MTH 930 HOMEWORK ASSIGNMENT 4

DUE OCT. 11 IN CLASS

(1) Let $\left(M^{n}, g\right)$ be a Riemannian manifold. For $p \in M$, pick $\delta>0$ s.t. $\exp _{p}$: $B_{\delta} \rightarrow B(p, \delta)$ is a diffeomorphism, where

$$
B_{\delta}=\left\{v \in T_{p} M:|v|<\delta\right\}, B(p, \delta)=\{q \in M: d(p, q)<\delta\}
$$

Let $\left\{e_{i}\right\}$ be an orthonormal basis for $T_{p} M$ and $\phi: \mathbb{R}^{n} \rightarrow T_{p} M$ the isometry $\phi(x)=\sum_{i} x_{i} e_{i}$. We can introduce a local chart $\Phi: B(p, \delta) \rightarrow \mathbb{R}^{n}$ by $x=\Phi(q)=\phi^{-1} \circ \exp _{p}^{-1}(q)$. Write $g=g_{i j}(x) d x_{i} \otimes d x_{j}$ in these coordinates. Prove

- $g_{i j}(0)=\delta_{i j}, \Gamma_{i j}^{k}(0)=0 ;$
- $g_{i j}(x) x_{j}=x_{i}$.
(Hint: $t \rightarrow\left(t x_{1}, \cdots, t x_{n}\right)$ is a geodesic.)
(2) Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold \widetilde{g} another metric on M s.t. $\widetilde{g} \geq g$, i.e. for any $X \in T M, \widetilde{g}(X, X) \geq g(X, X)$. Show that (M, \widetilde{g}) is also complete.
(3) Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold and $K \subset M$ a closed subset. The distance from K to $p \in M$ is defined as

$$
d(p, K):=\inf \{d(p, q): q \in K\}
$$

- Prove the infimum is achieved at some point $\bar{q} \in K$.
- Further assume that K is a submanifold. Let $\gamma:[0, l] \rightarrow M$ be a minimizing geodesic from p to \bar{q}. Prove that $\gamma^{\prime}(l) \perp T_{\bar{q}} K$
(4) Consider the conformal ball model of the hyperbolic space: B^{n} with $g=$ $\frac{4}{\left(1-|x|^{2}\right)^{2}} d x^{2}$. Prove

$$
d(0, x)=\log \frac{1+|x|}{1-|x|}
$$

(5) Let $\left(M^{n}, g\right)$ be a Riemannan manifold with sec $\leq \kappa$. Let $\gamma:[0, l] \rightarrow M$ be a unit-speed geodesic and J a normal Jacobi field along γ with $J(0)=$ $0,|\dot{J}(0)|=1$. Suppose $J(t) \neq 0$ for all $t \in(0, l]$. Prove

$$
|J(t)| \geq\left\{\begin{array}{cl}
\frac{\sin \sqrt{\kappa} t}{\sqrt{\kappa}} & \text { if } \kappa>0 \\
t & \text { if } \kappa=0 \\
\frac{\sinh \sqrt{-\kappa} t}{\sqrt{-\kappa}} & \text { if } \kappa<0
\end{array}\right.
$$

(Hint: inspect the proof of the Cartan -Hardamard theorem where the case $\kappa=0$ is proved.)

