MTH 930 HOMEWORK ASSIGNMENT 4

DUE OCT. 11 IN CLASS

(1) Let (M^n, g) be a Riemannian manifold. For $p \in M$, pick $\delta > 0$ s.t. \exp_p : $B_{\delta} \to B(p, \delta)$ is a diffeomorphism, where

$$B_{\delta} = \{ v \in T_{p}M : |v| < \delta \}, B(p, \delta) = \{ q \in M : d(p, q) < \delta \}.$$

Let $\{e_i\}$ be an orthonormal basis for T_pM and $\phi: \mathbb{R}^n \to T_pM$ the isometry $\phi(x) = \sum_{i} x_{i} e_{i}$. We can introduce a local chart $\Phi : B(p, \delta) \to \mathbb{R}^{n}$ by $x = \Phi(q) = \phi^{-1} \exp_{p}^{-1}(q)$. Write $g = g_{ij}(x) dx_{i} \otimes dx_{j}$ in these coordinates. Prove

- $g_{ij}(0) = \delta_{ij}, \Gamma^k_{ij}(0) = 0;$ $g_{ij}(x) x_j = x_i.$
- (Hint: $t \to (tx_1, \cdots, tx_n)$ is a geodesic.)
- (2) Let (M^n, g) be a complete Riemannian manifold \tilde{g} another metric on Ms.t. $\widetilde{g} \geq g$, i.e. for any $X \in TM$, $\widetilde{g}(X, X) \geq g(X, X)$. Show that (M, \widetilde{g}) is also complete.
- (3) Let (M^n, q) be a complete Riemannian manifold and $K \subset M$ a closed subset. The distance from K to $p \in M$ is defined as

$$d(p,K) := \inf \left\{ d(p,q) : q \in K \right\}.$$

- Prove the infimum is achieved at some point $\overline{q} \in K$.
- Further assume that K is a submanifold. Let $\gamma : [0, l] \to M$ be a minimizing geodesic from p to \overline{q} . Prove that $\gamma'(l) \perp T_{\overline{q}}K$
- (4) Consider the conformal ball model of the hyperbolic space: B^n with g = $\frac{4}{(1-|x|^2)^2}dx^2$. Prove

$$d(0,x) = \log \frac{1+|x|}{1-|x|}.$$

(5) Let (M^n, g) be a Riemannan manifold with sec $\leq \kappa$. Let $\gamma : [0, l] \to M$ be a unit-speed geodesic and J a normal Jacobi field along γ with J(0) = $0, \left| \stackrel{\cdot}{J}(0) \right| = 1.$ Suppose $J(t) \neq 0$ for all $t \in (0, l]$. Prove

$$|J(t)| \ge \begin{cases} \frac{\sin\sqrt{\kappa}t}{\sqrt{\kappa}} & \text{if } \kappa > 0, \\ t & \text{if } \kappa = 0, \\ \frac{\sinh\sqrt{-\kappa}t}{\sqrt{-\kappa}} & \text{if } \kappa < 0. \end{cases}$$

(Hint: inspect the proof of the Cartan -Hardamard theorem where the case $\kappa = 0$ is proved.)