BASIC FACTS ON CONNECTION AND CURVATURE

XIAODONG WANG

1. General theory

Let M^n be a smooth manifold and $\pi: E \to M$ a rank r vector bundle over M.

Definition 1. A connection is a linear map $\nabla : \Gamma(E) \to \Gamma(T^*M \otimes E)$ s.t. for $f \in C^{\infty}(M), \sigma \in \Gamma(E)$

$$\nabla \left(f\sigma \right) = df\otimes \sigma + f\nabla \sigma.$$

If X is a vector field on M, we let $\nabla_X \sigma = X \lrcorner \nabla \sigma$.

First note that a connection is local: if $\sigma \in \Gamma(E)$ vanishes on an open set U, then $\nabla \sigma$ also vanishes on U. Indeed, for any open V with $\overline{V} \subset U$ compact we can find $\chi \in C_c^{\infty}(U)$ s.t. $\chi \equiv 1$ on \overline{V} . Then we have $\sigma = (1 - \chi) \sigma$ and

$$\nabla \sigma = -d\chi \otimes \sigma + (1-\chi) \, \nabla \sigma.$$

It follows that $\nabla \sigma = 0$ on V. Therefore, if two sections $\sigma_1, \sigma_2 \in \Gamma(E)$ satisfy $\sigma_1 = \sigma_2$ on U, then $\nabla \sigma_1 = \nabla \sigma_2$ on U. Consequently, for any local section $\sigma \in \Gamma(U, E)$ we can define $\nabla \sigma \in \Gamma(U, T^*M \otimes E)$ by extension.

Given a local frame $\{e_i\}$ on some open set U, we can write

$$\nabla e_i = \omega_i^j \otimes e_j,$$

with $\omega_i^j \in \mathcal{A}^1(U)$. Thus we get a matrix of 1-forms

$$\omega = \left[egin{array}{ccc} \omega_1^1 & \cdots & \omega_r^1 \ dots & & dots \ \omega_1^r & \cdots & \omega_r^r \end{array}
ight].$$

A local section σ on U can then be written as $\sigma = \sum_{i} f^{i} e_{i}$ with $f^{i} \in C^{\infty}(U)$. We have

$$abla \sigma = \sum_i \left(df^i + \omega^i_j f^j
ight) \otimes e_i$$

If we write $f = (f_1, \dots, f_r)^t$ as a column vector, then the connection is locally given by the map

$$f \to df + \omega f.$$

If we use another local frame $\{\tilde{e}_i\}$ on V, the connection is then determined by another matrix of 1-forms $\tilde{\omega}$ on V: $\nabla \tilde{e}_i = \tilde{\omega}_i^j \otimes \tilde{e}_j$. On $U \cap V$

$$\widetilde{e}_i = a_i^j e_j,$$

with $A = \left[a_i^j\right] \in C^{\infty}\left(U \cap V, GL\left(r, \mathbb{R}\right)\right)$. Then

$$\nabla \widetilde{e}_i = \left(da_i^j + a_i^k \omega_k^j \right) \otimes e_j.$$

On the other hand, $\nabla \tilde{e}_i = \tilde{\omega}_i^j \otimes \tilde{e}_j = \tilde{\omega}_i^k a_k^j \otimes e_j$. Therefore

$$\widetilde{\omega}_i^k a_k^j = da_i^j + a_i^k \omega_k^j,$$

i.e. $A\widetilde{\omega} = dA + \omega A$. Or, equivalently

$$\widetilde{\omega} = A^{-1}dA + A^{-1}\omega A.$$

Let $\mathcal{A}^{k}(E) = \Gamma(\Lambda^{k}(M) \otimes E)$ be the space of *E*-valued differential *k*-forms. We can extend the connection to $\nabla : \mathcal{A}^{k}(E) \to \mathcal{A}^{k+1}(E)$ as follows: given $\sigma \in \mathcal{A}^{k}(U, E)$ we can write

$$\sigma = \sum_i \theta^i \otimes e_i,$$

where $\theta^{i} \in \mathcal{A}^{k}(U)$. Then we define

$$abla \sigma = \sum_{i} d heta^{i} \otimes e_{i} + (-1)^{k} \, heta^{i} \wedge
abla e_{i}$$

$$= \sum_{i} \left(d heta^{i} + \omega^{i}_{k} \wedge heta^{k}
ight) \otimes e_{i}.$$

It is easy to verify this is well defined.

Proposition 1. Connections always exist. In fact, the set of all connections on a vector bundle $\pi : E \to M$ is an affine space over $\mathcal{A}^1(\operatorname{End} E)$.

Proof. Use a partition of unity.

Given $\sigma \in \mathcal{A}^{k}(U, E)$ we calculate

$$\nabla^{2}\sigma = \sum_{i} \left[d \left(d\theta^{i} + \omega_{l}^{i} \wedge \theta^{l} \right) + \omega_{k}^{i} \wedge \left(d\theta^{k} + \omega_{l}^{k} \wedge \theta^{l} \right) \right] \otimes e_{i}$$
$$= \sum_{i} \left[d\omega_{l}^{i} + \omega_{k}^{i} \wedge \omega_{l}^{k} \right] \wedge \theta^{l} \otimes e_{i}$$
$$= \sum_{i} \Omega_{j}^{i} \wedge \theta^{j} \otimes e_{i},$$

with $\Omega_j^i = d\omega_j^i + \omega_k^i \wedge \omega_j^k$. The matrix of 2-forms $\Omega = \left[\Omega_i^j\right]$ is called the curvature of the connection. We have

$$\Omega = d\omega + \omega \wedge \omega$$

If we use another frame, then

$$\begin{split} \Omega &= d\widetilde{\omega} + \widetilde{\omega} \wedge \widetilde{\omega} \\ &= d \left(A^{-1} dA + A^{-1} \omega A \right) \\ &+ \left(A^{-1} dA + A^{-1} \omega A \right) \wedge \left(A^{-1} dA + A^{-1} \omega A \right) \\ &= A^{-1} \left(d\omega + \omega \wedge \omega \right) A \\ &= A^{-1} \Omega A. \end{split}$$

Therefore, the curvature $\Omega \in \mathcal{A}^2$ (End*E*).

 $\mathbf{2}$

There is a natural induced connection on E^* . Let $\{e_i^*\}$ be the dual frame, i.e. $e_i^*(e_j) = \delta_{ij}$. Then

$$0 = \nabla e_i^* \left(e_j \right) + e_i^* \left(\nabla e_j \right)$$

This implies $\nabla e_i^* = -\omega_j^i \otimes e_j^*$. If we denote the dual frame by $\{e^i\}$ instead, then

 $\nabla e^i = -\omega^i_j \otimes e^j.$

Therefore

$$\nabla^2 e^i = -\Omega^i_j \otimes e^j.$$

Definition 2. Let X, Y be two vector fields on M. The curvature operator R(X, Y): $\Gamma(E) \to \Gamma(E)$ is defined as

$$R(X,Y) = -\nabla_X \nabla_Y + \nabla_Y \nabla_X + \nabla_{[X,Y]}$$

Theorem 1. Locally, for any section $\sigma = \sum_i f^i e_i$

$$R(X,Y)\sigma = -\sum_{i,j}\Omega_{j}^{i}(X,Y)f^{j}e_{i}.$$

Proof. First

$$\nabla_X \sigma = \sum_i \left(X f^i + \omega_j^i \left(X \right) f^j \right) e_i$$

Hence

$$\nabla_{Y}\nabla_{X}\sigma = \sum_{i} \left(YXf^{i} + Y\omega_{j}^{i}\left(X\right)f^{j} + \omega_{j}^{i}\left(X\right)Yf^{j}\right)e_{i} \\ + \sum_{i} \left(Xf^{k} + \omega_{j}^{k}\left(X\right)f^{j}\right)\omega_{k}^{i}\left(Y\right)e_{i} \\ = \sum_{i} \left(YXf^{i} + Y\omega_{j}^{i}\left(X\right)f^{j} + \omega_{k}^{i}\left(Y\right)\omega_{j}^{k}\left(X\right)f^{j}\right)e_{i} \\ + \sum_{i} \left(\omega_{k}^{i}\left(X\right)Yf^{k} + \omega_{k}^{i}\left(Y\right)Xf^{k}\right)e_{i}.$$

It follows that

$$\nabla_{X}\nabla_{Y}\sigma - \nabla_{Y}\nabla_{X}\sigma - \nabla_{[X,Y]}\sigma$$

= $\sum_{i} \left(d\omega_{j}^{i}(X,Y) + \omega_{k}^{i}(X)\omega_{j}^{k}(Y) - \omega_{k}^{i}(Y)\omega_{j}^{k}(X) \right) f^{j}e_{i}$
= $\sum_{i} \Omega_{j}^{i}(X,Y) f^{j}e_{i}.$

Proposition 2. (2nd Bianchi identity) The curvature matrix satisfies the following identity

$$d\Omega = \Omega \wedge \omega - \omega \wedge \Omega.$$

Proof. We calculate

$$d\Omega = d\omega \wedge \omega - \omega \wedge d\omega$$

= $(\Omega - \omega \wedge \omega) \wedge \omega - \omega \wedge (\Omega - \omega \wedge \omega)$
= $\Omega \wedge \omega - \omega \wedge \Omega$.

Proposition 3. Suppose (E, ∇) is flat in the sense that the curvature is zero. Then $\forall p \in M$ there exists a neighborhood U and local frame $\{e_i\}$ on U s.t. $\nabla e_i = 0$.

Proof. Pick a arbitrary local frame $\{s_i\}$ and let ω be the corresponding connection matrix. We want to find a new local frame $\{e_i\}$

$$e_i = a_i^j s_j$$

s.t. $\nabla e_i = 0$. In other words, we want to find smooth $A = \begin{bmatrix} a_i^i \end{bmatrix} \in GL(r, \mathbb{R})$ s.t.

$$dA + \omega A = 0$$

By the Frobenius theorem, there is a local solution with A = I at p if the curvature is zero. To apply Frobenius, consider the manifold $U \times \mathbb{R}^{n^2}$ with y_j^i the standard coordinates on \mathbb{R}^{n^2} . We have n^2 1-forms

$$\theta^i_j = dy^i_j + \omega^i_k y^k_j$$

which are linearly independent. We compute

$$d\theta^i_j = d\omega^i_k y^k_j - \omega^i_k \wedge dy^k_j$$
$$= \Omega^i_k y^k_j - \omega^i_k \wedge \theta^k_j.$$

If $\Omega = 0$, the distribution $\mathcal{D} = \ker \{\theta_{ij}\}$ is involutive. The integral manifold passing through (p, I) is locally the graph of a function $y_j^i = a_j^i(x)$.

2. The Levi-Civita connection

A connection on TM is called an affine connection. For an affine connection ∇ we define its torsion by

$$\tau (X, Y) = \nabla_X Y - \nabla_Y X - [X, Y].$$

Theorem 2. Let (M^n, g) be a Riemannian manifold. Then there exists a unique affine connection ∇ , called the Levi-Civita connection, that satisfies the following two conditions

(1) ∇ is compatible with the metric, i.e.

$$\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle.$$

(2) ∇ is torsion-free, i.e.

$$\nabla_X Y - \nabla_Y X = [X, Y].$$

Let $\{e_i\}$ be a frame and $\{\theta^i\}$ the dual frame. Writing

$$\eta_{ij} = \langle e_i, e_j \rangle, \nabla e_i = \omega_i^j \otimes e_j,$$

 $g_{ij} = \langle ,$ we have $dg_{ij} = \omega_i^k g_{kj} + g_{ik} \omega_j^k$, i.e

$$dG = \omega^t G + G\omega.$$

It is more convenient to work with a local orthonormal frame.

Proposition 4. Let $\{e_i\}$ be a local orthonormal frame. The connection matrix ω for the Levi-Civita connection is uniquely determined by the following two identities

$$\begin{split} \omega^t &= -\omega, \\ d\theta^i &= \theta^j \wedge \omega^i_j \end{split}$$

Proof. The 2nd identity follows by direct calculation. Uniqueness follows from Cartan's lemma. $\hfill \Box$

The curvature $\Omega = d\omega + \omega \wedge \omega$ is a skew-symmetric matix of 2-forms. We have

$$\Omega_j^i = \frac{1}{2} R_{klij} \theta^k \wedge \theta^l.$$

Proposition 5. Suppose (M^n, g) is flat in the sense that the curvature vanishes identically. Then for any $p \in M$ there is a local chart (U, x) about p s.t.

$$g = dx_i \otimes dx_i$$

 $on \ U.$

Proof. By Proposition 3 there exists a local frame $\{e_i\}$ s.t. $\nabla e_i = 0$ and $\langle e_i, e_j \rangle = \delta_{ij}$ at p. As $dg_{ij} = 0$, $\{e_i\}$ is orthonormal. Since $d\theta^i = 0$, there exist local smooth functions f_i s.t. $\theta^i = df_i$. By the implicit function theorem (f_1, \dots, f_n) is a local coordinate system near p and

$$g = \theta^i \otimes \theta^i = df_i \otimes df_i.$$