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Chapter summary

Chapter summary

@ Multiple state models (also called transition models)

e what are they?

e actuarial applications - some examples

State space
@ Transition probabilities

e continuous and discrete time space

Markov chains

e time homogeneous versus non-homogeneous Markov chains

@ Cash flows and actuarial present value calculations in multiple state
models

o Chapter 8 (Dickson, et al.)
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Introduction

Introduction

@ Multiple state models are probability models that describe the random
movements of:

a subject (often a person, but could be a machinery, organism, etc.)
among various states

@ Discrete time or continuous time and discrete state space

@ Examples include:

basic survival model
multiple decrement models
health-sickness model
disability model

pension models

multiple life models

long term care (or continuing care retirement communities, CCRCs)
models
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Some actuarial applications

The basic survival model

0\7 So YL: ;“5

alive (a) dead (d)
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Some actuarial applications

The withdrawal-death model

withdrawal
or surrender

(w)

dead
(d)

Lecture: Weeks 6-7 (STT 456)

Multiple State Models

Spring 2015 - Valdez

5/ 42



Some actuarial applications

The permanent disability model

healthy (0) disabled (1)

dead (2)
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Some actuarial applications

The HIV-AIDS progression model

uninfected HIV positive AIDS
(0) (1) (2)
dead

3)
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Notation

Notation

@ Assume a finite state space (total of n + 1 states): {0,1,...,n}
@ In most actuarial applications, we need a reference age.
o Denote by x the age at which the multiple state process begins.
e z is the age at time ¢ = 0.
@ Denote by Y, (t) the state of the process at time t.

e This can take on possible values in the state space.
o The process can be denoted by {Y,(t), t > 0}.
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Continuous time Markov chain models
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Continuous time models

Transition probabilities and forces of transition

@ Transition probabilities:
[/

W0 = Pr[Ya(t) = j|Y,(0) = i

e This is the probability that a life age x at time 0 is in state ¢ and will
be in state j after t periods.

@ Force of transition (also called transition intensity):

o This is defined only in the case where we have a continuous time
process.

e Analogous to the force of mortality in the basic survival model.

o It is understood that ;%7 = 0 if it is not possible to transition from
state ¢ to state j at any time.
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Continuous time models  some useful assumptions

. . h
Some assumptions lim ‘{_(__)_-_ 0 —
"q_,....--——::;‘I W0 h \ o
S memey\ss ]
h=0

@ Assumption 1: The Markov property holds.

PrYa(s+1t) = jlYa(s) =4, Ya(u) = k,0 < u < 5]
= Pr[Ya(s +t) = j|Ya(s) = i

e Assumption 2: For any positive interval of time length (generally very
small) h,

Pr[2 or more transitions within a time period of length h] = o(h)

@ Assumption 3: For all states ¢ and j and all ages = > 0, tp? is a
differential function of ¢.
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Continuous time models  some useful assumptions

Some useful approximation

We can express the transition probabilities in terms of the forces of
transition as

hp;j = hﬂg};j + O(h),

so that for very small values of h, we have the approximation

L/ R
nPy = g
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Continuous time models occupancy probability

The occupancy probability Ll

When a person currently age = and is currently in state ¢, the probability

that the person comti same state for a length of ¢
periods is called §n occupancy probability.

&

For any state 7 in a multiple state model, the probability that (x) now in
state ¢ will remain in state ¢ for ¢t years can be computed using:

(¢
t?;( %t()a( 1Dy = exp / Z pl, ods

Jj=0,j#i

Sketch of proof will be done in class - also on pages 239 - 240.

Lecture: Weeks 6-7 (STT 456)

Multiple State Models Spring 2015 - Valdez 13 / 42



n+l SL«"{S (

|
*

D (

o N
Skekdy of pPresk stad wi small b

k ji‘ [ - Z )'(J
F S Wl + o)
il hZMx + ZOU‘) /

# Tolw
Cor\s;lﬂ‘ : 1_ li
s Vim ’c’f‘n!x ”*F" \m\ [ﬁ“t ]
'ﬁ.“c‘)’* h>0 h

_t‘)ii (i [h‘%‘um +o(k)] i ZM]
< T | e e D



?f—; = 7 Z ijﬂ ’c
*r; J# =
M— —

o Yo i / 7
ot 3*?" )L,js y

€.
)
stfx“ Z Pxas
RUL

il 7



\ d\!i-\'\‘-d' !

:‘!.‘Ld 52 ﬂl 7

_J (“us t Mx*rs\é‘

@

00 M)
lo?x. - "’fx s e _;Lﬂc' _:7’.“
. c_[u (.osﬂ): é.fu?z 60170
o _ n (::__-,01--»1
‘°V:l = g ‘:{V(: “olwc \uitfvitdl- o ‘:_V_T"
o

) -
< 059%t 0214 Q- 0229 (10-t) = 19363



\YA ;'a‘ 02
’W‘)?& = S -t‘)u.. Mx-ttd* t
60 ol

= |- luV)( - lorv.

~——
= ldbg AW WS

— 8

£ [ e
- o) y LRWA—T)\ <

| Alive 5“*—-) \Cahcef ! 2
S
\(mw. 3

€9

}LO" = 003

W= 100k

03

}A = 01\0



Cal or

® ?f‘o‘o -\-\\c'\' \«u'uﬂ- )x'l-ul Q\;v{ "J':u\.h q‘l1¢ﬂ\o
6.6 4 ol 02 0 45}
PR AR R NCRTST
019
- Tl @
[P VJ:\\ &\“- 5[.

(2) Fro\; 3t within fyeamw, o

v ’ r k . l\
Griven et \-10"‘ dxd oiithin q‘-}“‘v\a, u <F 1 '\')k
(5) Prob $hat You~ Lawnst ,,L ,LM\". [y anun



° (" &4 T
6 ° \ }
4‘(«“L"V‘Md+ o t 4
l
e:il:t . 006 = .00& (ﬂ ) g.ﬂl‘l[‘ﬂ)
" 1) Vou —.olal¢)
(a;hcr.r j a = ¢
® Pl con w\D) =
P(D)
“ L W —
X ‘L‘iﬂ /K“'() .
JA.I'}& --0"1 ol

lx  «#



Continuous time models Kolmogorov's forward equations
I ks
L 44w

Kolmogorov's forward equations

For a Markov process, transition probab‘iflities can be expressed as
n o —
t+hp¥.: tp?pj +h Z <tp§; int - tp?vj:ugwrt) + o(h).
2 k=0,k+#j
{I'M -4 (%

s leaddhus to the Kolmogorov's Forward Equations (KFE):

%tp;j = Z (tpgc /UJ:c{l—t - tplxjug:-kt) .
k=0,k#j

This set of differential equations is used to solve for transition probabilities.
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Continuous time models numerical evaluation

Numerical evaluation of transition probabilities

To solve for the set of KFE's for the transition probabilities, we can equate
o(h) — 0, especially if h is small, or equivalently use the approximation

d .. 1 . .
%tp?v] ~ 5 (t-i—hp;:] - tp;g)
This is a similar approach used to approximate the solution to the Thiele's

differential equation for re 3 P

Method is called thg Euler's method. JThe primary differences are:

@ solution is performed recursively going forward with the boundary
conditions:
oPx = No, ifitj

@ the process usually requires solving a number of equations.
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Continuous time models illustration

lllustrative example from book

@ Consider kxample 8.4 on pages 254-255

Lecture: Weeks 6-7 (STT 456) Multiple State Models Spring 2015 - Valdez 16 / 42



Continuous time models

The health-sickness model

Q

healthy (h)

health-sickness model

sick (s)

dead (d)
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Continuous time models illustration

Example 8.5 from the book

Consider the health-sickness insurance model illustrated in Example 8.5
with

ugl = a1+ by exp(cix) “’P
py’ = 010"

u?f = ag + byexp(cax)

pe = Hy

where

a1 =4 x 1074, by =3.4674 x 1075, ¢; = 0.138155
as =5 x 1074, by = 7.5868 x 1077, ¢9 = 0.087498

Verify the calculations of ;;p3) and 1Y, and follow the same procedure
to calculate p¥3. 5
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Continuous time models illustration

. . A0
Numerical process of solutions @ « @)

One can verify that to solve for the desired probabilities, one solves the set
of Kolmogorov's forward equations

_ 01 10 00 /01 02

= D60 H60+t — tP60 (Heo+t + Heo+t)
00 01 01 /,.10 12

= P60 M60+t — tP60 (H60+ T HMeo+e)

oL
00 , @ 01 12
= P60 60+t T tP60 H60+t

Then use the numerical approximations:

00 .. 00 01 10 00/ 01 02
hPe0 A 1Pgo + R[pao 1e0+t — P80 (Hgost t Heost)]

\ /7
L 01 00 01 01/ 10 12
0ao + 1160 1160+ — +Pgo (eo+e + Héore)] =

- 01
W= L t+hPeo

Q

02 .. 02 00 , 02 01 12
thPes A tPeo + [P0 Heo st — P60 Heoat) 7
with initial boundary conditions: 3 = 1, % = P2 = 0 S
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Continuous time models illustration

Detailed results with step size h = 1/1/2 )

t /1’2(1)+1, N%H Négﬂ Pé%ﬂ f,pgg r,pg(l) f,pg(Z)

0 0.01420 0.01495 0.00142 0.01495 1.00000 0.00000 0.00000
1/12  0.01436 0.01506 0.00144 0.01506 0.99757 0.00118 0.00125
2/12  0.01453 0.01517 0.00145 0.01517 0.99512 0.00238 0.00250
3/12  0.01469 0.01527 0.00147 0.01527 0.99266 0.00358 0.00376
4/12  0.01485 0.01538 0.00149 0.01538 0.99018 0.00479 0.00503
5/12  0.01502 0.01549 0.00150 0.01549 0.98769 0.00601 0.00630
6/12 0.01519 0.01560 0.00152 0.01560 0.98518 0.00723 0.00759
7/12  0.01536 0.01571 0.00154 0.01571 0.98265 0.00847 0.00888
8/12 0.01554 0.01582 0.00155 0.01582 0.98011 0.00972 0.01017
9/12  0.01571 0.01593 0.00157 0.01593 0.97755 0.01097 0.01148
10/12  0.01589 0.01605 0.00159 0.01605 0.97497 0.01224 0.01279
11/12 0.01607 0.01616 0.00161 0.01616 0.97238 0.01351 0.01411

1 0.01625 0.01628 0.00162 0.01628 0.96977 0.01479 0.01544
0.01860 0.01772 0.00186 0.01772 0.93713 0.03089 0.03198
0.02129 0.01929 0.00213 0.01929 0.90200 0.04833 0.04967
0.02439 0.02101 0.00244 0.02101 0.86432 0.06712 0.06856
0.02794 0.02289 0.00279 0.02289 0.82407 0.08722 0.08872
0.03202 0.02493 0.00320 0.02493 0.78127 0.10855 0.11018
0.03671 0.02717 0.00367 0.02717 0.73601 0.13100 0.13299
0.04209 0.02961 0.00421 0.02961 0.68846 0.15435 0.15719
0.04826 0.03227 0.00483 0.03227 0.63886 0.17835 0.18279 s

© 0O ~NOOCTL P WN

=
o

0.05535 0.03517 0.00554 0.03517 0.58756 0.20263 0.20981
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Continuous time models illustration

Additional problem

When you have the moment, try to calculate (using some software or a
spreadsheet) to estimate the transition probabilities given that at age 60,
the person is sick: ;ope9 and ;gpgs, and opg3

Lecture: Weeks 6-7 (STT 456) Multiple State Models Spring 2015 - Valdez 21/ 42



Continuous time models illustration

lllustrative example 1

Consider the health-sickness insurance model with: @
Y .
pl = 0.040, \h\{‘/ l
pih., = 0.005, — (J }
/ngH = 0.010, and
P = 0020, 0 hs ha

-, (oks 307
(Worp )dt =
for all t > 0. Do the following: - 'f" »

he folloing o sk )y
O Calculate ;gp5y and 101059\-______2 “fu (M M T1¥F008

@ Write out the Kolmogorov's forward quuagons for solving the t-year
transition probabilities for a person age 50 who is currently healthy-
(consider all possible transitions; do not solve) W ﬂo\ Ws

© Write out the Kolmogorov's forward equations for solving the t-year
transition probabilities for a person age 50 who is currently sick. ~
/(con5|der all possible transitions; do not solve) ss sd  sh
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Actuarial calculations illustration

lllustrative example 2

Suppose that an insurer uses the health-sickness model to price a policy
that provides both sickness and death benefits to healthy lives aged 40.
You are given:

@ The term of the policy is 25 years.

o If the individual dies during the term of the policy, there is a death
benefit of $20,000 payable at the moment of death. An additional
$10,000 is payable if the individual is sick at the time of death.

o If the individual becomes sick during the term of the policy, there is a
sickness benefit at the rate of $3,000 per year. No waiting period
before benefits are payable.

@ The premium rate is $600 payable annually by healthy policyholders.
Express the following in integral form using standard notation of transition
probabilities and forces of transitions:

© the actuarial present value at issue of future premiums; #
@ the actuarial present value at issue of future death benefits;/and
© the actuarial present value at issue of future sickness benefits. = s
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Actuarial calculations health-sickness model

Policy values and Thiele's differential equations

Consider the health-sickness insurance model where we have a disability
income policy with a term fc y issued to a healthy life (z):

@ Premiums are payable contintously throughout the policy term at the
rate of P per year, while healthy.

° Beneﬁt in the form of an annuity is payable continuously at the rate
of B per year, while sick.

-

@ A lump sum benefit of S is payable immediately upon death within
the term of the policy.

Give an expression for the:
@ policy value at time ¢ for a healthy policyholder;
@ policy value at time t for a sick policyholder; and

© Thiele's differential equations for solving these policy values.
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Thiele's Differential Equations  generalization

Generalization of Thiele's differential equations
———

ection 8.7.2, pages 266-267

@ General situation of an insurance contract issued within a more
general multiple state model
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SOA question

SOA question #12, Spring 2012
Ve /
Employees in Company ABC can be in: State 0: Non-executive employee;

State 1: Executive employee; or State 2: Terminated from employment.

John joins Company ABC as a non-executive employee at ag.
Mar

You are given:

e 1% =0.01 for all years of service 3 D

e 1192 = 0.006 for all years of service \ \ 2

e 1'%2 = 0.002 for all years of service j lacve

@ Executive employees never return to the non-executive employee state.

@ Employees terminated from employment never get rehired.

@ The probability that John lives to a@ regardless of state.
Calculate the probability that John will be an executive employee of
Company ABC at age 65.
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SOA question

SOA question #10, Fall 2013

For a multiple state model, you are given: e

healthy (0) disabled (1) L\

6 07
4] | 0 A
—1

dead (2) ‘1\\ 200 i| 1|'L|NY

The following forces of transition:

pt = 0.02 1’ =0.03 ' =0.05

v

Calculate the conditional probability that a Healthy life on January 1, 2004
is still Healthy on January 1, 2014, given that this person is not Dead on
January 1, 2014. s
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Discrete time Markov chain models
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Discrete-time Markov chains transition probabilities

Transition probabilities - Markov Chains nrl

@ Assume a finite state space
state at time k.

@ Basic Markov chain assumption:

PriYa(k+1) = jlYy(k) =i, Yo (k —1),...,Y,(0)]
= Pr[Yy(k+ 1) = j|Ya(k) = i]

@ Notation of transition probabilities:

Pr[Yo(k + 1) = j|Ya(k) = i] = Q) = QF.

@ Transition probability matrix:

QP QU ... Q0n ~+—+
k k k kL kh

Qw Qn . Ln

Q. = k k k

n,0 n,l n,n

Q ; Q ; e Q ; 5
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Discrete-time Markov chains homogeneous vs non-homogeneous

Homogeneous and non-homogeneous Markov chains
dn N -N‘L"'*
@ If the transition probabilitympends on the time@it is
said to be a non-homogeneous Markov Chain.

@ Othewise, it is called a homogeneous Markov Chain, and we shall

simply denote the transition probability matrix by Q. .
@ Define 0 ¢ J
sn
rQ%O ngl T TQk
QU Qit Qb e lo
Qi = : : - : —
In,O In,l .n,n
rie @y T rleg

where N
PQY =PrYy(k+7) = j|Ya(k) =]
is the probability of going from state ¢ to state j in r steps. It is

sometimes written as TQ,(;’]). s
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Discrete-time Markov chains Chapman-Kolmogorov equations
L L
1 1 1 I
= T T

o 1+ n

Chapman-Kolmogorov equations

@ Discrete analogue of the Kolmogorov's forward equations.
”~

@ Theorem: J j
rQi = Qi X Qg1 X X Qper—1 [ [
=,
ik k¥~ Kktnep

@ Chapman-Kolmogorov equations:
iy § : is sj
m+ka - s M E X ka+m

@ In the case of homogeneous Markov Chains, we drop the subscript k
and simply write

# -

Lecture: Weeks 6-7 (STT 456) Multiple State Models Spring 2015 - Valdez 31/ 42
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Discrete-time Markov chains Chapman-Kolmogorov equations

Example 1

o Consider a critical illness model with 3 states: healthy (H), critically
ill (1) and dead (D). ¢

@ Suppose you have the homogeneous Markov Chain with transition
! omogencod
matrix - HH

&t
~ H C D Q, = a Hr
92 0.05 0. a
H /092 0.05 0.03 o= s
Q.= C | 000 076 024 e

WD
D \0.00 000 100/ @ = %

@ What are the probabilities of being in each of the state at times
t=1,2,37
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Discrete-time Markov chains Chapman-Kolmogorov equations

Example 2

@ Suppose that arf auto insurer classifies ith policyholders according to
Preferred (State #0) or Standard (State #1) status, starting at time
0 at the start of the first year when they are first insured, with
reclassifications occurring at the start of each new policy year.

@ You are given the following t-th year non-homogeneous transition

matrix:
Q - 0.65 0.35 n 1 0.15 —0.15
*~ 050 050 t+1\ —0.20 0.20
@ Given that an insured is Preferred at the start of the second year:

@ Find the probability that the insured is also Preferred at the start of the
third year.

@ Find the probability that the insured transitions from being Preferred at
the start of the third year to being Standard at the start of the fourth
year.
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Discrete-time Markov chains Cash flows and actuarial present values

: - N
Cash flows and actuarial present values Preb, ® CF ¥ distent
APV -

@ We are interested in the actuarial present value of cash flows —

i
t+k+1C J

which are the cash flows at time ¢ + k£ + 1 for movement from state ¢
(at time ¢t + k) to state j (at time ¢t + k + 1).

e Discount typically by v**1,

@ Theorem: Suppose that the subject is in state s at time t. The
actuarial present value (APV) of cash flows from state i to state j is
given by

o0
. ;i ookt
APV a; = § (kaz'Qtik) k10" x VT
k=0
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lllustrative Examples example 1

lllustrative example no. 1

An insurer issues a special 3-year insurance contract to a high risk
individual with the following homogeneous Markov Chain model:

@ States: 0 = active,G, = disabled, 2 = withdrawn, and 3 = dead.
@ Transition probability matri>:): 1 , ; 1:‘!‘.’}‘(‘;
—
0 /04 02 03 01\ 17 ._
1102 05 00 03|09 V 2.
2 0 O 1 0 Ti 'j's
3 0 0 O 1
@ Changes in state occur only at the end of the year.
@ The death benefit is $1,000, payable at the end of the year of death.
@ The insured is disabled at the end of year 1.

@ Assuming interest rate of 5% p.a., Calculate the actuarial present
value of the prospective death benefits at the beginning of year 2.
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lllustrative Examples

lllustrative example no. 2
Consider a special three-year term insurance:

example 2

[+

a I z

3

@ Insureds may be in one of three states at the beginning of each year:
active, disabled or dead. All insureds are initially active.

The annual transition probabilities are as follows:

Active | Disabled | Dead
Active 0.8 0.1 0.1
Disabled 0.1 0.7 0.2
Dead 0.0 0.0 1.0

the insured was active or disabled.

@ Premiums are paid at the beginning of each year when active.
Insureds do not pay annual premiums when they are disabled.
P: arvlal -~
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Interest rate + = 10%.

Calculate the level annual net premium for this insurance.

Multiple State Models
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A $100, 000 benefit is payable at the end of the year of death whether
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Set P APU(promeivs) = APV(bendr)
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lllustrative Examples example 3

L
— i f—

l T
& ———— 3%~ g0
@ A machine can be in one of four possible state‘s,\u‘a'bﬁedﬁ,—b,——t,—aﬁj
d. It migrates annually according to a Markov Chain with transition
probabilities:

lllustrative example no. 3

o+

a b c d
0.25 0.75 0.00 0.00
0.50 0.00 0.50 0.00
0.80 0.00 0.00 0.20
1.00 0.00 0.00 0.00

Q O T L

@ At time t = 0, the machine is in State a. A salvage company will pay
100 at the end of 3 years if the machine is in State a.

@ Assuming v = 0.90, calculate the actuarial present value at time
t = 0 of this payment.
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Other transition models with actuarial applications
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Joint life model

z alive z alive
y alive y dead

(0) (1)

x dead x dead
y alive y dead

(2) (3)
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Multiple decrement model

decrement (1)

decrement (2)

AN

alive (0)

decrement (n)
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Accidental death model

alive

(@)

N

death from death from
accidental causes other causes

(ac) (na)
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A simple retirement model

withdrawn (w)

active (a) retired (7)

e
N

dead (d)
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