MTH 930 HOMEWORK ASSIGNMENT 6

1. Find the distance on the sphere \mathbb{S}^n with the standard metric.

2. Let (M, g) be a complete Riemannian manifold. A ray is a unit-speed geodesic $\gamma : [0, \infty) \to M$ s.t. for all t > 0, $\gamma|_{[0,t]}$ is minimizing. Prove that M is noncompact iff $\forall p \in M$ there is a ray starting from p.

3. Let (M, g) be a complete Riemannian manifold with sec ≤ 0 . Then for a Jacobi field Y(t) along a geodesic γ with Y(0) = 0, show that

$$\left| \dot{Y}(0) \right| \le \frac{\left| Y(t) \right|}{t}, t \ge 0.$$

4. In class we have focused on the distance function $\rho(x) = d(x, p)$ to a fixed point p. Much of the theory can be extended to the case when p is replaced by a submanifold. You will work out the details of the fundation in this problem. Let Σ^k be a closed submanifold of the Riemannian manifold M^n . Consider a unit-speed geodesic $\gamma: [0, L] \to M$ with $p = \gamma(0) \in \Sigma$ and $\xi = \dot{\gamma}(0) \in (T_p \Sigma)^{\perp}$. A Jacobi field J along γ is called a Σ -Jacobi field if

$$J(0) \in T_p\Sigma, J(0) - A_{\xi}J(0) \in (T_p\Sigma)^{\perp},$$

where A_{ξ} denotes the shape operator of Σ with respect to the normal vector ξ , i.e. for $X \in T_p \Sigma$, $A_{\xi} X = (\nabla_X \xi)^T$ (it is the second fundamental form of Σ in disguise). Define

 $\mathfrak{V} = \left\{ \text{piecewise smooth vector fields } X \text{ along } \gamma \text{ s.t. } X \perp \gamma, X(0) \in T_p \Sigma \right\}.$

On \mathfrak{V} we consider the following symmetric, bilinear form, called the index form

$$I(X,Y) = \langle A_{\xi}X(0), Y(0) \rangle + \int_{0}^{L} \left[\left\langle \dot{X}, \dot{Y} \right\rangle - R\left(\dot{\gamma}, X, \dot{\gamma}, Y \right) \right] dt.$$

For a > 0, $\gamma(a)$ is called a focal point along γ if there is a Σ -Jacobi field J along γ with J(a) = 0. Show that

- $\gamma(a)$ is a focal point iff it is a singular value of $\exp:(T\Sigma)^{\perp} \to M$.
- Suppose there is no focal point on γ . Then for any $X \in \mathfrak{V}$, there is a unique Σ -Jacobi field J s.t. J(L) = X(L). Moreover

$$I(J,J) \le I(X,X),$$

and equality holds iff X = J.

Date: Due on Nov. 8.