MTH 930 HOMEWORK ASSIGNMENT 3

DUE SEPT. 29 IN CLASS

In all the problems, we work on a Riemannian manifold (M^n, g) .

- Exercises 2.65 on P75 of Gallot-Hulin-Lafontaine. (If you didn't do it on HW2)
- (2) Let $f \in C^{\infty}(M)$ and $\gamma : [0, l] \to M$ a geodesic. Show that

$$\frac{d^{2}}{dt^{2}}f\circ\gamma\left(t\right)=D^{2}f\left(\dot{\gamma}\left(t\right),\dot{\gamma}\left(t\right)\right).$$

- (3) Let Σ^k be a smooth manifold and $\phi : \Sigma^k \to M$ a smooth map. Let $\Gamma(\phi^*TM)$ be the space of vector fields along ϕ . We defined the induced connection ∇ on $\Gamma(\phi^*TM)$ (vector fields along ϕ) satisfying
 - for any vector field V along ϕ and any $f \in C^{\infty}(\Sigma)$

$$\nabla \left(fV\right) = df\otimes V + f\nabla V.$$

• for any vector fields V, W along ϕ and for any $\xi \in T\Sigma$

$$\xi \langle V, W \rangle = \langle \nabla_{\xi} V, W \rangle + \langle V, \nabla_{\xi} W \rangle.$$

• for any $X, Y \in \Gamma(T\Sigma)$

$$\nabla_X \left(\phi_* Y \right) - \nabla_Y \left(\phi_* X \right) = \phi_* \left[X, Y \right].$$

Prove that for $X, Y \in \Gamma(T\Sigma)$ and for any vector field V along ϕ

$$-\nabla_X \nabla_Y V + \nabla_Y \nabla_X V + \nabla_{[X,Y]} V = R\left(\phi_* X, \phi_* Y\right) V,$$

where R is the curvature tensor of (M^n, g) .

(4) (Gauss equation) Suppose $\Sigma^k \subset M$ is a submanifold. Recall that for $X, Y \in \Gamma(T\Sigma)$ we have the orthogonal decomposition $\nabla_X Y = \nabla_X^{\Sigma} Y + \Pi(X, Y)$, where $\nabla_X^{\Sigma} Y$ is the Levi-Civita connection of $(\Sigma, g|_{\Sigma})$ and Π is the second fundamental form of Σ in M. Prove that for $X, Y, Z, W \in \Gamma(T\Sigma)$

$R(X, Y, Z, W) = R^{\Sigma}(X, Y, Z, W) - \langle \Pi(X, Z), \Pi(Y, W) \rangle + \langle \Pi(X, W), \Pi(Y, Z) \rangle.$

Calculate the curvature of S^n using the above formula.

- (5) Prove the hyperbolic space is complete. (You can use any of the equivalent models.)
- (6) Let (M^n, g) be a complete Riemannian manifold and X a bounded vector field (i.e. there exists C > 0 s.t. $|X| \leq C$ on M). Prove that X generates a global flow, i.e. every integral curve of X is defined on \mathbb{R} .