MTH 930 HOMEWORK ASSIGNMENT 1

DUE SEPT. 13 IN CLASS

(1) Let $\left(\mathbb{S}^{n}, g_{0}\right)$ be the standard sphere. Let $\phi: \mathbb{S}^{n} \backslash\{N\} \rightarrow \mathbb{R}^{n}$ be the stereographic projection from the north pole $N=(0, \cdots, 0,1)$, i.e. for $\xi \in \mathbb{S}^{n} \backslash\{N\}$ the line joining N and ξ intersects the equator hyperplane $\xi_{n+1}=0$ at $\phi(\xi)$.

- Find explicitly ϕ and ϕ^{-1}.
- Show that

$$
\left(\phi^{-1}\right)^{*} g_{0}=\frac{4}{\left(1+|x|^{2}\right)^{2}} d x^{2}
$$

(2) In class we defined the hyperbolic space as

$$
\mathbb{H}^{n}=\left\{\xi \in \mathbb{R}^{n+1}: \xi_{n+1}=\sqrt{1+\sum_{i=1}^{n} \xi_{i}^{2}}\right\}
$$

in the Minkowski space $\mathbb{R}^{n, 1}$. Define the stereographic projection $\phi: \mathbb{H}^{n} \rightarrow$ $B^{n}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ as following: $\phi(\xi)$ is the intersection point of the line joining ξ and $-e_{n+1}$ with the hyperplane $\xi_{n+1}=0$.

- Find explicitly ϕ and ϕ^{-1} and show that $\phi: \mathbb{H}^{n} \rightarrow B^{n}$ is a diffeomorphism.
- Show that

$$
\left(\phi^{-1}\right)^{*} g_{0}=\frac{4}{\left(1-|x|^{2}\right)^{2}} d x^{2}
$$

B^{n} with the metric $\frac{4}{\left(1-|x|^{2}\right)^{2}} d x^{2}$ is called the conformal ball model of the hyperbolic space.
(3) Let $\pi: E \rightarrow M$ be a vector bundle over a smooth manifold. Recall that a connection on E is a map

$$
\nabla: \Gamma(M) \times \Gamma(E) \rightarrow \Gamma(E)
$$

satisfying

- for any $X_{1}, X_{2} \in \Gamma(M), f_{1}, f_{2} \in C^{\infty}(M)$ and $\sigma \in \Gamma(E)$

$$
\nabla_{f_{1} X_{1}+f_{2} X_{2}} \sigma=f_{1} \nabla_{X_{1}} \sigma+f_{2} \nabla_{X_{2}} \sigma
$$

- $\nabla_{X}(f \sigma)=X f \sigma+f \nabla_{X} \sigma$.
- $\nabla_{X}\left(\sigma_{1}+\sigma_{2}\right)=\nabla_{X} \sigma_{1}+\nabla_{X} \sigma_{2}$.

Prove
(a) If X vanishes at a point p, so does $\nabla_{X} \sigma$. Therefore for $v \in T_{p} M, \sigma \in$ $\Gamma(E)$, we can define $\nabla_{v} \sigma \in E_{p}$.
(b) If σ vanishes in a neighborhood of p, then $\nabla_{v} \sigma=0$ for any $v \in$ $T_{p} M$. Therefore we can define $\nabla_{v} \sigma$ if σ is only a smooth section on a neighborhood of p.
(4) Exercise 1.6.24 on Page 38 of Petersen's book.
(5) Let g be a Riemannian metric on M and $\widetilde{g}=e^{2 f} g$ another metric conformal to g, where f is a smooth function on M. Given the relation between the Levi-Civita connection ∇ of g and the Levi-Civita connection $\widetilde{\nabla}$ of \widetilde{g}.

