MTH 930 HOMEWORK ASSIGNMENT 6

1. Find the distance on the sphere \mathbb{S}^{n} with the standard metric.
2. Let (M, g) be a complete Riemannian manifold. A ray is a unit-speed geodesic $\gamma:[0, \infty) \rightarrow M$ s.t. for all $t>0,\left.\gamma\right|_{[0, t]}$ is mininimizing. Prove that M is noncompact iff $\forall p \in M$ there is a ray starting from p.
3. Let (M, g) be a complete Riemannian manifold with sec ≤ 0. Then for a Jacobi field $Y(t)$ along a geodesic γ with $Y(0)=0$, show that

$$
|\dot{Y}(0)| \leq \frac{|Y(t)|}{t}, t \geq 0
$$

4. In class we have focused on the distance function $\rho(x)=d(x, p)$ to a fixed point p. Much of the theory can be extended to the case when p is replaced by a submanifold. You will work out the details of the fundation in this problem. Let Σ^{k} be a closed submanifold of the Riemannian manifold M^{n}. Consider a unit-speed geodesic $\gamma:[0, L] \rightarrow M$ with $p=\gamma(0) \in \Sigma$ and $\xi=\dot{\gamma}(0) \in\left(T_{p} \Sigma\right)^{\perp}$. A Jacobi field J along γ is called a Σ-Jacobi field if

$$
J(0) \in T_{p} \Sigma, \dot{J}(0)-A_{\xi} J(0) \in\left(T_{p} \Sigma\right)^{\perp}
$$

where A_{ξ} denotes the shape operator of Σ with respect to the normal vector ξ, i.e. for $X \in T_{p} \Sigma, A_{\xi} X=\left(\nabla_{X} \xi\right)^{T}$ (it is the second fundamental form of Σ in disguise). Define
$\mathfrak{V}=\left\{\right.$ piecewise smooth vector fields X along γ s.t. $\left.X \perp \dot{\gamma}, X(0) \in T_{p} \Sigma\right\}$.
On \mathfrak{V} we consider the the following symmetric, bilinear form, called the index form

$$
I(X, Y)=\left\langle A_{\xi} X(0), Y(0)\right\rangle+\int_{0}^{L}[\langle\dot{X}, \dot{Y}\rangle-R(\dot{\gamma}, X, \dot{\gamma}, Y)] d t
$$

For $a>0, \gamma(a)$ is called a focal point along γ if there is a Σ-Jacobi field J along γ with $J(a)=0$. Show that

- $\gamma(a)$ is a focal point iff it is a singular value of $\exp :(T \Sigma)^{\perp} \rightarrow M$.
- Suppose there is no focal point on γ. Then for any $X \in \mathfrak{V}$, there is a unique Σ-Jacobi field J s.t. $J(L)=X(L)$. Moreover

$$
I(J, J) \leq I(X, X)
$$

and equality holds iff $X=J$.

[^0]
[^0]: Date: Due on Nov. 8.

