\mu t}=t_{x}
$$

Illustrative Example 4

For a group of lives aged 40 consisting of 30% smokers (sm) and the rest, non-smokers (ns), you are given:

- For non-smokers, $\mu_{x}^{\text {ns }}=0.05$, for $x \geq 40$
- For smokers, $\mu_{x}^{\mathrm{sm}}=0.10$, for $x \geq 40 \Rightarrow t p_{40}^{5 m}=e^{-.10 t}$

Calculate q_{65} for a life randomly selected from those who reach age 65 .

$$
\begin{aligned}
& \text { Law of Total Prombility- }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{1.65}^{n s}=e^{-.05} \\
& 1 p_{65}^{5 m}=e^{-.10} \\
& \text { Lecture: Weeks 2-3 (STT 455) }
\end{aligned}
$$

Alternative:

$$
t P_{x}=\frac{S_{0}(x+t)}{S_{0}(x)}
$$

$$
q_{65}=1-p_{65}=1-\frac{S_{0}(66) / S_{0}(40)}{S_{0}(65) / S_{0}(40)}
$$

$$
=1-\frac{S_{40}(26)}{S_{40}(25)}=
$$

$$
S_{40}(25)=e^{-.05(25)}(70 \%)+e^{-.10(25)}(30 \%)=.2251789
$$

$$
=1-\frac{.2130543}{.2251789}=\frac{.05384399}{}
$$

Temporary (partial) expectation of life

We can also define temporary (or partial) expectation of life:

$$
\mathrm{E}\left[\min \left(T_{x}, n\right)\right]=\stackrel{.}{e}_{x: \bar{n}}=\int_{0}^{n}{ }_{t} p_{x} d t \quad \int_{0}^{\infty} t p_{x} d t
$$

This can be interpreted as the average future lifetime of (x) within the next n years.

Suppose you are given:

Calculate $\dot{e}_{25: \overline{25}}$

$$
\mu_{x}= \begin{cases}0.04, & 0<x<40 \\ 0.05, & x \geq 40\end{cases}
$$

$$
\begin{aligned}
\dot{e}_{25: 25} & =\int_{0}^{25} t p_{25} d t \\
& =\int_{0}^{15} t p_{25} d t+\int_{15}^{25} t p_{25} d t \\
& =\int_{0}^{15} e^{-.04 t} d t+{ }^{15} p_{25} \int_{0}^{10} t \\
& =15.59852 \text { yeas } e^{\frac{l}{-.04(55)}} \int_{0}^{10}
\end{aligned}
$$

Generalized De Moivre's law D_{e} Moive $=$ Unifom $S_{0}(x)=1-\frac{x}{\omega}$

The SDF of the so-called Generalized De Moivre's Law is expressed as

$$
S_{0}(x)=\left(1-\frac{x}{\omega}\right)^{\alpha} \text { for } 0 \leq x \leq \bar{\omega} \text {. from } \text { birth }
$$

Derive the following for this special type of law of mortality:
(1) force of mortality -
(2) survival function associated with T_{x} -
(3) expectation of future lifetime of x
(3) can you find explicit expression for the variance of T_{x} ?

$$
\begin{aligned}
& T_{0}=x \sim \underbrace{G D M}_{(w, \alpha)}, \text { then } T_{x} \sim \underbrace{G D M}_{(w-x, \alpha)} \\
& , S_{0}(x)=\left(1-\frac{x}{w}\right)^{\alpha}=\left(\frac{w-x}{w}\right)^{\alpha}, \\
& S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=\left(\frac{w-x-t}{w-x}\right)^{\alpha}=\left(1-\frac{t}{w-x}\right)^{\alpha} \\
& M_{x}=\frac{-\frac{d}{d x} S_{0}(x)}{S_{0}(x)}=\frac{1 \alpha\left(\frac{w-x}{w}\right)^{\alpha-1}\left(+\frac{1}{w}\right)}{\left(\frac{w-x}{w}\right)^{\alpha}}=\alpha \frac{\omega}{w-x} \cdot \frac{1}{w x}=\frac{\alpha}{w-x} \\
& M_{x+t}=\frac{\alpha}{w-x-t}
\end{aligned}
$$

$$
\begin{aligned}
& E(x)=\int_{0}^{\infty} \omega \\
& S_{0}(x) d x=\int_{0}^{\omega} \frac{\left(\frac{\omega-x}{\omega}\right)^{\alpha} d x}{u=\frac{\omega-x}{\omega}}=-\omega \int_{1}^{0} u^{\alpha} d u \\
&=-\left.\omega \frac{u^{\alpha+1}}{\alpha+1}\right|_{1} ^{0}=\frac{-\omega}{\alpha+1}(0-1) \\
&=\frac{\omega}{\alpha+1}
\end{aligned}
$$

Similarly, one can deduce

$$
E\left(T_{x}\right)=\frac{\omega-x}{\alpha+1} \sin u T_{x} \sim G D M \text { with } \omega-x, \alpha
$$

$$
\begin{aligned}
& \dot{e}_{x: n+m}=\dot{e}_{x: n} \\
& \underbrace{}_{\underset{\left.E \min \left(T_{x}, n+m\right)\right]}{ } \underset{n}{\| t m}+{ }_{n} p_{x} \dot{e}_{x+n}: m} \\
& \int_{0}^{n+m} t p_{x} d t=\underbrace{\int_{0}^{n} t p_{x} d t}+\int_{n}^{n+m} t p_{x} d t^{\frac{1}{x}-x_{x+n} x_{x+t}} \\
& =\dot{e}_{x: n}+{ }_{n}^{n} p_{x} \int_{n}^{t-n} p_{x+n}^{n+m} d t \\
& s=t-n \\
& =\dot{e}_{x: n}+n p_{x} \underbrace{\int_{0}^{m} s p_{x+n} d s}_{\dot{e}_{x+n: m}} \\
& m \rightarrow \infty \\
& \dot{e}_{x}=\dot{e}_{x: n}+n p_{x} \dot{e}_{x+n}
\end{aligned}
$$

$$
\begin{aligned}
& e_{x: n+m}^{m \rightarrow \infty} \\
& \underbrace{e_{x}=e_{x: n}+n p_{x} e_{x+n}}_{\substack{m \\
e_{x}}}
\end{aligned}
$$

Illustrative example

- We will do Example 2.6 in class.

Example 2.3

$$
\begin{aligned}
C^{5} & =e^{s \log c} \\
& =e^{5 \ln C}
\end{aligned}
$$

Let $\mu_{x}=B c^{x}$, for $x>0$, where B and c are constants such that $0<B<1$ and $c>1$.

Derive an expression for $S_{x}(t)$.

$$
S_{x}(t)=\frac{S_{0}(x+t)}{S_{0}(x)}=e^{-\int_{0}^{t} \mu_{x+s} d s}
$$

$$
+f_{x}^{L}=e^{-\int_{0}^{t} B C^{x+s} d s}=e^{-B C^{x} \int_{0}^{t} e^{s(\log c)} d s}
$$

$$
\begin{aligned}
=\left.e^{-\frac{B c^{x}}{\log c}} c^{s}\right|_{0} ^{t}= & =\begin{array}{l}
e^{-\frac{B c^{x}}{\log c}\left(c^{t}-1\right)}
\end{array}, \quad E\left[T_{x}\right]=\dot{e}_{x} \\
& =\int_{0}^{\infty} t p_{x} d t
\end{aligned}
$$

Approximate integrals
(1) $\int_{a}^{b} f(x) d x \approx(b-a) \frac{1}{2}[f(a)+f(b)]$
imp prove this integration by subdividing (a, b) into X sub-intervals of length $h \quad n-a=n \cdot h$

$$
\begin{aligned}
& \int_{a}^{b}=\int_{a}^{a+h}+\int_{a+h}^{a+2 h}+\cdots+\int_{a+(n-1) h}^{a+h h} \\
& \int_{0}^{5}=\int_{0}^{1}+\int_{1}^{2}+\int_{2}^{3}+\int_{3}^{4}+\int_{4}^{5}
\end{aligned}
$$

(2) Simpson's Rul.

$$
\int_{a}^{b} f(x) d x \approx \underbrace{\frac{h}{3}[f(a)+4 f(a+h)+f(b)]}_{\text {improve this }} \begin{gathered}
\text { lensth }_{\text {lh }}^{\text {nintervab }}
\end{gathered} \underbrace{b}_{a}
$$

$$
\int_{a}^{b}=\int_{a}^{a+2 h}+\int_{a+2 h}^{a+4 h}+\ldots+\int_{a+2(n-1) h}^{b}
$$

$$
\int_{0}^{5}=\int_{0}^{1}+\int_{1}^{2}+\int_{2}^{3}+\int_{3}^{4}+\int_{4}^{5}=
$$

$$
\begin{aligned}
& A=.002 \\
& B=10^{-4.5} \\
& C=1.10
\end{aligned}
$$

$$
\mu_{x}=A+B C^{x} \quad \text { Makeham's }
$$

$$
t p_{x}=\frac{e^{-\int_{0}^{t} A d s}}{e^{-A t}} \frac{e^{-\frac{B c^{x}}{\log (}\left(C^{t}-1\right)}}{35}
$$

$$
\begin{aligned}
& C=1.10 \\
& \dot{e}_{35: 21}=\int_{0}^{2} t \rho_{35} d t=\underbrace{\int_{0}^{2} e^{-.002 t} e^{-\frac{100^{-4 .}(1.10)^{35}}{\log (1.10)}(1 .)^{t-1)}} d t}_{r^{2}}
\end{aligned}
$$

choose $h=1$ trapezoidal rule

$$
\int_{0}^{1}+\int_{1}^{2}
$$ $\frac{t}{0}+\frac{P_{35}}{1}$

$$
1.9970719
$$

$$
2.9940597
$$

$$
\begin{gathered}
\approx \frac{1}{2}\left(0 p_{35}+p_{35}\right)+\frac{1}{2}\left(. p_{35}+2 p_{35}\right) \\
\approx \frac{1.994102}{}
\end{gathered}
$$

apply Simpson's Rule $n=2 \quad h=1 / 2$

$$
\text { Exact Value } \int_{0}^{2} t \rho_{35} d t=1.994116 \text { exactly } \begin{aligned}
& \text { match y } \\
& \text { the } \\
& \text { Simpsons }
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{2} t p_{35} d t=\underbrace{\int_{0}^{1} t \beta_{35} d t}+\int_{1}^{2} t p_{35} d t \\
& =\frac{1 / 2}{3}\left[\begin{array}{c}
{\left[P_{35}+1 P_{35}+4 \cdot \frac{1}{2} p_{35}\right.} \\
L
\end{array}\right]+\frac{1 / 2}{3}\left[\begin{array}{c}
p_{35}+2 P_{35}+4 \cdot 3 / 2 P_{35} \\
L
\end{array}\right. \\
& 1998546 \\
& .9955768 \\
& =1.994116
\end{aligned}
$$

Typical mortality pattern observed

- High (infant) mortality rate in the first year after birth.
- Average lifetime (nowadays) range between 70-80 - varies from country to country.
- Fewer lives/deaths observed after age 110-supercentenarian is the term used to refer to someone who has reached age 110 or more.
- The highest recorded age at death (I beliexe) is 122.
- Different male/female mprtality pattern -/females are believed to live longer.

Substandard mortality
 Selection = undeworitiz

- A substandard risk is generally referred to someone classified by the insurance company as having a higher chance of dying because of:
- some physical condition
- family or personal medical history
- risky occupation
- dangerous habits or lifestyle (e.g. skydiving)
- Mortality functions are superscripted with s to denote substandard: q_{x}^{s} and μ_{x}^{s}.
- For example, substandard mortality may be obtained from a standard table using:
(1) adding a constant to force of mortality: $\mu_{x}^{s}=\mu_{x}+c$
(2) multiplying a fixed constant to probability: $q_{x}^{s}=\min \left(k q_{x}, 1\right)$
- The opposite of a substandard risk is preferred risk where someone is classified to have better chance of survival.

$$
\begin{aligned}
& \mu_{x}^{s}=\mu_{x}+c \\
& s=\text { substandand } \\
& t f_{x}^{s}=e^{-\int_{0}^{t} \cdot \underbrace{\mu_{x+z}}_{\mu_{x+z}+c} d z} \\
& \text { riky } \\
& =e^{-\int_{0}^{t} \mu_{x+z} d z e-c t} \\
& \text { Substandard } \\
& \text { has } \\
& \text { wors } \\
& <t P_{x} \\
& \text { mortality } \\
& \Rightarrow \text { worresurvival } \\
& q_{x}^{5}=k q_{x}, k>1 \\
& t p_{x}^{s}=p_{x}^{s} p_{x+1}^{s} p_{x+2}^{s} \cdots p_{x+t-1}^{s}=(\underbrace{1-k g_{x}}_{<1-q_{x}})(\underbrace{1-k q_{x+1}}_{1-q_{x+1}}) \cdots \cdots \cdot \\
& <p_{x} p_{x+1} \ldots={ }_{t} p_{x}{ }^{\prime}
\end{aligned}
$$

Final remark - other contexts human lifetim-

- The notion of a lifetime or survival learned in this chapter can be applied in several other contexts:
- engineering: lifetime of a machine, lifetime of a lightbulb
- medical statistics: time-until-death from diagnosis of a disease, survival after surgery
- finance: time-until-default of credit payment in a bond, time-until-bankruptcy of a company
- space probe: probability radios installed in space continue to transmit
- biology: lifetime of an organism
- other actuarial context: disability, sickness/illness, retirement, unemployment

Other symbols and notations used

Expression	Other symbols used			$\operatorname{Pr}[\cdot]$
probability function	$P(\cdot)$	$\operatorname{Pr}(\cdot)$		
survival function of newborn	$S_{X}(x)$	$S(x)$	$s(x)$	$S_{0}(x)$
future lifetime of x	$T(x)$	T		T_{x}
curtate future lifetime of x	$K(x)$	K		k_{x}
survival function of x	$S_{T_{x}}(t)$	$S_{T}(t)$		$S_{x}(t)$
force of mortality of T_{x}	$\mu_{T_{x}}(t)$	$\mu_{x}(t)$		$M x+t$

