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We show that the Dirichlet–Gabor wavelet-distributed approximating functional (DAF)
can be derived from the same variational principle used to obtain non-interpolating wavelet-
DAFs (such as the Hermite DAF). This variational approach for such interpolating DAFs
complements the original viewpoint that they are generated by regularizing interpolating
shells or through two-parameter Dirac delta sequences.

1. Introduction

Recently, we have introduced several new types of distributed approximating
functionals (DAFs) [2,5–8,13] and related wavelet bases associated with them [1,8–
10,14,16]. In the course of that work, it was observed that DAFs could be generated
in several ways. The first approach [5–7] leads to a systematic way of approximat-
ing a given discrete set of input data with an infinitely smooth function. The most
intensively studied DAF of this type is called the Hermite DAF, or HDAF. The funda-
mental unit of its construction is a product of a Hermite polynomial and its generating
function, referenced to an origin that is located at each point, x. A variational method
was introduced for deriving such DAFs [5], and they have been applied to a large
number of problems, ranging from solving various linear and nonlinear partial differ-
ential equations (PDEs) to the entire gamut of signal processing [1,11,12,14,15,17].
A distinctive property of the first DAFs is that they are not interpolative on the input
grid points [5–7]. That is, the first type of DAF approximation to the function at any
grid point, xj , is not exactly equal to the input data value. In place of the interpolative
property, this DAF approach to functional approximation has the property that there
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are no “special points”. Said another way, such DAFs deliver similar accuracy for
approximating the function either on or off the grid; similarly, the DAF approximation
to a function, sampled discretely, yields an approximation to the derivatives of the
function comparable in accuracy to the function itself. This is strictly true only for
functions belonging to the “DAF class”, which is that set of functions whose Fourier
transform is sufficiently contained under the DAF window in Fourier space [5].

More recently, we have developed another general type of DAF which does inter-
polate on the grid, but which still can be “tuned” to yield highly accurate derivatives
for DAF-class functions [1,2,8,11,12,14,15,17]. The essence of this approach is to
modify an “interpolating shell” (such as that for Lagrange interpolation [5], etc.) by an
appropriate weighting function. By far the most attractive choice has been a Gaussian
weight function, which has the property of “regularizing” the interpolation so that it
delivers an infinitely smooth approximation to discretely sampled functions [1,2,8,14],
and the accuracy is ensured so long as the function being considered is in the DAF
class. Again, these have been shown to be enormously robust for the class of PDEs
and signal processing problems considered earlier [1,2,11,12,14,15,17].

An alternative way of viewing these DAFs results from observing that continuous
DAFs constitute two-parameter Dirac delta sequences [8]. That is, they are approxi-
mate identity transforms that depend on two adjustable parameters. In the case, e.g.,
of the HDAFs, the two parameters are the Gaussian width, σ, and the highest degree
polynomial, M (where M is even):
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Here it is easily shown that
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for any fixed M . The availability of two independent parameters, either of which can
be used to generate the identity kernel or Dirac delta function, can be viewed as the
source of robustness of the DAFs as computational tools [8].

Of the recently introduced regularized interpolation DAFs, a potentially very
useful one is the Dirichlet–Gabor wavelet-DAF (DGWD) [8]. It was constructed by
combining a Gaussian with the Dirichlet kernel for generating the Fourier series of a
function, to give
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As with all of the regularized interpolating DAFs, this product generates a scaling
wavelet that at once is infinitely smooth and rapidly decaying in both physical and
Fourier space [8]. The constant, CM ,σ, was determined by requiring that the zero-
frequency Fourier transform, δ̂ (M )

DGWD(0|σ), be normalized to unity, that is,

φ̂(0) = δ̂ (M )
DGWD(0|σ) =

∫
∞

−∞

dx δ(M )
DGWD(x|σ) = 1. (5)

Then the “father wavelet” basis is generated by translating and scaling, so that [8]
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)
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A corresponding “mother wavelet” can be defined as
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Because of the constraint on φ̂(0), equation (6), it is verified that ψ(x) is a “small
wave”, so its zero-frequency transform satisfies

ψ̂(0) =

∫
∞

−∞

dxψ(x) = 0. (8)

The computational usefulness of the DGWD was shown by several example appli-
cations to the solution of differential equations [2,11,12,15,17]. A multiresolution
analysis has been developed based on these wavelets [1,2,14].

In this paper we enquire as to whether these regularized interpolation DAFs can
also be obtained in a systematic manner from the same variational principle [5] used for
the non-interpolating DAFs, especially the HDAF [5–7]. We shall see that the DGWD
can indeed be obtained directly from our variational principle, and the derivation bears
a similarity to that used for the Hermite DAFs. In the next section, we give the detailed
derivation of the DGWD from the variational principle. The last section contains our
conclusions.

2. Variational principle applied to the Dirichlet DAF

A general construction of the DAF approximation to a function proceeds by first
developing a suitable approximation to the function at every point x in its domain.
This is typically accomplished by making a basis set expansion of the form

f
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)
bj(x). (9)
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Here f (x′|x) is an approximation to the function f (x′) about the point x, i.e., para-
meterized by x. The quantity Bj(x′|x) is the jth basis function for the point x and
bj(x) is the corresponding coefficient of this basis function for the expansion centered
on the point x. The coefficients bj(x) remain to be determined as functionals of the
known values of f (x). A succinct expression for the DAF approximation can then be
given by

fDAF(x) = f (x|x) (10)

(although, as previously mentioned, other, more general, definitions, e.g., as parame-
terized delta sequences, are also possible [8]). To complete the definition, one must
specify how the x-dependent coefficients are to be obtained.

There are various ways that the set of coefficients {bj(x)} can be determined.
Perhaps the most straightforward is by the technique of “moving least squares”. In
this approach one defines a variational function λ(x) for the point x of the form

λ(x) =

∑

l

ω(xl − x)
∣∣f (xl|x)− f (xl)

∣∣2, (11)

where the summation over l is over all points in the domain of x where the value of the
function is known. (We replace the sum by an integral over all continuous regions of
the domain where the function is known.) The quantity ω(xl−x) is a weight function
of arbitrary form, restricted only in that it is non-negative. For concreteness we will
take ω to be of the Gaussian form

ω(x) = e−x
2/2σ2

, (12)

where σ is a parameter with units of length. It should be pointed out that, in general,
the form of the weight can also vary as a function of x as can the basis functions
themselves in both type and number. (For example, we could make σ vary with x,
and/or choose Bj(x′|x) from different complete sets for each distinct value of x.) We
then write

f (xk|x) =

∑

j

Bj(xk|x)bj(x) (13)

and determine the optimal values of these coefficients at a particular value of x by
minimizing the “cost” function λ(x). In general, the expansion coefficients can be
complex. In anticipation of this eventuality, we minimize the cost function with respect
to both the coefficients and their complex conjugates to obtain 2N equations to solve
for the real and imaginary parts of the N coefficients. This leads to the set of linear
equations
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{
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}
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which can be written compactly as
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by defining
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(
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It is important to recall that all of the quantities in this equation are implicit functions
of x.

To proceed, we confine our discussion to functions on the real line and represent
f (x′|x), our local approximation to the function centered on the point x, as a Fourier
series. The basis functions then are

Bj

(
x′|x

)
=

1√
N

e−2πi(x′−x)j/(N∆), (19)

where j assumes the N values −(N − 1)/2 6 j 6 (N − 1)/2. (Note that j takes
on integer values for odd N and half-integer values for even N .) Here ∆ is the grid
spacing, which is assumed to be uniform. As a function of x′, f (x′|x) is obviously
periodic with a period domain of N∆. From equation (17) it is seen that C is a kind of
overlap matrix for the basis functions centered at x under the weight function ω(x′−x)
of the basis functions; we can express it solely as a function of η = mod∆(x′−x). As
we now show, it is possible to invert the matrix C(η) in closed form. However, it is
an approximation to the inverse that, when valid, gives rise to the DAF representation
of the function which is of interest to us here.

It is useful to write the sum in equation (16) in the form
∞∑

l=−∞

(·)l =

∞∑

p=−∞

∑

q

(·)p,q, (20)

where l = Np+ q. Here we have divided the grid into domains, each with N points.
The p-sum is over all domains and the q-sum is over all points within a given domain.
We take the point of origin (i.e., p = 0, q = 0) to be the grid point closest to x.
Then

xl − x = (Np+ q)∆ + η, (21)
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where −∆/2 6 η 6 ∆/2. That is, x+ η is the grid point closest to x. This leads to
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1
N

∞∑

p=−∞

N−1∑

q=0

ω(xl − x) e2πi(q+η/∆)(j−j′)/N

=

N−1∑

q=0

λq+η/∆ψ
(q+η/∆)
j ψ

(q+η/∆)∗
j′ , (22)

where

λq+η/∆ =

∞∑

p=−∞

ω
(
[Np+ q + η/∆]∆

)
(23)

and

ψ
(q+η/∆)
j =

√
1
N

e2πi(q+η/∆)j/N . (24)

The quantity ψ(q+η/∆)
j can be taken as the jth component of an orthonormal basis set

of N vectors indexed on q. That is,
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j ψ

(q̄+η/∆)
j = δq,q̄, (25)

which is a standard result from Fourier theory. From this point of view, equation (22)
simply gives an expression for the Cjj′ matrix element of C(η) in its spectral repre-
sentation. (Here we have indicated explicitly that the matrix is a function of η.) From
this it follows immediately that
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and, further, from equation (18) that
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The sum over j′ here produces the Kronecker delta δqq′ , where
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Summing over q then leads to

bj(η) =

∞∑
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1
λq′+η/∆

ω(xl′ − x)ψ(q′+η/∆)
j f (xl′), (29)

which is the desired variational expression for the expansion coefficients. Finally, from
equations (10), (13) and (19) we have that

fDAF(x) =
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N
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λq′+η/∆

[
sin(πη/∆)

N sin(π(q′ + η/∆)/N )

]
ω(xl′ − x)f (xl′), (30)

which is the formal-DAF expression without approximation.
If f (x) is periodic with period N∆, then f (xl′) depends only on q′ (i.e., not on

p′), and the final result of equation (30) reduces to

N−1∑

q′=0

(−1)q
′

[
sin(πη/∆)

N sin(π(q′ + η/∆)/N )

]
f
(
q′∆ + η + x

)
, (31)

where we have made use of equations (21) and (23). (Recall that x+η is the grid point
closest to x.) This is just the standard Fourier approximation to a periodic function
known on N equally spaced grid points. It is interpolative (i.e., fDAF(xl) = f (xl),
where xl is any grid point and, hence, for which η = 0). This is, of course, the
anticipated result for a least-squares fit of a periodic function using a Fourier basis.

If f (x) is not periodic, then fDAF(x) is nowhere exact (unless accidentally so),
and, in particular, the DAF approximation is not interpolative. The quantity f (q′∆ +

η + x) in equation (31) is replaced by

f̄q′ =

∞∑

p′=−∞

ω(xl′ − x)
λq′+η/∆

f (xl′), (32)

which is a weight average across the infinite grid of functional values on grid points
separated by multiples of N∆.

It is clear that the DAF approximation of equation (30) (being basically a Fourier
sum) suffers from the principal drawback of the Fourier representation, namely that the
approximation is not tightly banded. That is (off the grid), all of the N values of f̄q
contribute more or less equivalently to the approximation. Said another way, each
grid point contributes through the normalized probability ω(xl − x)/λq+η/∆, which
falls off much more slowly than ω(xl − x) itself as q is varied. To introduce a more
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tightly banded DAF representation of the function, we now assume that C(η) can be
effectively replaced by a matrix that is independent of η. In so doing we, of course,
ignore variations in C(η) over the distance of the grid spacing. There are various ways
that this can be done. In previous studies, where we employed a polynomial basis set
rather than the circular functions of equation (19), it proved convenient to replace
C(η) by its average. This allowed us to use the properties of orthogonal polynomials
to construct the corresponding approximation to C−1. We referred to the resulting
representation of the function as well-tempered, because it has the property that for
functions where the approximation is applicable (so-called DAF-class functions) the
fit is of comparable accuracy both on and off the grid. In contrast, in the present case
it is convenient to make an η-independent approximation to C(η) for which the grid
points are special.

The idea is that, as N becomes large and the grid spacing becomes small in
such a way that N∆ is held constant, every point becomes effectively a grid point
(assuming continuity of the function to be fit). Then, to controllable accuracy we can
replace C(η) by C(η = 0) to obtain

(
C−1)

jj′
≈
∑

q

1
λq
ψ(q)
j ψ(q)∗

j′ , (33)
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e−2πi(x
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where L = N∆. The applicability of this approximation depends of course on the
appropriate choice of the DAF parameters, which has been discussed elsewhere. The
sum can be written in terms of the M th order Dirichlet kernel, DM (y), defined by

DM (y) =
1
π

[
1
2

+

M∑

k=1

cos(ky)

]
=

sin[(M + 1/2)y]
2π sin(y/2)

, (36)

which leads to the expression

fDAF(x) =
2π∆
λ0L
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ω(xl′ − x)D(N−1)/2

(
2π(xl′ − x)

L

)
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This result is parameterized by the three quantities L, N (which are related by the grid
spacing ∆) and σ (see the form of ω of equation (12)).

Since our approximation C(η) ≈ C(η = 0) is exact on the grid, this approx-
imation is interpolative for functions that are periodic on a domain of length L. If
we take limit N → ∞ and L → ∞ in such a way that ∆ = L/N is fixed, then the
approximation assumes the sine-DAF form

fDAF(x) =
∆

2π

∞∑

l′=−∞

ω(xl′ − x)
sin(2π(xl′ − x)/∆)

(xl′ − x)
f (xl′), (38)

where we have used the fact that λ0 = 1 in this limit. This result is interpolative on
all grid points.

3. Conclusions

We have shown that the variational principle used earlier for generating non-
interpolating DAFs (which could be used to generate associated wavelets) can also be
used to derive interpolating DAFs, with a Gaussian weight, that were first obtained
by multiplying various interpolation shells with a Gaussian, which regularized the
function (making it infinitely differentiable) and ensured that it decays rapidly both
in physical and Fourier space. We therefore conclude that the interpolating and non-
interpolating DAFs are very closely related, corresponding to different ways of solving
the moving least-squares variational algebraic equations. This result complements
the earlier procedure used to construct the interpolating DAFs and provides another
framework in which to develop robust approximation and estimation algorithms. Both
the interpolating and non-interpolating DAFs, of course, have been shown previously
to be computationally robust [1,3,4,6,7,11–15,17].
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