MTH 930 HOMEWORK ASSIGNMENT 2

DUE SEPT. 22 IN CLASS

In all the problems, we work on a Riemannian manifold (M^n, g) .

- (1) Let X be a vector field. Its divergence is defined by $\operatorname{div} X = tr \nabla X$. For a smooth function f its gradient is the vector field ∇f s.t. $\langle \nabla f, \cdot \rangle = df$. The Laplace operator is defind by $\Delta f = \text{div}\nabla f$. Prove the following formulas in local coordinates.

 - $\nabla f = g^{ij} \frac{\partial f}{\partial x_j} \frac{\partial}{\partial x_i}$. If we write $X = a^i \frac{\partial}{\partial x_i}$, then

$$\operatorname{div} X = \frac{1}{\sqrt{G}} \frac{\partial}{\partial x_i} \left(\sqrt{G} a^i \right),$$

where $G = \det[g_{ij}]$.

$$\Delta f = \frac{1}{\sqrt{G}} \frac{\partial}{\partial x_i} \left(\sqrt{G} g^{ij} \frac{\partial f}{\partial x_j} \right)$$

- (2) Exercises 2.65 on P75 of Gallot-Hulin-Lafontaine.
- (3) Suppose M is oriented. Then there is a natural volume form Ω on M s.t. for any positive orthonormal basis $\{e_1, \dots, e_n\}$ of T_pM

$$\Omega\left(e_1,\cdots,e_n\right)=1$$

• Prove that in a positive local chart

$$\Omega = \sqrt{G} dx_1 \wedge \dots \wedge dx_n.$$

• Prove that for any C^1 vector field X

$$\operatorname{div} X = di_X \Omega / \Omega,$$

- (4) Consider the Riemannian metric $g = f(r)^2 dx^2$ on some open set $U \subset$ $\mathbb{R}^n \setminus \{0\}$, where f is a smooth and positive function of $r = \sqrt{x_1^2 + \cdots + x_n^2}$. Calculate the connection and curvature explicitly. Check your answer on the following examples: $f = \frac{2}{1+r^2}$ (the sphere) and $f = \frac{2}{1-r^2}$ (the hyperbolic space).
- (5) Suppose $\phi: (M,g) \to (M',g')$ is an isometry. For vector fields X, Y, \cdots on M, let $X' = \phi_* X, Y' = \phi_* Y, \cdots$ be the corresponding vector fields on M'. Prove

 - $\phi_*(\nabla_X Y) = \nabla'_{X'} Y'.$ $R'(X', Y', Z', W') = R(X, Y, Z, W) \circ \phi.$