
Math 132 Mean Value Theorem Stewart §3.2

Vanishing derivatives. We will prove some basic theorems which relate the
derivative of a function with the values of the function, culminating in the
Uniqueness Theorem at the end. The first result is:

Rolle’s Theorem: If f(x) is continuous on a closed interval x ∈ [a, b]
and differentiable on the open interval x ∈ (a, b), and f(a) = f(b),
then there is some point c ∈ (a, b) with f ′(c) = 0.

Here x ∈ [a, b] means a ≤ x ≤ b, and x ∈ (a, b) means a < x < b. See the graph
at left for an example: no matter how the curve wiggles, it must be horizontal
somewhere.

Physically, suppose f(t) represents the height of a moving object at time t,
starting and finishing at the same position over the time interval t ∈ [a, b]. The
theorem says there must be a pause in the motion where f ′(t) = 0: this is when
the object doubles back toward its start.

Proof of Theorem. Assume f(x) satisfies the hypotheses∗ of the Theorem. The
Extremal Value Theorem (§3.1) guarantees that the continuous function f(x)
has at least one absolute maximum point x = c1 ∈ [a, b].

• If c1 6= a, b, then c1 ∈ (a, b), and the First Derivative Theorem (§3.1) says
that f ′(c1) = 0.

• On the other hand, if c1 = a or b, then f(c1) = f(a) = f(b). Still, f(x)
also has an absolute minimum point x = c2. If c2 ∈ (a, b), then f ′(c2) = 0
as before.

• The only case left is if c1 = a or b, and also c2 = a or b, so that f(c1) =
f(c2) = f(a) = f(b). Since the maximum and minimum values are the
same, f(x) cannot move above or below f(a). Thus, f(x) can only be a
constant function, and f ′(c) = 0 for all c ∈ (a, b).

In every case, the conclusion† holds, Q.E.D.‡

∗In formal mathematics, hypothesis (plural hypotheses) means the “if” part of a theorem,
the setup which is given or assumed. In our theorem, the three hypotheses are: f(x) is
continuous on [a, b], f(x) is differentiable on (a, b), and f(a) = f(b).
†Conclusion means the “then” part of a theorem, the payoff which is to be deduced from

the hypothesis: in our theorem, that f ′(c) = 0.
‡Initials for Latin quod erat demonstrandum meaning “which was to be shown”, the tradi-

tional end of a proof.



For Rolle’s Theorem, as for most well-stated theorems, all the hypotheses
are necessary to be sure of the conclusion. In the graph at right above, y = g(x)
has a corner and g′(1) does not exist, so just one hypothesis fails at just one
point. But already the conclusion is false: g′(c) = 1 for c < 1 and g′(c) = −1
for c > 1, but nowhere is g′(c) = 0. In physical terms, the velocity jumps
instantaneously from 1 to −1 like an idealized ping-pong ball, and there is no
well-defined velocity at the moment of impact.

Derivatives versus difference quotients. Throughout our theory, the
derivative f ′(a) has been shadowed by the difference quotient, which across

an interval [a, b] is ∆f
∆x = f(b)−f(a)

b−a . Numerically, the difference quotient is an

approximation to the derivative: df
dx ≈

∆f
∆x . In physical terms, the difference

quotient is the average rate of change of f(x) over the interval x ∈ [a, b]. Geo-
metrically in terms of the graph y = f(x), the difference quotient is the slope
of the secant line cutting through the points (a, f(a)) and (b, f(b)).

Now we come to the most powerful result of this section, which says that
the derivative is sometimes exactly equal to the difference quotient.

Mean Value Theorem (MVT): If f(x) is continuous on a closed in-
terval x ∈ [a, b] and differentiable on the open interval x ∈ (a, b),

then there is some point c ∈ (a, b) with f ′(c) = f(b)−f(a)
b−a .

See the picture below for an example: as the graph rises from (a, f(a)) to
(b, f(b)), at some points the tangent line must be parallel to the secant line.

Note that Rolle’s Theorem is the special case of MVT in which the secant line
is horizontal. In fact, we will prove MVT for a general f(x) by cooking up a
new function g(x) for which Rolle’s Theorem applies, then translating Rolle’s
conclusion back in terms of f(x).

Proof of MVT. Suppose f(x) satisfies the hypotheses. Then define a new func-
tion g(x), shown in the picture, which measures the height from the graph

y = f(x) down to the secant line y = f(a) + f(b)−f(a)
b−a (x−a):

g(x) = f(x)− f(a)− f(b)−f(a)
b−a (x−a).



Then g(x) is continuous on [a, b] by the Limit Laws (§1.6), and differentiable
on (a, b) by the Derivative Rules (§2.3). In fact,

g′(x) = f ′(x)− 0− f(b)−f(a)
b−a (1−0) = f ′(x)− f(b)−f(a)

b−a ,

since f(a) and f(b)−f(a)
b−a are constants (having no x in them).

Also, we can easily compute that g(a) = g(b) = 0, so all the hypotheses of
Rolle’s Theorem hold for g(x). Thus the conclusion of Rolle’s Theorem also
holds: there is some c ∈ (a, b) with g′(c) = 0. That is,

g′(c) = f ′(c)− f(b)−f(a)
b−a = 0,

which means f ′(c) = f(b)−f(a)
b−a , Q.E.D.

The Mean Value Theorem does not give any way to find the particular c ∈ (a, b)
in the conclusion, so if we want this value in a particular case, we must solve
for x in the equation f ′(x) = f(b)−f(a)

b−a ; however the Theorem will guarantee
that there is some solution.

example: Let f(x) = 5
√
x− x

√
x over the interval [a, b] = [0, 4].

To check the hypotheses of MVT, note that
√
x is continuous for all x ≥ 0, and

thus over [0, 4]. As for differentiability:

f ′(x) =
(

5x1/2 − x3/2
)′

= 5
2x
−1/2 − 3

2x
1/2

is defined for x > 0, and hence over x ∈ (0, 4): the hypothesis allows f ′(a) =
f ′(0) to be undefined. Thus we conclude there must be some c ∈ (0, 4) with

f ′(c) = f(b)−f(a)
b−a = 2−0

4−0 = 1
2 . That is, we must solve:

f ′(x) = 5
2x
−1/2 − 3

2x
1/2 = 1

2 ,

which is equivalent to 3x+
√
x− 5 = 0. Substituting the variable u =

√
x gives

3u2 + u− 5 = 0, so the Quadratic Formula gives:

u =
√
x =

−1±
√

12−4(3)(−5)

2(3) = −1±
√

61
6 .

The negative solution is impossible, and the positive one gives x = c =
(√

61−1
6

)2
≈

1.29, which agrees with the picture.



Mathematical and physical uniqueness. We come to the most important
result of this section:

Uniqueness Theorem:

(a) If f(x) is differentiable and f ′(x) = 0 for all x ∈ (a, b), then f(x) = C is
a constant function.

(b) If f(x), g(x) are differentiable and f ′(x) = g′(x) for all x ∈ (a, b), then
f(x) = g(x) + C for some constant C.

(c) If f(x), g(x) are differentiable and f ′(x) = g′(x) for all x ∈ (a, b), and
also f(c) = g(c) for some c ∈ (a, b), then f(x) = g(x).

Proof. (a) Assume the hypothesis f ′(x) = 0 for all x ∈ (a, b), and imagine,
contrary to the conclusion, that f(x) were not a constant function. Then we
would have two unequal values f(a1) 6= f(b1) for some a1, b1 ∈ [a, b], and we
could apply the Mean Value Theorem to the smaller interval [a1, b1] to get

f ′(c) = f(b1)−f(a1)
b1−a1 6= 0, since f(b1)− f(a1) 6= 0. But this would be impossible,

since we assumed f ′(c) = 0 for all c ∈ (a, b). Hence, f(x) cannot be non-
constant, and must be constant.

(b) Assume the hypothesis f ′(x) = g′(x) for all x ∈ (a, b). Now the function
h(x) = f(x)− g(x) has h′(x) = f ′(x)− g′(x) = 0, so we can apply part (a) to
conclude that h(x) is a constant function, h(x) = f(x) − g(x) = C, meaning
f(x) = g(x) + C for some consant C.

(c) In the situation of (b), we also assume f(c) = g(c). By (b), we know
f(x) = g(x) +C and C = f(x)−g(x) for all x. In particular for x = c, we have
C = f(c)− g(c) = 0, so f(x) = g(x) + C = g(x), Q.E.D.

To see the significance of this theorem, recall from §2.7 the Ballistic Equa-
tion s(t) = s0 + v0t− 1

2gt
2, which gives the height s(t) of an object thrown

straight up from initial height s0 at initial velocity v0, under the influence
of constant gravitational acceleration −g. We verified that the derivative
s′(t) = v0 − gt gives the expected velocity: decreasing from v0 at a constant
rate of g.

But does this guarantee we have the correct function s(t)? What if there
were some other function s̃(t) with the same derivative s̃′(t) = s′(t) and the
same initial value s̃(0) = s(0)? Then s̃(t) would be just as good a candidate to
give the height of the object, and our mathematical theory would not produce
a clear physical prediction. However, the Uniquenss Theorem (c) shows that
s̃(t) = s(t), so the other solution could only be the same as the original solution.

Experiment shows that objects launched in exactly the same way always fly
the same way, not according to s(t) in some experiments and a different s̃(t) in
other experiments. This is what we mean by physical law. Our Theorem shows
that the mathematical solution has the same uniqueness as the experimental
result.§

§The theory of quantum mechanics, however, which explains atomic-scale phenomena,
goes beyond the framework of deterministic laws, incorporating randomness in an essential
way. It requires a yet higher mathematical theory, in which we apply calculus not to specific
positions, but to probability distributions on all possible positions.
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The goal of this problem is to show that the function 

satisfies both of the conditions (the hypotheses) and the conclusion of the

Mean Value Theorem for  in the interval .

Verification of Hypotheses: Fill in the blanks to show that the hypotheses

of the Mean Value Theorem are satisfied:

 is  on  and is  on 

. (The answer in each box should be one word.)

Verification of the Conclusion: If the hypotheses of the Mean Value

Theorem are satisfied, then there is at least one  in the interval 

for which

.

Verify that the conclusion of the Mean Value Theorem holds by computing

  .

Now find  in  so that  equals the answer you just found. (For

this problem there is only one correct value of .)

 

NOTE: On an exam you may be asked to state the Mean Value

Theorem (i.e., it may not be given to you), and to verify that a given

function satisfies the assumptions of the Mean Value Theorem.
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