13. (20 points) If a total of $300 \mathrm{~cm}^{2}$ of material is to be used to make a box with a square base and an open top, find the largest volume of such a box.

Solution:

Consider the picture to the right. We are trying to maximize

$$
\text { Volume }=V=x^{2} y
$$

The restricting equation is surface area:

$$
\begin{aligned}
\text { Surface Area } & =300 \\
4 x y+x^{2} & =300 \\
y & =\frac{300-x^{2}}{4 x}
\end{aligned}
$$

Giving a volume equation of one variable:

$$
V(x)=\frac{1}{4}\left(300 x-x^{3}\right) \quad \text { with } x \in(0,10 \sqrt{3})
$$

To maximize lets find critical points:

$$
\begin{gathered}
V^{\prime}(x)=\frac{1}{4}\left(300-3 x^{2}\right) \\
0 \frac{1}{4}\left(300-3 x^{2}\right) \\
x^{2}=100 \\
x=10
\end{gathered}
$$

(Never undefined so set to 0 .)

We verify that $x=10$ is a max since:

Giving the largest volume of

$$
V(10)=\frac{1}{4}\left(300(10)-(10)^{3}\right)=\frac{1}{4}(2000)=500 \mathrm{~cm}^{3}
$$

