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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 21(5&6), 821-840 (1996) 

Rellich Type Decay Theorem for Equation 
P(D)u = f with f Supported in Infinite Cylinders 

Walter Littman* 

and 

Baisheng Yant 

School of Mathematics 
University of Minnesota 
Minneapolis, MN 55455 

Abstract 

In this paper we prove that for a certain class of linear differential operators 
P(a/iax) if P(a/iax) u(x) has support inside a convex infinite cylinder and 
decays exponentially to zero in one direction of the cylinder, then u(x) must 
have support inside the same cylinder provided that u(z) satisfies a certain 
Rellich type decay condition at infinity. Some examples are given, including 
the reduced wave equation and the reduced system of crystal optics. 

1 Introduction 

For a large class of higher order partial differential equations 

on the whole space RN, it has been proved in Littman [lo] that if f (x) has compact 

support then u(x) must have compact support if it satisfies the following Rellich 

type decay condition: 

'Supported in part by NSF grant DMS90-02919. ' Cumnt Address: Department of Mathematics, Michigan State University, East Lansing, MI 
48824. 

Copyright @ 1996 by Marcel Dekker. Inc. 
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822 LITTMAN AND YAN 

This is an extension of a classical result of Rellich 1171 about decay at  infinity of 

solutions to the reduced wave equation 

in an exterior domain of R N .  See also Trkves 1181 for an earlier result in this direction. 

F'urther studies on the optimal decay rate at  infinity for solutions to the more general 

equations like (1.1) have been also made in Littman (111, Hormander [7], and Agmon 

and Hormander [Z]. 

Later on, similar results have been given for large classes of equations (1.1) in 

the case when f(x) has support inside a closed proper cone by Littman [12], 1131 
and Murata and Shibata [16]. The methods in both [12] and [16] rely on analysis 

of the analytic Fourier-Laplace transforms in certain complex domains of CN and 

the real Fourier transforms supported by lower dimensional algebraic varieties. An 

important link between the two transforms which assures the divisibility of j(<) by 

P(') is the connectedness relationship between certain complex zeros and real zeros 

af P(c).  We shall explain these ideas in greater detail after we briefly discuss the 

problem we shall be concerned with in the present paper. 

In this paper, we consider the equation 

in the whole space RN = R: x R i .  We assume f (x, y) has support inside the cylinder 

B, x R1 and decays exponentially to zero in the positive direction of the cylinder 

(i.e,, as y --+ +m). Here B, is a ball of radius a > 0 in Rz. Our main result is Lhat 

under certain conditions a solution u to (1.3) must have its support in the same 

cylinder if the following Rellich type decay condition holds: 

The precise statement of the result is presented in section 2 as our main theorem of 

the paper: Theorem 2.1. Some remarks about the assumptions of the theorem will 
also be given. 

Note that if a tempered distribution f = P((l/i)a/ds)u has support inside a 

proper cone K with vertex 0, its Fourier-Laplace transform f(<) is analytic on the 

complex domain R N  + ir, where r c RN is the dual cone of -K. In this case, 
one has only to consider the complex zeros of P(5) in the domain RN + il? and the 
properties of f(() in R N  +ir. The divisibility of j(() by P(<) in RN + ir is generally 
obtained by assuming some connectedness conditions concerning the complex zeros 

and real zeros of P(<). Then the classical Paley-Wiener theory would imply the 

inverse Fourier-Laplace transform of the quotient ~(c)/P((;) gives rise to  a solution 
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7 RELLICH TYPE DECAY THEOREM 

of (1.1) with support inside the cone K (see [8], 1121 and 1161). Consequently, a 

uniqueness result (see e.g. [7] and 1121) would then imply that solution u to (1.1) 

must have support inside K. 
In the case we shall consider in the present paper, the one-sided exponential 

decay condition (2.4) on f = P ( D ) u  assures the analyticity of the Fourier-Laplace 

transform f(() in some complex "slab domain" C, and also some estimates about 
the Fourier-Laplace transform f̂ (f,) (see Proposition 3.1). Under the connectedness 

condition (C) stated in next section, the divisibility of f*(f,) by P(C) in the domain 
C, is obtained by using the arguments of the stationary phase method for surface- 

carried Fourier transforms (see [3], (81, and (101) and the analytic continuation theory 

of several complex variables (see Lemmas 3.3 and 3.4). This is Theorem 4.1. I t  is 
noted that  the connectedness condition (C) plays an important role in both aspects, 

as seen in the proof of Theorem 4.1. 

Using the quotient off*([) by P(<) in the domain C, a solution v(r ,  y) to (1.3) 
having support inside the cylinder 8, x R1 is constructed in section 5, using the 

general idea of a limiting absorption principle. Such a principle describes the limiting 

behavior of the solution operator (considered as a linear operator defined on certain 

function spaces) of P(D,, A) as the complex "spectral" parameter X approaches the 

boundary of the "resolvent" sets. We refer to (11, [2], (151, 1191 and (201 for further 

references on limiting absorption principles. In Littman and Yan [15], we use this 

idea to  study an elliptic boundary value problem in the complement of a n  infinite 

cylinder with general boundary conditions. 

The rest of the paper is organized as follows. In section 2, we introduce some 
notation and s tate  the main theorems: Theorems 2.1 and 2.2. In that section, we 

also give some examples as the corollaries of these theorems. Some preliminary 
results that  are needed for proving the theorem are given in section 3. In section 

4, we prove the divisibility of f^(<) by P(C) in the domain C,, i.e., Theorem 4.1. 

The proof of main results, Theorems 2.1 and 2.2, is given in section 5. And finally, 
in section 6, we make some remarks about the similar results concerning certain 
equations with variable coefficients. 

2 Condition ( C )  and statement of main results 

We first introduce some notation. We shall denote by Rd the d-dimensional real 

space of variables x = (XI, ..., x d ) .  A point in the dual space is denoted by ( = 

(&, ..., < d )  E Rd. Let D, = (D,, , ..., D,,), with D,, denoting ( l / z ) a / d x ,  or (l/i)a,, , 
where j = 1,2, ..., d.  

In this paper, we assume that n >_ 2 is an integer. We shall consider linear 
differential operators on RN. The variable in Rn+' will be denoted by ( x ,  y) E 

Rn x R' and (D,,, ..., DZR1 D Y )  by (Dz, D y ) .  The dual variable in Rn+' will be 
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7 824 LITTMAN AND YAN 

denoted by (t ,  u )  and its complexification will be denoted by ( ( .A) E Cn x C1. 
Denote by C, the "slab domain" o f  a11 ( C ,  A)  in Cn x C' with 0 < Im X < E .  

In what follows, we shall denote by L:(Rn) the subspace of LZ(Rn)  consisting o f  
functions supported in the closed ball BI = B, (x E Rn 11x1 < a ) ,  where a > 0 

is a finite number. 

Let P(C, A) be a polynomial of n+ 1 variables. We denote by C(P)  (resp. S ( P ) )  

the zero set o f  P in Cn x C 1  (resp. in Rn x R1). Define C,(P) = C, C ( P ) ,  where 

C, is the "slab domain" defined before. 

Let V P  = (VcP,  dx P )  be the gradient o f  P, where Vc P = (aCI P, ..., a<,, P) .  

Finally, define the real set A ( P )  c S ( P )  as follows 

We next introduce a condition on P which, roughly speaking, requires that each 

"nice" complex zero of  P ( ( ,  A) in the "slab" C, be connected to these simple real 

zeros. More precisely, we introduce the following condition on polynomial P( ( ,  A) .  

Connectedness Condition (C) :  There exists to > 0 such that for every E E (0, to), 

the closure of each connected component of the set 

intersects the set A ( P )  defined by (2.1). 

Remarks. In many cases, this condition (C)  can be verified by finding a continuous 

path lying in the closure of set A,(P) that connects any given point there to a point 

in A ( P ) .  For example, if (to + ivO,uO + i rO)  g A,(P) ,  one can try to find a path in 
the form of ( ( ( t )  + itvO, a( t )  + i trO) which lies on d , (P)  for 0 < t < 1 and satisfies 

( (1 )  = to, u(1) = u0 and (t(O),o(O)) E A ( P ) .  

In this paper, we consider the following differential equation 

defined in the whole space Rn x R1. We shall prove the following main theorem. 

Theorem 2.1 Let P(C, A) = P,((, A)"1 P2((, A)"' . ., P,(C, A)". and P,(<, A) be dis- 

tinct irreducible polynomials of real coefficients and satisfy the connectedness condi- 

tion (C)  given above. 
Let u(x, y) E L;L,,(RZ; L 2 ( R t ) )  and f ( x ,  y) E L2(RN)  satisfy equation (2.3). 

Suppose f (x, y )  E 0 in 1x1 > a and satisfies for some constant p > 0 the condition 

/,I  1, If(x, y)12e2py dxdy < co, 
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RELLICH TYPE DECAY THEOREM 825 

and ~ ( x ,  y) satisfies the decay condition 

Thenu(x,y) S O  in 1x1 > a  and y E R'. 

We now discuss the system of differential equations with constant coefficients. 

We consider the system 

m 

C p k , ( ~ x , ~ , )  UJ(X, Y) = fk(x, Y) 
p 1  

(2.6) 

in RZ x R:, where Pk,(D,, D,) with k, j = 1, ..., rn are differential operators with 

constant coefficients. 

For simplicity, we shall rewrite (2.6) in terms of matrix. To this end. let us 

introduce ii = (a l ,  UZ, ..., u,IT and 7 = (f,, fi, ..., f,,,)T to  be column vectors and 
define the matrix of the system (2.6) by M(<,  A) = (Pk.(C, A)) Then (2.6) can be 
rewritten as 

in R: x R:. We now present a result similar to Theorem 2.1 for systems. 

Theorem 2.2 Let Q(C, A) = det M(C, A) be the determinant of m a t m  M. Suppose 

that each imduczble factor of Q(C, A)  has real coeficzents up to a complex constant 

factor and satisfies the connectedness condztion (C). Let ii and sattsfy the system 
(2.7), and let each component u, and f, satasfy (2.5) and (2.4) gaven cn Theorem 

2.1, respectrvely. Then Z(x, y) 5 0 2n 1x1 > a and y E R'.  

The proof of these theorems will be given later in section 5. We first make several 

remarks about the conditions in Theorem 2.1. 

Remarks. (i) The one-sided exponential decay condition (2.4) on the function f 

is necessary for the conclusion of Theorem 2.1 to  hold. To see this, we t.ake t,he 
inhomogeneous Helmholtz equation 

with g E Cr(Rn). Now if h ( y )  is chosen so that its Fourier transform ~ L ( D )  belongs 
to Cr,  vanishing for o $! [2,3], then by using the Fourier transformation we can 
construct a classical solution u E L2(Rn+') which does not vanish outside any finite 
cylinder in the y-direction. Clearly this f (x, y) does not satisfy condition (2.4). 

(ii) Condition (2.4) is satisfied if f (x, y) is supported in a semi-infinite cylinder 

in the negative y-direction, i.e., f (x, y) = 0 when 1x1 > a or y > b for some constant 
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826 LITTMAN AND YAN 

b. Our result only asserts that (under all other assumptions in the theorem) the 

solution u(x, y) is supported in the whole cylinder B, x R'. 
(iii) Other type connectedness conditions similar to  those given as in 1121 or 1161 

would imply the support of u(x, y) is contained in some cones. But our connectedness 

condition here is different and in some sense weaker. However, in this special case 
when f is supported in the convex semi-infinite cylinder, by our theorem, the solution 
u would be supported in the same semi-infinite cylinder if the operator P(D,, D,) 
has a weak unique continuation property. 

We now give some examples where our main theorems can yield some new results. 

We state these examples as the coroliaries of the main theorems. 

Corollary 2.3 Let u(x, y) and f (x, y) satisfy the conditions in the previous theorem 
and also satisfy one of the following classical equations on RZ x R: with n 2 2 : 

(I) The Helmholtz: equation: A,u + Biu + kZu = f ,  (k > 0); 

(2) Tlae Klein-Gordon equation: A,u - $u + ku = f ,  (k real); 

(3) The Schrodinger equation: A,u - (l/i)d,u + ku = f ,  (k real). 

Then the conclusion of Theorem 2.1 holds. 

Proof. Note that the polynomials corresponding t o  the given equations are all 

irreducible and have real coefficients. Thus the corollary will follow if one can 

verify the Connectedness Condition (C) for these polynomials. This can be done by 

using the method mentioned in the above remark. We only consider the Helmholtz 
equation, the other two cases can be done similarly. 

In the case of Helmholtz equation, the corresponding polynomial is 

Note that P(<, A) is irreducible and VP(C, A) # 0 as long as X # 0. Also, the set 

A ( P )  defined by (2.1) is now given as  follows 

A ( P )  = ( ( < , a )  E Rn x R' I /<I2 + lot2 = k2, la/ # k). 

Let E > 0 and (to + iqo, oO + i r O )  E A,(P) be given. Define 

Then ( [ ( t )  + iq ( t ) ,  u(t) + ir(t)) belongs t o  the set A,(P) for all 0 < t 5 1 and 
(((1) + iq(l),  a(1) + i ~ ( 1 ) )  = ( to  + ivo, a" + i~') and ([(O), o(0)) E A(P). Thus the 
condition (C) is verified, and proof is completed. 
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7 RELLICH TYPE DECAY THEOREM 827 

Our second example is the reduced system of crystal optics. We start with the 
system of crystal optics: 

( - curl) f j  = F', 
-curl -pat 

where = f j ( r , t )  E R6 is the electric and magnetic field and p = F(x,t) is the 

source field. Here c and p are constant coefficient 3 x 3 matrices which we shall 

assume to be of the form 

where e, and u are positive constants representing the dielectric constants and the 

magnetic permeability constants, respectively. Here x = (x,, 22, x3) and the y = x3- 

direction will be considered as the axis of the cylinder. We refer to  Courant and 

Hilbert [5] and Liess (91 for more discuss~ons. 

First of all, we need to get the reduced system of crystal optics. To do so, 
suppose the source term @(x, t )  is time-harmonic, i.e., #(x, t )  = flz) e-lkt for some 
real k # 0, and we are looking for the time-harmonic solutions @(x, t )  = C(x) e-zkt 

of the system (2.10). Then we obtain the reduced system of crystal optics for i i (x) :  

( ikr curl) = f; 
-curl i kp  

which can be written as (recall D,, = (l/i)a,, ) 

where Mk ( ( I ,  (2, C3) is the 6 x 6 matrix given by 

We can prove the following result 

Corollary 2.4 Let 21' and f satisfy the reduced system of crystal optics (2.12) for 

a real k # 0,  and let each component uj and f j  satisfy (2.5) and (2.4) given in 

Theorem 2.1, respectively. Then Z(z, y) = 0 in 1x1 > a and y E R1. 

Proof. The proof of this result will be given elsewhere with some applications since 

we think all calculations leading to the verification of conditions of Theorem 2.2 are 
also useful in understanding the nature of this system. It certainly deserves more 

attention from the point of view of applications. 
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828 LITTMAN AND YAN 

In next two sections, we shall present some preliminary results that are needed 

for the proof of the main results: Theorems 2.1 and 2.2. 

3 Notation and preliminaries 

Let f (z, y) E L2(RL; L:(R:)) be a given function which satisfies the exponential 

decay condition (2.4). 
Define the Fourier-Laplace transform f ( < ,  A )  of f ( x ,  y) on ( E Cn and X = o + i ~  

with 0 < 7 < p as follows 

Let f^(<,u) be the L2-Fourier transform of f ( x ,  y) E L2(R t ;  LZ(R:)). Since 

f ( x , y )  E L2(R:; L:(R;)), it follows that f^(<,a) can be analytically extended to 

the all complex 6 E Cn for almost every u E R1. Define also F ( x ,  u)  t o  be the LZ- 
Fourier transform o f f  ( x ,  Y )  with respect to y E R'. Then for almost every u E R1, 
we can consider F ( x ,  a )  as a function in L : ( x )  and define F((, a )  to  be the Fourier- 

Laplace transform of F(x ,  u )  defined on ( E Cn. Note that our notation here implies 

that for a.e. a E R', 
F(<, a) = j(<, u )  for < E cn. 

We now have the following result. 

P ropos i t ion  3.1 The function j((l,X) is analytzc in the slab domain C,, and 

firthemore, for 0 _< Im X < p we define 

j(5, u)I2 dt; du = 0. (3.2) 

When u is real, f * (u )  is understood as a function in L 2 ( R i ) ,  which is well-defined. 
Then it follovls that for any complex X with 0 < In1 X < p or almost every X E R1, 
one has l f ^ ( < , X ) ~  < C f*(X)eaI1"CI for all < E Cn.  

Proof. This result follows from the classical Paley-Wiener theorem and the Fourier 
inversion theorem, see e.g., 18, Theorem 7.3.11. 

Our next result is a regularization or smoothing result using the certain separated 

mollifiers. 

P ropos i t ion  3.2 Let (6, E Cp(Rn) with supp& C By and $a E C F ( R 1 )  with 
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RELLICH TYPE DECAY THEOREM 829 

supp$a C [-6,6]. Let p r ,~ (x ,  Y )  = & ( x ) $ ~ ( Y ) .  For any g E Lk(Rn+'), define the 
convolutron ge,6 = g * per&. Then we have the followrng estzmates: 

and 

Proof. Both inequalities follow from the Young's inequality for convolutions. We 

omit the details. 

The following two results are well known and standard to the experts of several 

complex variables. We include them here for the convenience of the reader. 

Lemma 3.3 Let R be a domain en C N ,  ( N  2 2), and r a closed subset of R wzth 

the (2N - 2)-Nausdorfl measure N z ~ - z ( r )  = 0. If H ( z )  LS an analyt~c function on 

R \ r ,  then them is an analytic continuatton ~ ( t )  of H ( r )  mto R. 

Lemma 3.4 Let D be a domain m C N ,  and let E be a closed subset tn D such that 

the (2N - 1)-Hausdorfl measure N ~ N - I ( E ~ K )  < $00 for any compact set K C D. 
Then every function H ( z )  continwus tn D and analytac tn D\E u analytzc in all 

of D. 

Proof. The proof of both results can be found in Chirka [4, pp.298-3011. 

4 Analysis of the Fourier-Laplace transforms 

In this section, we prove the divisibility of f((, A) by P(C. A) in the domain C, under 

the assumptions of Theorem 2.1. We shall use arguments closely related to the 
theory of the stationary phase method. See, e.g., (71, [8]. (101, Ill]  and [12]. 

Theorem 4.1 Under the assumptions of Theorem 2.1, one can find an analytic 

function H(C, A )  in the slab C, such that 

To prove this theorem, we need the following result. 

Theorem 4.2 Under the assumptions of Theorem 2.1, it follows that f(<, A) along 
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with all its derivatives up to the order (mi - 1 )  vanish on any connected component 

U of the set A,(P,), for all j = 1,2,  ..., r .  

The proof of Theorem 4.2 will be given in the end of this section. We first show 

that Theorem 4.2 implies Theorem 4.1. 

Proof of Theorem 4.1. Using the notation given before, let R = C, and D = R \ r  
with 

r = (U;=~K,(P,)) U A  

where for each j = I ,  ..., r 

Note that since P, # P,, ( j  # j ' )  are irreducible and have real coefficients, the 

complex dimension of I? is not greater than N - 2, and thus the (2N - 2)-Hausdorff 

measure 3-12N-2(l?) = 0 (see [4] or [lo] and the references therein). Define also 

Since D \ E  is contained in C,\C,(P), it follows from Theorem 4.2 that the function 

H(C, A) defined by f ^ ( ~ ,  X)/P(C, A) on D\E  can be extended as a continuous function 

in D, still denoted by H(C, A). On the other hand, it is easy to see that 3tzN-1(E n 
K )  < +m for any compact set K c D. Thus by Lemma 3.4 the continuous function 

H(C, A) is analytic in D = O \ r .  Therefore, by Lemma 3.3, the analytic continuation 

of this function H(<, A) will be the function required in Theorem 4.1. 

Before proving Theorem 4.2, we make some observations and prove several lem- 

mas. In what follows, we assume functions u(x, y) and f ( x ,  y) both satisfy all the 
conditions stated in Theorem 2.1. First of all, by Proposition 3.2, without loss of 

generality, we assume u ( x ,  y) and f (x, y)  are both of GO". 
Now. let 1 < J' 5 r be fixed. Let U be a connected component of the set A,(P,) 

and 0 denote the closure of the set U in Cn+'. By the connectedness condition (C) 
it follows that If n A(P, )  # 0. Let ((',a0) be a point in 0 Ti A(P,). Without loss 

of generality, we assume that at, P,(to,  a') # 0. Then locally one can parameterize 

the surface C ( P J )  by its projection onto the Cl-plane. To be more precise, one can 

find a complex neighborhood of (to, a') and an analytic function s(C,, A) defined 

there satisfying 

where T and J are neighborhoods of the origin in Rn-' and R1, respectively; and 

G and I are neighborhoods of E: and a', respectively. Not,e that the set 
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is contained in Nn U for some J, = (0, t). 
For a fixed 0 5 v 5 (m, - l), define an analytic function W(<., A) as  follows, 

for all (<,,A) E ( G + i T )  x ( I+ iJ , ) .  
We recall that F ( x ,  u )  is the partial Fourier transform of f (x, y) with respect to 

y and for a.e. a E R1, P(<, a )  is the Fourier-Laplacian transform of F(x, o) in R:. 
Define 

for all (t,, a) E G x I. 
We now proceed with several lemmas. 

Lemma 4.3 For all 4 E Cr(G x I), it follows that 

Proof. By (4.3) and Fubini's theorem it follows that 

where g,.,,(x, y) = (-ixl)" f (x, y) e2."+Y+ with x = (xl, x.), and 

for all sufficiently small 71, and T > 0. Note that 90-0 and ko,D are also well-defined 

accordingly. 
By the Fourier inversion formula, it is seen that (4.6) also holds for 7). = 0 and 

T = 0 if W(<., A) on the left-hand side is replaced by Wo(<., o) defined by (4.4). 

Now, integration by parts in (4.7) implies that 

for all s = 0,1,2, ... with sufficiently small T and q, and x E B, and y R1 
Therefore, for all sufficiently small 17, and T 2 0, it follows that 
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832 LITTMAN AND YAN 

where 

Note that m , ( x , y )  belongs to L1(B, x R') if s 2 I. Furthermore, it is easily seen 

that 

Therefore, by the Lebesgue dominated convergence theorem and (4.6), it follows 

that 

lim // W((. + iri., a + ir) d.5. u)d& do = // WO([.. u )  O(C, a ) 4 ,  do. 
1. -0 

" ' + G X I  G x l  

The lemma is thus proved. 

As before, let F ( x ,  a )  and U ( x ,  u )  be the Fourier transforms off ( x ,  y )  and U ( X ,  Y )  

with respect to  y E R', respectively. Then one can prove the following results. 

Lemma 4.4 For almost every a E R1 the function U ( x ,  u )  is a tempered distribu- 

tion on Rn and satisfies 

and 

lim inf - 

Proof. Using the separated test functions, one can easily prove (4.9), see [14]. To 
prove (4.10), we observe that from (2.5) it follows that for some constant C > 0 

for every R 2 1. From this inequality and the fact u ( x ,  y)  E L%,(R:; L 2 ( R k ) ) ,  i t  
follows that 

From this it easily follows that for almost every a E R1 the function U ( , , o )  is a 

tempered distribution on Rn. Similarly, the decay property (4.10) follows from (2.5) 
by using Fatou's lemma. 

Lemma 4.5 For all 4 E C,O"(G x I )  with suficiently small support, it follows that 
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for a.e. o E I .  

Proof. This follows from (4.9) and (4.10) by using the arguments of the stationary 
phase method for the surface-carried Fourier transforms as used in Littman [lo] and 

Hijrmander [?I. We give the details of proof below for the convenience of the reader. 

In what follows, we fix a u I so that both (4.9) and (4.10) hold and write 

as F,(x), U, (s), c$,(<.) and PC((), respectively. Let $J CC,m(R1) such that 

and define g ~ ( < )  = d(E., u) R~+'@')(R(~((,, u) - 51)) for R > 0. Using (4.4), by the 
dominated convergence theorem it follows that 

By virtue of the previous lemma we have F~ = Pa uU and = &(hR), where 

$J,(T) = (ia/r)" ((-2.)" $J(T)) E C,"(R1). 

Since p 2 m, > V, we have supp& /l, s u p p q  which does not contain the origin. 

Define 

then it follows that  

Also by an easy calculation we have that 

and 
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The  proof of the lemma will be complete if we show that each term in the sum 

of (4.14) approaches zero when R -t co if supp4, is sufficiently close to  J:. 
Using the technique of localization (see Lemma 2.3 and P. 110 of [7 ] ) ,  we may 

assume that a(<) is compactly supported on the following surface of RE" 

By a change of variables, we may assume the normal direction of S, a t  the point Jo 
is the xl-direction in the dual space R:. Let w c G be a small neighborhood of J: 
such that all the normal directions of So at  points for J, E w are contained in the 

open conic neighborhood 

of the xl-axis with 0 being removed. By the stationary phase method, it follows 

that  I,(%) is rapidly decreasing a t  infinity outside V if suppa, 5 w .  

Having all these at  our disposal, by virtue of (4.13) we obtain using Cauchy- 
Schwarz' inequality that for each p > m,, 

By the assumption that u ~ ( E )  is compactly supported the second term on the right- 

hand side of the above estimate goes to zero as R -+ w since I,(x) decreases rapidly 
outside V and v - p < -1. The first term also goes to zero as R -4 oo in view of 
(4.10). We have thus completed the proof. 

We now complete the proof of Theorem 4.2. 

Proof of Theorem 4.2. By the previous lemma and (4.5), it follows that 

for all $ E Cr(G x I) with sufficiently small support. This implies 

for all ((,, A) E (G+iT) x (I+iJ,). Consequently, f((, A) along with all its derivatives 
up t o  the order (m, - 1) vanish on an open set of each connected component U of 
AJP,),  for all j = 1,2, ..., r. This proves the theorem. 
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5 Proof of main results 

In this section, we shall prove our main results: Theorems 2.1 and 2.2. Assume that 
u ( x ,  y) and f ( x ,  y) are functions satisfying all conditions described in Theorem 2.1, 

and we shall prove that  u ( z ,  y )  0 in 1x1 > a. 
As before, let F ( x ,  o) and U ( x ,  a )  be the Fourier transforms off (x, y) and u(x ,  y) 

with respect to y c? R1, respectively. We prove u ( x ,  y) r 0  in 1x1 > a by proving 

that U ( x ,  u) 0 in 1x1 > a. 
First of all, we need the following result due to  Hormander 161. 

Lemma 5.1 Let Q(() be an arbitrary polynomial an n-variables vnth pnnczpal part 

q(t'). Then the follounng estimate 2s valid for all real lo vnth = 1 and all u  E 

C,"(B,) : 

Of course, this result is useful only in the case q(to)  # 0,  which is always possible 

for some t o .  

Theorem 5.2 Assume that all the conditrolzs of Theorem 2.1 are sattsfied. Then 

for every X E C1  with 0 < ImX < c, there exasts a functzon V( . ,  A )  E Li (Rn)  

satzsfyzng 

P(D,, A) V ( x ,  A) = F ( x ,  A )  (5.2) 

for x  E Rn, where F ( x ,  A) ts the Fourier-Laplace tmnsforn o f f  (x, y) wzth respect 

to y E R1. 

Proof. Let H(C, A) be the analytic function in the slab domain C, determined in 

Theorem 4.1. By virtue of Proposition 3.1 and a Paley-Wiener theory (see e.g. 
Theorems 7.3.1 and 7.3.2 in Hijrmander [8]), it follows that for each A, the analytic 
function H(f, A) is the Fourier-Laplace transform of a distribution V ( x ,  A) which is 
compactly supported in the ball B, and satisfies equation (5.2). The regular~zations 
of V ( x , A )  will satisfy an equation similar to (5.2) wlth F ( x ,  A) replaced by its 

regularizations. Therefore by using the estimate (5.1), one easily sees that V ( x ,  A )  
actually belongs t o  L2(Rn).  This completes the proof of the theorem. 

We next follow the general idea of a limiting absorption principle to examine the 

limiting behavior of functions V ( x ,  A) when X approaches the reds through the slab 
C,,. More precisely, we prove the following result: 

Theorem 5.3 Let V ( x ,  A) be the function determined by the previous theorem. 
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Then for uhost  every a E R1, for a sequence of r -+ O', it follows that { V ( x ,  u-tzr)} 
has a weak limit in L:(R:), denoted b p  V ( x ,  0 )  E L;(R;). Moreover, this lintit jurlc- 

tion V ( x ,  u )  satisfies the followany equation uiz Ry for almost ewey n E R1 : 

P(D,, u )  V ( x ,  u )  = F ( x ,  u) .  (5.3) 

Proof. Let pA(<) be the principal part of the polytiomial P(( ,  A )  considered as a 
polynun~inl in 5. It  is easily seen that the set of X E C 1  such that py(S) z 0 for all 

real ( # O is a finite set, hence for all but finitely many nu E R' one can choose 

i~ E R7' with 1[01 = 1 such that IpX(&,)l 2 7 > 0 for every complex X in a 

neighborhood No of uo. Then by using estimate (5.1), it follows that 

for every X E C, n No, where the function f ' ( X )  was defined early in Section 3. 
By Proposition 3.1 it  follows that f * (n  f i r )  converges to f * ( u )  in L2(RA) 

7 + O + .  By (5.4), it follows that for alrnost every u E R' n Nu the sequence 
{ V ( . ,  o + i ~ ) }  converges weakly to  a function V ( * ,  (T) in L i ( R n )  through a sequence 

T 4 O+. Finally equation (5.3) follows easily from (5.2) and the weak convergence 
of V( . ,  A). The theorem is thus proved. 

We &re now ready to prove our main results: Theorems 2.1 and 2.2. 

Proof of Theorem 2.1. Let V ( x , a )  be the ftinction determined in Theorem 5.3, 

From (4.10) and (5.2) it follows that for almost ?very u E R 1  the function Z(r, a )  
U ( x ,  u )  - V ( x ,  0 )  satisfies the equation 

and also satisfies the following decay condition: 

If for a a E R '  the polynomial P(6, u )  has a real zero, then by a uniqueness theorem 
of Hormander [7, Corollary 2.51, it follows from (5.5) and (5.6) that Z(x ,  u )  = 0 on 
R:. If for a u E R', the polynomial P(4, u )  has no real zeros, then it follows easily 
from (5.5) and (5.6) that  Z ( x , u )  = 0. Therefore, Z ( x ,  u )  = 0 for almost every 
a E R ' .  Thus U ( x ,  u) = V ( x , u )  has compact support in x E B, for a.e. o E R'; 
thus by the inverse Fourier transform it follows that u(x ,  y) has support inside 
B, x Ri. Theorem 2.1 is thus proved. 

Proof of Theorem 2.2. Let &(x) and &(y)  be the standard mollifiers in R: and R:, 
respectively; and let p,(x, y) = & ( x )  $,(y). Define Ce = C * p,  and fl = I* p,. Then 
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by (6 .2) ,  it follows that 

Let ZL; and f; be the components of ii, and fl, respectively. Then one has the 

following scalar equations: 

where 

and (PA(<, A)) is the adjoint matrix of M(<, A). 
By Proposition 3.2 and conditions (2.4) and (2.5), i t  follows that the functions 

g; and u: satisfy a11 the conditions of the functions f and u stated in Theorem 2.1, 

respectively. Therefore, by Theorem 2.1, it follows that the solution u; of (5.7) will 

satisfy u;l(x,y) = 0 for all 1x1 >_ a + 6 .  Finally, observe that u;(x, y) approaches 
uj(x7 y) in L ~ ( R ~ ;  L&,(RZ)) as 6 -+ Of. From this it  follows that uj(x, y) = 0 for all 
1x1 2 a. We thus complete the proof. 

6 Remarks about equations with variable coefficients 

In this final section, we discuss the similar results for partial differential equations 

with the variable coefficients that are equal to constants outside a cylinder. Consider 

the following partial differential operator 

where Q ( D z ,  D,) is a linear differential operator with real constant coefficients, I 
and J are finite sets of indices, and cmp(x, y )  E Cm(R," x Rb) is assumed to be 

bounded and satisfy 

C , ~ ( X , ~ )  e 0 for 1x1 2 b, and (6.2) 

for all a E I, ,B E J ,  and all 0 5 1 ~ 1  5 la1 and 0 5 j 5 ,8 with some constants b 2 
a, 6 > 0. The following result can be proved by using Theorem 2.1 and Proposition 

3.2. 
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Theorem 6.1 Let ~ ~ ( r , y )  and f ( z ,  y) satisfy all the conditions us described in 1 7 ~ 0 -  

rern 2.1, Suppose that L 1~ = f and L rs the operator defined by (6.1) with coeficzents 

c,a satisfying conditions (6.2) and (6.3) above. Suppose ench rrreducible facior of 

Q(<, A) in (6.1) has rcnl cveficients up to a cotnplez constant factor nrtd satzsfies 

the connectednuss condition (G). Then the conclusion of Theorem 2.1 still holds for 

zl with const(mt a > 0 being repli~cecl! by b > 0. 

The proof of this theorem makes use of the followi~~g result. 

Lemma 6.2 Let u(.r, y) E LZ(Rb; LL,(Rr)) urtd X(X,Y) a CW-functz072 sat~sfYzng 

the folloz~izttg: 

(i) ~ ( x ,  y) E 0 when 1x1 2 b; and 

Let p ( x ,  y )  = p, , , (x ,  y )  be as defined in Proposition 3.2, Define 

Then it follows that 

This lemma follows easily from the second estimate of Proposition 3.2 and the 

assumptions on u and X .  

Proof of Theorern 6.1. Lct u, and f, be defined similarly as in the proof of Theorem 

2.2. Observe that 

and each term inside the sulnnlatio~l in (6.5) can be written as 

Therefore, by (6.4) and Proposition 3.2 it follows that the function g,(x, y) satisfies 
all the conditions that the function f (x, y) satisfies. The conclusion on the support 
of u,(x, y) follows then from (6.5) in much the same way as in the proof of Theorem 
2.2. The proof of Theorem 6.1 is thus completed. 

Acknowledgment. We would like to thank an anonymous referee for the helpful 

comment regarding the proof of Theorem 4.1. 
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