BASIC FACTS ON CONNECTION AND CURVATURE

XIAODONG WANG

1. General theory

Let M^{n} be a smooth manifold and $\pi: E \rightarrow M$ a rank r vector bundle over M.
Definition 1. A connection is a linear map $\nabla: \Gamma(E) \rightarrow \Gamma\left(T^{*} M \otimes E\right)$ s.t. for $f \in C^{\infty}(M), \sigma \in \Gamma(E)$

$$
\nabla(f \sigma)=d f \otimes \sigma+f \nabla \sigma
$$

If X is a vector field on M, we let $\left.\nabla_{X} \sigma=X\right\lrcorner \nabla \sigma$.
First note that a connection is local: if $\sigma \in \Gamma(E)$ vanishes on an open set U, then $\nabla \sigma$ also vanishes on U. Indeed, for any open V with $\bar{V} \subset U$ compact we can find $\chi \in C_{c}^{\infty}(U)$ s.t. $\chi \equiv 1$ on \bar{V}. Then we have $\sigma=(1-\chi) \sigma$ and

$$
\nabla \sigma=-d \chi \otimes \sigma+(1-\chi) \nabla \sigma
$$

It follows that $\nabla \sigma=0$ on V. Therefore, if two sections $\sigma_{1}, \sigma_{2} \in \Gamma(E)$ satisfy $\sigma_{1}=$ σ_{2} on U, then $\nabla \sigma_{1}=\nabla \sigma_{2}$ on U. Consequently, for any local section $\sigma \in \Gamma(U, E)$ we can define $\nabla \sigma \in \Gamma\left(U, T^{*} M \otimes E\right)$ by extension.

Given a local frame $\left\{e_{i}\right\}$ on some open set U, we can write

$$
\nabla e_{i}=\omega_{i}^{j} \otimes e_{j},
$$

with $\omega_{i}^{j} \in \mathcal{A}^{1}(U)$. Thus we get a matrix of 1 -forms

$$
\omega=\left[\begin{array}{ccc}
\omega_{1}^{1} & \cdots & \omega_{r}^{1} \\
\vdots & & \vdots \\
\omega_{1}^{r} & \cdots & \omega_{r}^{r}
\end{array}\right] .
$$

A local section σ on U can then be written as $\sigma=\sum_{i} f^{i} e_{i}$ with $f^{i} \in C^{\infty}(U)$. We have

$$
\nabla \sigma=\sum_{i}\left(d f^{i}+\omega_{j}^{i} f^{j}\right) \otimes e_{i}
$$

If we write $f=\left(f_{1}, \cdots, f_{r}\right)^{t}$ as a column vector, then the connection is locally given by the map

$$
f \rightarrow d f+\omega f
$$

If we use another local frame $\left\{\widetilde{e}_{i}\right\}$ on V, the connection is then determined by another matrix of 1-forms $\widetilde{\omega}$ on $V: \nabla \widetilde{e}_{i}=\widetilde{\omega}_{i}^{j} \otimes \widetilde{e}_{j}$. On $U \cap V$

$$
\widetilde{e}_{i}=a_{i}^{j} e_{j}
$$

with $A=\left[a_{i}^{j}\right] \in C^{\infty}(U \cap V, G L(r, \mathbb{R}))$. Then

$$
\nabla \widetilde{e}_{i}=\left(d a_{i}^{j}+a_{i}^{k} \omega_{k}^{j}\right) \otimes e_{j} .
$$

On the other hand, $\nabla \widetilde{e}_{i}=\widetilde{\omega}_{i}^{j} \otimes \widetilde{e}_{j}=\widetilde{\omega}_{i}^{k} a_{k}^{j} \otimes e_{j}$. Therefore

$$
\widetilde{\omega}_{i}^{k} a_{k}^{j}=d a_{i}^{j}+a_{i}^{k} \omega_{k}^{j},
$$

i.e. $A \widetilde{\omega}=d A+\omega A$. Or, equivalently

$$
\widetilde{\omega}=A^{-1} d A+A^{-1} \omega A
$$

Let $\mathcal{A}^{k}(E)=\Gamma\left(\Lambda^{k}(M) \otimes E\right)$ be the space of E-valued differential k-forms. We can extend the connection to $\nabla: \mathcal{A}^{k}(E) \rightarrow \mathcal{A}^{k+1}(E)$ as follows: given $\sigma \in$ $\mathcal{A}^{k}(U, E)$ we can write

$$
\sigma=\sum_{i} \theta^{i} \otimes e_{i}
$$

where $\theta^{i} \in \mathcal{A}^{k}(U)$. Then we define

$$
\begin{aligned}
\nabla \sigma & =\sum_{i} d \theta^{i} \otimes e_{i}+(-1)^{k} \theta^{i} \wedge \nabla e_{i} \\
& =\sum_{i}\left(d \theta^{i}+\omega_{k}^{i} \wedge \theta^{k}\right) \otimes e_{i}
\end{aligned}
$$

It is easy to verify this is well defined.
Proposition 1. Connections always exist. In fact, the set of all connections on a vector bundle $\pi: E \rightarrow M$ is an affine space over $\mathcal{A}^{1}(\operatorname{End} E)$.
Proof. Use a partition of unity.

Given $\sigma \in \mathcal{A}^{k}(U, E)$ we calculate

$$
\begin{aligned}
\nabla^{2} \sigma & =\sum_{i}\left[d\left(d \theta^{i}+\omega_{l}^{i} \wedge \theta^{l}\right)+\omega_{k}^{i} \wedge\left(d \theta^{k}+\omega_{l}^{k} \wedge \theta^{l}\right)\right] \otimes e_{i} \\
& =\sum_{i}\left[d \omega_{l}^{i}+\omega_{k}^{i} \wedge \omega_{l}^{k}\right] \wedge \theta^{l} \otimes e_{i} \\
& =\sum_{i} \Omega_{j}^{i} \wedge \theta^{j} \otimes e_{i}
\end{aligned}
$$

with $\Omega_{j}^{i}=d \omega_{j}^{i}+\omega_{k}^{i} \wedge \omega_{j}^{k}$. The matrix of 2-forms $\Omega=\left[\Omega_{i}^{j}\right]$ is called the curvature of the connection. We have

$$
\Omega=d \omega+\omega \wedge \omega .
$$

If we use another frame, then

$$
\begin{aligned}
\widetilde{\Omega} & =d \widetilde{\omega}+\widetilde{\omega} \wedge \widetilde{\omega} \\
& =d\left(A^{-1} d A+A^{-1} \omega A\right) \\
& +\left(A^{-1} d A+A^{-1} \omega A\right) \wedge\left(A^{-1} d A+A^{-1} \omega A\right) \\
& =A^{-1}(d \omega+\omega \wedge \omega) A \\
& =A^{-1} \Omega A .
\end{aligned}
$$

Therefore, the curvature $\Omega \in \mathcal{A}^{2}(\operatorname{End} E)$.

There is a natural induced connection on E^{*}. Let $\left\{e_{i}^{*}\right\}$ be the dual frame, i.e. $e_{i}^{*}\left(e_{j}\right)=\delta_{i j}$. Then

$$
0=\nabla e_{i}^{*}\left(e_{j}\right)+e_{i}^{*}\left(\nabla e_{j}\right)
$$

This implies $\nabla e_{i}^{*}=-\omega_{j}^{i} \otimes e_{j}^{*}$. If we denote the dual frame by $\left\{e^{i}\right\}$ instead, then

$$
\nabla e^{i}=-\omega_{j}^{i} \otimes e^{j}
$$

Therefore

$$
\nabla^{2} e^{i}=-\Omega_{j}^{i} \otimes e^{j}
$$

Definition 2. Let X, Y be two vector fields on M. The curvature operator $R(X, Y)$: $\Gamma(E) \rightarrow \Gamma(E)$ is defined as

$$
R(X, Y)=-\nabla_{X} \nabla_{Y}+\nabla_{Y} \nabla_{X}+\nabla_{[X, Y]}
$$

Theorem 1. Locally, for any section $\sigma=\sum_{i} f^{i} e_{i}$

$$
R(X, Y) \sigma=-\sum_{i, j} \Omega_{j}^{i}(X, Y) f^{j} e_{i}
$$

Proof. First

$$
\nabla_{X} \sigma=\sum_{i}\left(X f^{i}+\omega_{j}^{i}(X) f^{j}\right) e_{i}
$$

Hence

$$
\begin{aligned}
\nabla_{Y} \nabla_{X} \sigma= & \sum_{i}\left(Y X f^{i}+Y \omega_{j}^{i}(X) f^{j}+\omega_{j}^{i}(X) Y f^{j}\right) e_{i} \\
& +\sum_{i}\left(X f^{k}+\omega_{j}^{k}(X) f^{j}\right) \omega_{k}^{i}(Y) e_{i} \\
= & \sum_{i}\left(Y X f^{i}+Y \omega_{j}^{i}(X) f^{j}++\omega_{k}^{i}(Y) \omega_{j}^{k}(X) f^{j}\right) e_{i} \\
& +\sum_{i}\left(\omega_{k}^{i}(X) Y f^{k}+\omega_{k}^{i}(Y) X f^{k}\right) e_{i}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \nabla_{X} \nabla_{Y} \sigma-\nabla_{Y} \nabla_{X} \sigma-\nabla_{[X, Y]} \sigma \\
& =\sum_{i}\left(d \omega_{j}^{i}(X, Y)+\omega_{k}^{i}(X) \omega_{j}^{k}(Y)-\omega_{k}^{i}(Y) \omega_{j}^{k}(X)\right) f^{j} e_{i} \\
& =\sum_{i} \Omega_{j}^{i}(X, Y) f^{j} e_{i}
\end{aligned}
$$

Proposition 2. (2nd Bianchi identity) The curvature matrix satisfies the following identity

$$
d \Omega=\Omega \wedge \omega-\omega \wedge \Omega
$$

Proof. We calculate

$$
\begin{aligned}
d \Omega & =d \omega \wedge \omega-\omega \wedge d \omega \\
& =(\Omega-\omega \wedge \omega) \wedge \omega-\omega \wedge(\Omega-\omega \wedge \omega) \\
& =\Omega \wedge \omega-\omega \wedge \Omega
\end{aligned}
$$

Proposition 3. Suppose (E, ∇) is flat in the sense that the curvature is zero. Then $\forall p \in M$ there exists a neighborhood U and local frame $\left\{e_{i}\right\}$ on U s.t. $\nabla e_{i}=0$.

Proof. Pick a arbitrary local frame $\left\{s_{i}\right\}$ and let ω be the corresponding connection matrix. We want to find a new local frame $\left\{e_{i}\right\}$

$$
e_{i}=a_{i}^{j} s_{j}
$$

s.t. $\nabla e_{i}=0$. In other words, we want to find smooth $A=\left[a_{j}^{i}\right] \in G L(r, \mathbb{R})$ s.t.

$$
d A+\omega A=0
$$

By the Frobenius theorem, there is a local solution with $A=I$ at p if the curvature is zero. To apply Frobenius, consider the manifold $U \times \mathbb{R}^{n^{2}}$ with y_{j}^{i} the standard coordinates on $\mathbb{R}^{n^{2}}$. We have $n^{2} 1$-forms

$$
\theta_{j}^{i}=d y_{j}^{i}+\omega_{k}^{i} y_{j}^{k}
$$

which are linearly independent. We compute

$$
\begin{aligned}
d \theta_{j}^{i} & =d \omega_{k}^{i} y_{j}^{k}-\omega_{k}^{i} \wedge d y_{j}^{k} \\
& =\Omega_{k}^{i} y_{j}^{k}-\omega_{k}^{i} \wedge \theta_{j}^{k}
\end{aligned}
$$

If $\Omega=0$, the distribution $\mathcal{D}=\operatorname{ker}\left\{\theta_{i j}\right\}$ is involutive. The integral manifold passing through (p, I) is locally the graph of a function $y_{j}^{i}=a_{j}^{i}(x)$.

2. The Levi-Civita connection

A connection on $T M$ is called an affine connection. For an affine connection ∇ we define its torsion by

$$
\tau(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

Theorem 2. Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Then there exists a unique affine connection ∇, called the Levi-Civita connection, that satisfies the following two conditions
(1) ∇ is compatible with the metric, i.e.

$$
X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
$$

(2) ∇ is torsion-free, i.e.

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y]
$$

Let $\left\{e_{i}\right\}$ be a frame and $\left\{\theta^{i}\right\}$ the dual frame. Writing

$$
g_{i j}=\left\langle e_{i}, e_{j}\right\rangle, \nabla e_{i}=\omega_{i}^{j} \otimes e_{j}
$$

we have $d g_{i j}=\omega_{i}^{k} g_{k j}+g_{i k} \omega_{j}^{k}$, i.e

$$
d G=\omega^{t} G+G \omega
$$

It is more convenient to work with a local orthonormal frame.
Proposition 4. Let $\left\{e_{i}\right\}$ be a local orthonormal frame. The connection matrix ω for the Levi-Civita connection is uniquely determined by the following two identities

$$
\begin{aligned}
\omega^{t} & =-\omega \\
d \theta^{i} & =\theta^{j} \wedge \omega_{j}^{i}
\end{aligned}
$$

Proof. The 2nd identity follows by direct calculation. Uniqueness follows from Cartan's lemma.

The curvature $\Omega=d \omega+\omega \wedge \omega$ is a skew-symmetric matix of 2-forms. We have

$$
\Omega_{j}^{i}=\frac{1}{2} R_{k l i j} \theta^{k} \wedge \theta^{l} .
$$

Proposition 5. Suppose $\left(M^{n}, g\right)$ is flat in the sense that the curvature vanishes identically. Then for any $p \in M$ there is a local chart (U, x) about p s.t.

$$
g=d x_{i} \otimes d x_{i}
$$

on U.
Proof. By Proposition 3 there exists a local frame $\left\{e_{i}\right\}$ s.t. $\nabla e_{i}=0$ and $\left\langle e_{i}, e_{j}\right\rangle=$ $\delta_{i j}$ at p. As $d g_{i j}=0,\left\{e_{i}\right\}$ is orthonormal. Since $d \theta^{i}=0$, there exist local smooth functions f_{i} s.t. $\theta^{i}=d f_{i}$. By the implicit function theorem $\left(f_{1}, \cdots, f_{n}\right)$ is a local coordinate system near p and

$$
g=\theta^{i} \otimes \theta^{i}=d f_{i} \otimes d f_{i}
$$

