Survival Models

Lecture: Weeks 2-3

Chapter summary

Chapter summary

- Survival models
 - Age-at-death random variable
 - Time-until-death random variables
 - Force of mortality (or hazard rate function)
 - Some parametric models
 - De Moivre's (Uniform), Exponential, Weibull, Makeham, Gompertz
 - Generalization of De Moivre's
 - Curtate future lifetime
- Chapter 2 (Dickson, Hardy and Waters = DHW)

Age-at-death random variable

- X is the age-at-death random variable; continuous, non-negative
- X is interpreted as the lifetime of a newborn (individual from birth)
- Distribution of X is often described by its survival distribution function (SDF):

$$S_0(x) = \Pr[X > x]$$

- other term used: survival function
- Properties of the survival function:
 - $S_0(0) = 1$: probability a newborn survives 0 years is 1.
 - $S_0(\infty) = \lim_{x \to \infty} S_0(x) = 0$: all lives eventually die.
 - non-increasing function of x: not possible to have a higher probability of surviving for a longer period.

Cumulative distribution and density functions

- Cumulative distribution function (CDF): $F_0(x) = \Pr[X \le x]$
 - nondecreasing; $F_0(0) = 0$; and $F_0(\infty) = 1$.
- Clearly we have: $F_0(x) = 1 S_0(x)$
- Density function: $f_0(x) = \frac{dF_0(x)}{dx} = -\frac{dS_0(x)}{dx}$
 - non-negative: $f_0(x) \ge 0$ for any $x \ge 0$
 - in terms of CDF: $F_0(x) = \int_0^x f_0(z) dz$

• in terms of SDF:
$$S_0(x) = \int_x^\infty f_0(z) dz$$

Force of mortality

• The force of mortality for a newborn at age x:

$$\mu_x = \frac{f_0(x)}{1 - F_0(x)} = \frac{f_0(x)}{S_0(x)} = -\frac{1}{S_0(x)} \frac{dS_0(x)}{dx} = -\frac{d\log S_0(x)}{dx}$$

- Interpreted as the conditional instantaneous measure of death at x.
- For very small Δx , $\mu_x \Delta x$ can be interpreted as the probability that a newborn who has attained age x dies between x and $x + \Delta x$:

$$\mu_x \Delta x \approx \Pr[x < X \le x + \Delta x | X > x]$$

• Other term used: hazard rate at age x.

Some properties of μ_x

Some important properties of the force of mortality:

• non-negative: $\mu_x \ge 0$ for every x > 0

• divergence:
$$\int_0^\infty \mu_x dx = \infty.$$

• in terms of SDF:
$$S_0(x) = \exp\left(-\int_0^x \mu_z dz\right)$$
.

• in terms of PDF:
$$f_0(x) = \mu_x \exp\left(-\int_0^x \mu_z dz\right)$$
.

5 lez 6 / 28

Moments of age-at-death random variable

• The mean of X is called the complete expectation of life at birth:

$$\mathring{e}_{0} = \mathsf{E}[X] = \int_{0}^{\infty} x f_{0}(x) \, dx = \int_{0}^{\infty} S_{0}(x) \, dx.$$

- The RHS of the equation can be derived using integration by parts.
- Variance:

$$\mathsf{Var}[X] = \mathsf{E} \big[X^2 \big] - (\mathsf{E}[X])^2 = \mathsf{E} \big[X^2 \big] - (\mathring{e}_0)^2 \,.$$

• The median age-at-death m is the solution to

$$S_0(m) = F_0(m) = \frac{1}{2}.$$

Special laws of mortality

Some special parametric laws of mortality

		~ ()	
Law/distribution	μ_x	$S_{0}\left(x ight)$	Restrictions
De Moivre (uniform)	$1/\left(\omega-x ight)$	$1 - (x/\omega)$	$0 \le x < \omega$
Constant force (exponential)	μ	$\exp\left(-\mu x\right)$	$x \geq 0, \mu > 0$
Gompertz	Bc^x	$\exp\left[-\frac{B}{\log c}\left(c^x-1\right)\right]$	$x \geq 0, B > 0, c > 1$
Makeham	$A + Bc^x$	$\exp\left[-Ax - \frac{B}{\log c}\left(c^x - 1\right)\right]$	$x \ge 0, B > 0, c > 1,$ $A \ge -B$
Weibull	kx^n	$\exp\left(-\frac{k}{n+1}x^{n+1}\right)$	$x \ge 0, k > 0, n > 1$

Special laws of mortality

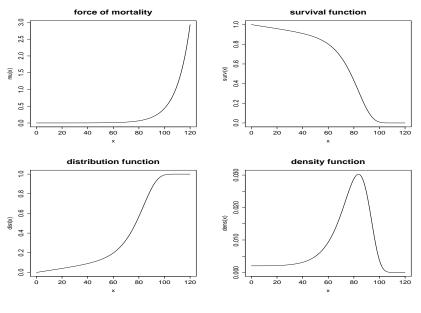


Figure: Makeham's law: A = 0.002, $B = 10^{-4.5}$, c = 1.10

Lecture: Weeks 2-3 (STT 455)

Survival Models

9 / 28

Illustrative example 1

Suppose X has survival function defined by

$$S_0(x) = \frac{1}{10}(100 - x)^{1/2}, \text{ for } 0 \le x \le 100.$$

- Explain why this is a legitimate survival function.
- **②** Find the corresponding expression for the density of X.
- Find the corresponding expression for the force of mortality at x.
- Compute the probability that a newborn with survival function defined above will die between the ages 65 and 75.

Solution to be discussed in lecture.

2.2 Future lifetime random variable

- For a person now age x, its future lifetime is $T_x = X x$. For a newborn, x = 0, so that we have $T_0 = X$.
- Life-age-x is denoted by (x).
- SDF: It refers to the probability that (x) will survive for another t years.

$$S_x(t) = \Pr[T_0 > x + t | T_0 > x] = \frac{S_0(x+t)}{S_0(x)} = {}_t p_x = 1 - {}_t q_x$$

• CDF: It refers to the probability that (x) will die within t years.

$$F_x(t) = \Pr[T_0 \le x + t | T_0 > x] = \frac{S_0(x) - S_0(x + t)}{S_0(x)} = {}_t q_x$$

- continued

• Density:

$$f_x(t) = \frac{dF_x(t)}{dt} = -\frac{dS_x(t)}{dt} = \frac{f_0(x+t)}{S_0(x)}.$$

- Remark: If t = 1, simply use p_x and q_x .
- p_x refers to the probability that (x) survives for another year.
- $q_x = 1 p_x$, on the other hand, refers to the probability that (x) dies within one year.

force of mortality

2.3 Force of mortality of T_r

In deriving the force of mortality, we can use the basic definition:

$$\mu_x(t) = \frac{f_x(t)}{S_x(t)} = \frac{f_0(x+t)}{S_0(x)} \cdot \frac{S_0(x)}{S_0(x+t)}$$
$$= \frac{f_0(x+t)}{S_0(x+t)} = \mu_{x+t}.$$

- This is easy to see because the condition of survival to age x + tsupercedes the condition of survival to age x.
- This results implies the following very useful formula for evaluating the density of T_x :

$$f_x(t) = {}_t p_x \times \mu_{x+t}$$

Special probability symbol

- The probability that (x) will survive for t years and die within the next u years is denoted by $_{t|u}q_x$. This is equivalent to the probability that (x) will die between the ages of x + t and x + t + u.
- This can be computed in several ways:

$$\begin{aligned} t|uq_x &= & \mathsf{Pr}[t < T_x \le t + u] \\ &= & \mathsf{Pr}[T_x \le t + u] - \mathsf{Pr}[T_x < t] \\ &= & t+uq_x - tq_x \\ &= & tp_x - t+up_x \\ &= & tp_x \times uq_{x+t}. \end{aligned}$$

• If u = 1, prefix is deleted and simply use ${}_{t|}q_x$.

Time-until-death

Other useful formulas

• It is easy to see that

$$F_x(t) = \int_0^t f_x(s) ds$$

which in actuarial notation can be written as

$$_{t}q_{x} = \int_{0}^{t} {}_{s}p_{x} \ \mu_{x+s}ds$$

- See Figure 2.3 for a very nice interpretation.
- We can generalize this to

$$_{t|u}q_x = \int_t^{t+u} {}_sp_x \ \mu_{x+s}ds$$

2.6 Curtate future lifetime

- Curtate future lifetime of (x) is the number of future years completed by (x) prior to death.
- $K_x = \lfloor T_x \rfloor$, the greatest integer of T_x .
- Its probability mass function is

$$\begin{aligned} \Pr[K_x = k] &= \Pr[k \le T_x < k+1] = \Pr[k < T_x \le k+1] \\ &= S_x(k) - S_x(k+1) = {}_{k+1}q_x - {}_kq_x = {}_{k|}q_x, \end{aligned}$$

for $k=0,1,2,\ldots$

• Its distribution function is

$$\Pr[K_x \le k] = \sum_{h=0}^k {}_{h|} q_x = {}_{k+1} q_x.$$

16 / 28

2.5/2.6 Expectation of life

• The expected value of T_x is called the complete expectation of life:

$$\mathring{e}_x = \mathsf{E}[T_x] = \int_0^\infty t f_x(t) dt = \int_0^\infty t_t p_x \mu_{x+t} dt = \int_0^\infty {}_t p_x dt.$$

• The expected value of K_x is called the curtate expectation of life:

$$e_x = \mathsf{E}[K_x] = \sum_{k=0}^{\infty} k \cdot \Pr[K_x = k] = \sum_{k=0}^{\infty} k \cdot {}_k|q_x = \sum_{k=1}^{\infty} {}_k p_x.$$

- Proof can be derived using discrete counterpart of integration by parts (summation by parts). Alternative proof will be provided in class.
- Variances of future lifetime can be similarly defined.

Illustrative Example 2

Let \boldsymbol{X} be the age-at-death random variable with

$$\mu_x = \frac{1}{2(100 - x)}, \quad \text{for } 0 \le x < 100.$$

- **②** Find $f_{36}(t)$, the density function of future lifetime of (36).
- $\textcircled{\ }$ Compute $_{20}p_{36},$ the probability that life (36) will survive to reach age 56.
- **④** Compute \mathring{e}_{36} , the average future lifetime of (36).

Illustrative Example 3

Suppose you are given that:

•
$$\mathring{e}_0 = 30$$
; and
• $S_0(x) = 1 - \frac{x}{\omega}$, for $0 \le x \le \omega$.

Evaluate \mathring{e}_{15} .

Solution to be discussed in lecture.

Illustrative Example 4

For a group of lives aged 40 consisting of 30% smokers (sm) and the rest, non-smokers (ns), you are given:

- \bullet For non-smokers, $\mu_x^{\rm ns}=0.05,$ for $x\geq 40$
- For smokers, $\mu_x^{\rm sm}=0.10,$ for $x\geq 40$

Calculate q_{65} for a life randomly selected from those who reach age 65.

Expectation of life

Temporary (partial) expectation of life

We can also define temporary (or partial) expectation of life:

$$\mathsf{E}\big[\min(T_x,n)\big] = \mathring{e}_{x:\overline{n}} = \int_0^n {}_t p_x dt$$

This can be interpreted as the average future lifetime of $\left(x\right)$ within the next n years.

Suppose you are given:

$$\mu_x = \begin{cases} 0.04, & 0 < x < 40\\ 0.05, & x \ge 40 \end{cases}$$

Calculate $\mathring{e}_{25:\overline{25}}$

Generalized De Moivre's law

The SDF of the so-called Generalized De Moivre's Law is expressed as

$$S_0(x) = \left(1 - \frac{x}{\omega}\right)^{\alpha}$$
 for $0 \le x \le \omega$.

Derive the following for this special type of law of mortality:

- force of mortality
- **2** survival function associated with T_x
- expectation of future lifetime of x
- can you find explicit expression for the variance of T_x ?

generalized De Moivre's

illustrative example

Illustrative example

• We will do Example 2.6 in class.

Lecture: Weeks 2-3 (STT 455)

Survival Models

Fall 2014 - Valdez

Example 2.3

Let $\mu_x = Bc^x$, for x > 0, where B and c are constants such that 0 < B < 1 and c > 1.

Derive an expression for $S_x(t)$.

Typical mortality pattern observed

- High (infant) mortality rate in the first year after birth.
- Average lifetime (nowadays) range between 70-80 varies from country to country.
- Fewer lives/deaths observed after age 110 supercentenarian is the term used to refer to someone who has reached age 110 or more.
- The highest recorded age at death (I believe) is 122.
- Different male/female mortality pattern females are believed to live longer.

Substandard mortality

- A substandard risk is generally referred to someone classified by the insurance company as having a higher chance of dying because of:
 - some physical condition
 - family or personal medical history
 - risky occupation
 - dangerous habits or lifestyle (e.g. skydiving)
- Mortality functions are superscripted with s to denote substandard: q_x^s and $\mu_x^s.$
- For example, substandard mortality may be obtained from a standard table using:
 - $\textbf{0} \text{ adding a constant to force of mortality: } \mu^s_x = \mu_x + c$
 - 2 multiplying a fixed constant to probability: $q_x^s = \min(kq_x, 1)$
- The opposite of a substandard risk is preferred risk where someone is classified to have better chance of survival.

Final remark - other contexts

- The notion of a lifetime or survival learned in this chapter can be applied in several other contexts:
 - engineering: lifetime of a machine, lifetime of a lightbulb
 - medical statistics: time-until-death from diagnosis of a disease, survival after surgery
 - finance: time-until-default of credit payment in a bond, time-until-bankruptcy of a company
 - space probe: probability radios installed in space continue to transmit
 - biology: lifetime of an organism
 - other actuarial context: disability, sickness/illness, retirement, unemployment

Other symbols and notations used

Expression	Other symbols used	
probability function	$P(\cdot) = Pr(\cdot)$	
survival function of newborn	$S_X(x)$ $S(x)$ $s(x)$	
future lifetime of \boldsymbol{x}	T(x) = T	
curtate future lifetime of \boldsymbol{x}	K(x) K	
survival function of x	$S_{T_x}(t)$ $S_T(t)$	
force of mortality of T_x	$\mu_{T_x}(t) \mu_x(t)$	

