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Abstract. Given a numberL ≥ 1, a weaklyL-quasiregular map on a do-
mainΩ in spaceRn is a mapu in a Sobolev spaceW 1,p

loc (Ω;Rn) that satisfies
|Du(x)|n ≤ LdetDu(x) almost everywhere inΩ. In this paper, we study
the problem concerning linear boundary values of weaklyL-quasiregular
mappings in spaceRn with dimensionn ≥ 3. It turns out this problem de-
pends on the powerpof the underlying Sobolev space. Forpnot too far below
the dimensionn we show that a weakly quasiregular map inW 1,p(Ω;Rn)
can only assume a quasiregular linear boundary value; however, for allL ≥ 1
and1 ≤ p < nL

L+1 , we prove a rather surprising existence result that every
linear map can be the boundary value of a weaklyL-quasiregular map in
W 1,p(Ω;Rn).

Mathematics Subject Classification (1991):30C65, 30C70, 35F30, 49J30

1. Introduction

In this paper, we use some techniques recently discovered in study of vec-
torial Hamilton-Jacobi equations in the calculus of variations to investigate
the problem concerning the linear boundary values of weakly quasiregular
mappings on a Lipschitz domainΩ in spaceRn with dimensionn ≥ 3. The
main results of the paper have been recently announced in Yan [28].

We recall that (see,e.g., Astala [2], Iwaniec [11], Iwaniec and Martin
[14]) a mapu from a domainΩ in Rn to Rn is said to beweaklyL-
quasiregular, L ≥ 1 being a constant called the (outer)dilatation of u, if
it belongs to a (local) Sobolev spaceW 1,p

loc (Ω;Rn) for somep ≥ 1 and
satisfies



296 B. Yan

|Du(x)|n ≤ LdetDu(x)(1.1)

for almost everyx ∈ Ω, whereDu = (∂ui/∂xj) denotes the gradient
matrix ofu and|ξ| denotes the matrix norm defined by|ξ| = max|h|=1 |ξh|.
Note that the class of weakly quasiregular mappings in the standard space
W 1,n
loc (Ω;Rn) becomes the class of usual quasiregular mappings (seee.g.

Rickman [24]) and also coincides with the class of mappings with bounded
distortion (see Reshetnyak [23]). Weakly 1-quasiregular maps will be called
theweakly conformalmaps. Clearly, a weakly conformal map is weaklyL-
quasiregular for allL > 1.

In order to study the weaklyL-quasiregular mappings in the framework
of vectorial Hamilton-Jacobi equations in the calculus of variations, we
consider theL-quasiregular setsdefined by (for anyL ≥ 1)

KL = {ξ ∈ Mn×n | |ξ|n ≤ Ldet ξ},(1.2)

whereMn×n denotes the realn × n matrices with norm|ξ| defined above.
WhenL = 1, the setK1 will be called theconformal set. A map u ∈
W 1,p
loc (Ω;Rn) is then weaklyL-quasiregular if and only if it satisfies the

special Hamilton-Jacobi equation

Du(x) ∈ KL a.e. x ∈ Ω.

Closely related to the setKL is an important functionFL onMn×n defined
by

FL(ξ) = max{0, |ξ|n − Ldet ξ}.(1.3)

On one hand, this function characterizes completely the class of weakly
L-quasiregular mappings as mappings inW 1,p

loc (Ω;Rn) that satisfy

FL(Du(x)) = 0 a.e. x ∈ Ω;

on the other hand, functionFL satisfies an important condition ofquasicon-
vexityintroduced in Morrey [16] in the calculus of variations (see also Ball
[3], Ball and Murat [5], Dacorogna [7], Morrey [17]); namely,FL satisfies

FL(ξ) ≤ 1
|Ω|

∫
Ω
FL(ξ + Dφ(x)) dx

∀ ξ ∈ Mn×n, φ ∈ C∞
0 (Ω;Rn).(1.4)

As an easy consequence of property (1.4), one easily shows that if a
weaklyL-quasiregular mapu in W 1,n(Ω;Rn) assumes an affine boundary
valueu|∂Ω = ξx + b then one must haveξ ∈ KL.

One of the main results of this paper is to show this result is also valid for
weaklyL-quasiregular mappings inW 1,p(Ω;Rn) if p is not too far below
the dimensionn. We prove the following theorem.
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Theorem 1.1.For eachL ≥ 1 there exists an indexp = pn(L) < n such
that if a weaklyL-quasiregular mapu in W 1,p(Ω;Rn) assumes an affine
boundary valueu|∂Ω = ξx + b thenξ ∈ KL.

Note that by our later existence theorem (see Theorem 1.3) and a recent
significant conjecture of Iwaniec [12] the optimal numberpn(L) would be
given bypn(L) = nL

L+1 for all n ≥ 3 andL ≥ 1. This can be shown to be
the case ifL = 1 andn is even; we have the following sharper result.

Theorem 1.2.Let dimensionn ≥ 4 be even. Suppose a weakly conformal
mapu inW 1,n/2(Ω;Rn) assumes an affine boundary valueu|∂Ω = ξx+b.
Thenξ ∈ K1 andu ≡ ξx + b a.e. inΩ.

The proof of Theorem 1.1 and 1.2 relies on the existence of certain
quasiconvexfunctions vanishing exactly on the setKL. The existence of
such quasiconvex functions has been established in Müller, Šveŕak and Yan
[20], and Yan and Zhou [29], following important work of Iwaniec [11],
Iwaniec and Sbordone [15] and Iwaniec and Martin [14].

The situation of linear boundary value problem may be completely dif-
ferent for weakly quasiregular mappings in Sobolev spacesW 1,p(Ω;Rn)
for powerp not too close to the dimensionn. We prove the following main
existence result.

Theorem 1.3.Letn ≥ 3, L ≥ 1 and1 ≤ p < nL
L+1 . Then given any affine

mapξx + b there exists a weaklyL-quasiregular mapu in W 1,p(Ω;Rn)
such thatu|∂Ω = ξx + b.

This result includes a completely new result even for weakly conformal
mappings inRn for all dimensionsn ≥ 3. We have the following special
case of Theorem 1.3, which implies that for even dimensionsn the power
n/2 is optimal for the conclusion of Theorem 1.2.

Corollary 1.4. Letn ≥ 3. Then every affinemap can be the boundary value
of a weakly conformal map inW 1,p(Ω;Rn) for any1 ≤ p < n/2.

More general boundary data can be considered for weakly quasiregular
mappings. Throughout this paper, we say a mapϕ ∈ W 1,p(Ω;Rn) ispiece-
wise affineif there exist at most countably many disjoint open subsetsΩj
of Ω whose union has full measure such that eachϕ|Ωj is affine. We shall
prove the following stronger version of Theorem 1.3.

Theorem 1.5.Let n ≥ 3, L ≥ 1 and1 ≤ p < nL
L+1 . Then, for any piece-

wise affine mapϕ ∈ W 1,p(Ω;Rn) and ε > 0, there exists a weaklyL-
quasiregular mapuε ∈ ϕ + W 1,p

0 (Ω;Rn) such that‖uε − ϕ‖Lp(Ω) < ε.



298 B. Yan

The proof of Theorem 1.3 relies on some important ideas derived from
new investigations of Gromov’s method of convex integration (see Gromov
[10]). Such investigations have been initiated and successfully applied to the
existence study of vectorial Hamilton-Jacobi equations of the formDu(x) ∈
K by Müller andŠveŕak [18], [19]; a similar method has been recently
applied to the vectorial Hamilton-Jacobi equations of more general form
L(x, u(x), Du(x)) = 0 by Müller and Sychev [21]. A different approach to
the existence study for vectorial Hamilton-Jacobi equations uses the Baire
category method and has been pursued by Dacorogna and Marcellini [8],
[9].

In this paper, we establish a general existence theorem (Theorem 3.2) on
the Hamilton-Jacobi equationDu(x) ∈ K with affine boundary conditions
for a given setK which may be unbounded, a case not covered by the general
study in papers [8], [9], [18], [19], [21] mentioned above. Our existence
theorem is given in a form that is sufficient for the proof of Theorems
1.3 and 1.5; some generalization can be established to cover more general
Hamilton-Jacobi equations but will not be included in the present paper.

Notation and Preliminaries

Before we proceed to prove the main theorems in following sections, we
explain some notation and preliminaries.

Let m, n ≥ 1 be integers. We useMm×n to denote the space of all real
m × n matrices with the operator norm|ξ| = max|h|=1 |ξh|. We use rankξ
to denote the rank of matrixξ.

Givena ∈ Rm, b ∈ Rn, leta⊗ b be the rank-one matrix with elements
(a⊗b)ij = aibj . If m = n,we usedet ξ to denote the determinant of square
matrix ξ and also useD = diag(d1, · · · , dn) to denote the diagonal matrix
D ∈ Mn×n with dii = di anddij = 0 for i /= j.

We shall always assumeΩ is a bounded open domain inRn with Lips-
chitz boundary∂Ω. For any measurable setE in Rn we use|E| to denote
its Lebesgue measure. We also useĒ, intE, convE andχE to denote, re-
spectively, closure, interior, closed convex hull and characteristic function
of any given setE.

For 1 ≤ p ≤ ∞, let W 1,p(Ω;Rm) be the usual Sobolev space of map-
pings fromΩ to Rm with norm (see [1], [17])

‖u‖W 1,p = ‖u‖Lp + ‖Du‖Lp ,

whereDu = (∂ui/∂xj), i = 1, · · · ,m, j = 1, · · · , n, is the gradient
matrix of u. Let W 1,p

loc (Ω;Rm) be the local Sobolev space. Note that for
any Lipschitz domainΩ one can identify the spaceW 1,∞(Ω;Rm) with the
space of all Lipschitz continuous mappings fromΩ to Rm. We also denote
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byW 1,p
0 (Ω;Rm) the completion ofC∞

0 (Ω;Rm), the set of all smooth maps
with compact support inΩ, in W 1,p(Ω;Rm) under the norm defined above.

Two mapsu, v in W 1,p(Ω;Rm) are said to have the same boundary
value and writeu|∂Ω = v|∂Ω or u ∈ v + W 1,p

0 (Ω;Rm) provided that
u − v ∈ W 1,p

0 (Ω;Rm).
Finally, we state a simple result frequently used throughout the paper;

the proof is elementary and is left to the interested reader.

Lemma 1.6.Let {Ωj} be a set of at most countably many disjoint open
subsets ofΩ. Letu ∈ W 1,p(Ω;Rm) anduj ∈ W 1,p(Ωj ;Rm) satisfy that
uj |∂Ωj

= u|∂Ωj
for each indexj. Suppose

∑
j ‖uj‖pW 1,p < ∞ if p < ∞ or

supj ‖uj‖W 1,∞ < ∞ if p = ∞. Then the map̃u = χΩ\∪jΩj
u+

∑
j χΩjuj

belongs tou + W 1,p
0 (Ω;Rm).

2. Quasiconvex functions vanishing on quasiregular sets

In this section, we aim to prove Theorems 1.1 and 1.2.
LetF :Mm×n → R be a function. According to Morrey [16],F is said

to bequasiconvexonMm×n provided the property

F (ξ) ≤ 1
|D|

∫
D
F (ξ + Dϕ(x)) dx(2.1)

holds for allξ ∈ Mm×n, bounded domainsD ⊂ Rn, and all smooth maps
ϕ ∈ C∞

0 (D;Rm). Given any functionf :Mm×n → R, we define the
quasiconvexificationof f , denoted byf qc, to be the function given by

f qc(ξ) = inf
ϕ∈C∞

0 (D;Rm)

1
|D|

∫
D
f(ξ + Dϕ(x)) dx.(2.2)

It is well-known that the functionf qc is independent of the domainD and is
always quasiconvex assumingf is continuous; see,e.g., [3], [7], [16], [17].

If F :Mm×n → R is quasiconvex function and satisfies

|F (ξ)| ≤ C(|ξ|p + 1) ξ ∈ Mm×n,(2.3)

whereC > 0, p ≥ 1 are some constants, we observe that, by a density
argument (seee.g. [5], [7], [17]), property (2.1) also holds for allϕ ∈
W 1,p

0 (D;Rm). From this observation, we easily have the following result.

Proposition 2.1.Let F :Mm×n → R be quasiconvex and satisfy(2.3).
SupposeK ⊂ Mm×n is a set such thatF |K = 0. If u ∈ W 1,p(Ω;Rm)
satisfiesu|∂Ω = ξx+bandF (Du(x)) = 0a.e. inΩ, thenonehasF (ξ) ≤ 0.
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We now consider theL-quasiregular setKL ⊂ Mn×n defined above by
(1.2). As defined by (1.3), letFL:Mn×n → R be the function given by

FL(ξ) = max{0, |ξ|n − Ldet ξ}.
Then, by (1.4),FL is quasiconvex and one easily sees thatFL vanishes
exactly onKL; note also that the growth ofFL is of n-th power:0 ≤
FL(ξ) ≤ C |ξ|n.

Another important property of this functionFL is that it easily satisfies
the so-calledLn-mean coercivitycondition (see,e.g., [13], [30]):∫

D
FL(Dϕ(x)) dx ≥

∫
D

|Dϕ(x)|n dx ∀ ϕ ∈ C∞
0 (D;Rm).(2.4)

Existence of the quasiconvex functions with growth below the natural
powern and vanishing exactly on the quasiregular set is the main content of
our next theorem; we refer to [20], [30] for the proof and further discussions.

Theorem 2.2 ([20], [30]).Letn ≥ 3. Then for everyL ≥ 1 there exists a
powerpn(L) ∈ [n/2, n) such that for eachp ≥ pn(L) one can always have
a quasiconvex functiong satisfying

0 ≤ g(ξ) ≤ |ξ|p, g(ξ) = 0 ⇐⇒ ξ ∈ KL.(2.5)

Furthermore, ifn is even andL = 1, the optimal powerpn(1) equalsn/2.

Remark.1) Existence of quasiconvex functions satisfying (2.5) follows from
property (2.4) and general results established in Yan and Zhou [30] using
the important technique ofnonlinear Hodge decompositiondiscovered in
Iwaniec [11] and Iwaniec and Sbordone [15]. In fact, by [30], Theorem
2.1, one can chooseg to be the quasiconvexification function(F p/nL )qc for
p ≥ pn(L).

2) The special case whenn is even andL = 1 has been considered
by Müller, Šveŕak and Yan in [20], using a special linear structure of the
conformal setK1 and following the important work of Iwaniec and Martin
[14].

3) In view of some recent results in Iwaniec [12] (see also Astala [2]),
we conjecture that the optimal powerpn(L) in the theorem is given by
pn(L) = nL

L+1 for all n ≥ 3, L ≥ 1.

Proof of Theorem 1.1

Let pn(L) < n be the number determined in Theorem 2.2 and letg be
the function satisfying (2.5) withp = pn(L). Assumeu is a weaklyL-
quasiregular map inξx + b + W 1,p

0 (Ω;Rn), wherep = pn(L). Since
g(Du(x)) = 0 a.e. inΩ, by Proposition 2.1, one hasg(ξ) ≤ 0 and hence
ξ ∈ KL, as claimed. This completes the proof.
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Proof of Theorem 1.2

Let n ≥ 4 be even, and letu ∈ W 1,n/2(Ω;Rn) be a weakly conformal
map andu|∂Ω = ξx + b. As in the proof of Theorem 1.1 it follows from
Proposition 2.1 and Theorem 2.2 thatξ ∈ K1.Therefore the map̃u = χΩu+
χRn\Ω (ξx+ b) is a weakly conformal map inW 1,n/2

loc (Rn;Rn). By a well-

known result of Iwaniec and Martin [14],̃u must belong toW 1,n
loc (Rn;Rn).

Then a classical result of Liouville’s theorem (see Reshetnyak [23]) shows
ũ is a Möbius transformation; hence,ũ ≡ ξx + b. The proof of Theorem
1.2 is now completed.

3. A general existence theorem

In this section we establish an existence theorem for vectorial Hamilton-
Jacobi equation of the form

Du(x) ∈ K, a.e. x ∈ Ω,

whereK is a given subset ofMm×n. In studying equations of this type, it
is important to investigate certain special structures of the setK.

Definition 3.1.Given any setK ⊂ Mm×n, define setsLj(K) for j =
0, 1, 2, · · · inductively as follows:L0(K) = K and, forj = 0, 1, · · · ,
Lj+1(K) = {tξ + (1 − t)η | t ∈ [0, 1], ξ, η ∈ Lj(K), rank(ξ − η) ≤ 1}.
Define the lamination hull of setK to be the set given by

L(K) = ∪∞
j=0Lj(K).(3.1)

Remark.Clearly, from the definition,Lj+1(K) = L1(Lj(K)) ⊇ Lj(K)
for all j = 0, 1, · · · . We refer to,e.g., [4], [7], [8], [9], [18], [19], [22], [29],
[30], [31] for more properties of this and other generalized convex hulls in
the calculus of variations.

Definition 3.2.For each1 ≤ p ≤ ∞, defineβp(K) to be the set of all
matricesξ in Mm×n such that there exists a mapu = uξ ∈ W 1,p(Ω;Rm)
satisfying

Du(x) ∈ K a.e. x ∈ Ω, u|∂Ω = ξx.(3.2)

Remark.1) If ξ ∈ K, we can always chooseuξ ≡ ξx; henceK ⊆ βp(K).
Clearly, we always haveβp(K) ⊆ βq(K) for any1 ≤ q < p ≤ ∞.

2) The following result shows that the setβp(K) is independent of the
domainΩ and that the mapu ∈ ξx+W 1,p

0 (Ω;Rm) can be chosen in such
a way that‖u − ξx‖Lp(Ω) is arbitrarily small.
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Lemma 3.1.Let ξ ∈ βp(K) and letuξ be the map in the definition above.
Then, for any bounded open setΣ in Rn and anyε > 0, there exists a map
v(y) ∈ ξy + W 1,p

0 (Σ;Rm) such that‖v − ξy‖Lp(Σ) < ε and

1
|Σ|

∫
Σ
g(Dv(y)) dy =

1
|Ω|

∫
Ω
g(Duξ(x)) dx

for any continuous functiong with |g(η)| ≤ C(|η|p + 1).

Proof. Without loss of generality, assume0 ∈ Ω.Fix a numberδ > 0.Since
Σ is open, for anyy ∈ Σ, there existsεy between0 andδ such that the sets
Ωy,ε ≡ y + εΩ̄ are contained inΣ for all 0 < ε < εy. Note that all such
sets{Ωy,ε} form a Vitali cover ofΣ; hence, by the Vitali covering lemma,
there exist disjoint sets{yk + εkΩ̄} and a null setN such that0 < εk < δ
andΣ = ∪k(yk + εkΩ̄) ∪ N. Definev = vδ:Σ → Rn by

vδ(y) =
{
ξy + εkuξ(

y−yk
εk

) if y ∈ yk + εkΩ for somek,
ξy otherwise inΣ.

Then it is easy to see thatvδ(y) ∈ ξy + W 1,p
0 (Σ;Rm). Easy computation

also shows that

1
|Σ|

∫
Σ
g(Dvδ(y)) dy =

1
|Ω|

∫
Ω
g(Duξ(x)) dx

for any continuous functiongwith |g(η)| ≤ C(|η|p+1).Finally, by choosing
δ > 0 sufficiently small, one can make‖vδ − ξy‖Lp(Σ) < ε.

We now state our main existence theorem of this section.

Theorem 3.2.LetK ⊂ Mm×n be a closed set and letA ⊂ βp(K) be a set
satisfying

c0 = sup
ξ∈A

1
|Ω|

∫
Ω

|Duξ|p dx < ∞,(3.3)

whereuξ ∈ W 1,p(Ω;Rm) is some map satisfying(3.2). Suppose the lami-
nation hullB = L(A) is open and bounded. ThenB ⊂ βp(K).

From this theorem, we easily have the following result; we refer to Müller
andŠveŕak [18] for similar results about open relations and to Gromov [10]
and Müller and Sychev[21] for other related results.

Corollary 3.3. LetA ⊂ Mm×n be a bounded set such thatL(A) is open.
ThenL(A) ⊂ β∞(Ā).

Proof. The result follows easily from the theorem withK = Ā.
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The following result is essential for proving our general existence the-
orem. Other versions of the result can be found in [8], [9], [18], [19] and
[21]; a similar result in the casem = 1 has been used by Cellina in [6].

Lemma 3.4.Let U be an open set inMm×n and let η ∈ U and η =
tη1 +(1− t)η2 with t ∈ (0, 1) and rank(η1 − η2) = 1. Then, for anyε > 0,
there exist piece-wise affinemapu ∈ ηx+W 1,∞

0 (Ω;Rm) and finitelymany
pointsη3, · · · , ηs inU such thatDu(x) ∈ {η1, η2, η3, · · · , ηs} a.e. inΩ and
the measure of the set{x ∈ Ω |Du(x) /= η1, Du(x) /= η2} is less thanε.
Proof. The proof follows closely some ideas in [6], [21]. We proceed in
several steps.

1. Let η1 = η2 + a ⊗ b, wherea ∈ Rm, b ∈ Rn and |b| = 1. Then
η1 − η = a ⊗ b1, η2 − η = a ⊗ b2, whereb1 = (1 − t)b, b2 = −tb.
Sinceη ∈ U andU is open, we can chooseb3, · · · , bs in Rn such that
ηj ≡ η + a ⊗ bj ∈ U for all j = 3, · · · , s, eachbj is extreme point of
the convex hullH ≡ conv{b1, b2, · · · , bs}, and0 ∈ intH. Note that we can
chooses = n + 2.

2. For eachk = 1, 2, · · · , let {bk3, · · · , bks} be a set of points contained in
intH such that|bkj − b1| < 1/k and0 ∈ intconv{b1, b2, bk3, · · · , bks} for all
k. For simplicity, we also writebi = bki for i = 1, 2 andk = 1, 2, · · · .

3. For each givenk = 1, 2, · · · , consider the function

wk(x) = −1 + max
1≤j≤s

bkj · x, x ∈ Rn.(3.4)

It is clear thatwk is piece-wise affine, Lipschitz continuous onRn and
satisfiesDwk ∈ {b1, b2, bk3, · · · , bks} a.e. inRn. From the fact that0 ∈
intconv{bk1, · · · , bks}, the setΣ = {x ∈ Rn |wk(x) < 0} is a bounded
open polyhedral convex set containing0 andwk|∂Σ = 0 (seee.g. [25]).
Therefore, we have proved that there exist a Lipschitz bounded domainΣ
in Rn and a piece-wise affine functionw = wk ∈ W 1,∞

0 (Σ) such that
Dw ∈ {b1, b2, bk3, · · · , bks} a.e. inΣ.

4. A similar argument using the Vitali covering lemma as the one used in
the proof of Lemma 3.1 shows that there exists a piece-wise affine function
hk ∈ W 1,∞

0 (Ω) with Dhk ∈ {b1, b2, bk3, · · · , bks} a.e. inΩ. Note that it
is important here that we allow our piece-wise affine maps to be affine
on countably many sets. For eachj = 1, 2, · · · , s, defineΩkj = {x ∈
Ω |Dhk(x) = bkj }.

5. We modify the values ofhk on the setΩkj for eachj = 3, · · · , s
so that the gradients belong to the set{b1, b2, · · · , bs}. To do this, letj ∈
{3, · · · , s} be given, and letΩkj =

∑∞
ν=1 Σ

k
jν be such thathk|Σk

jν
is affine

andDhk|Σk
jν

= bkj for all ν = 1, · · · . Sincebkj ∈ intconv{b1, b2, · · · , bs},

we have0 ∈ intconv{b1 − bkj , · · · , bs − bkj }. As in Steps 3 and 4, we have a
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piece-wise affine Lipschitz functioñhν ∈ W 1,∞
0 (Σkjν) such thatDh̃ν(x) ∈

{b1 −bkj , b2 −bkj , · · · , bs−bkj } a.e. inΣkjν . Definevkj = hk+
∑∞
ν=1 χΣk

jν
h̃ν

onΩkj . Thenvkj ∈ hk +W 1,∞
0 (Ωkj ) andDvkj ∈ {b1, b2, · · · , bs} a.e. inΩkj .

Let

Gkij = {x ∈ Ωkj |Dvkj (x) = bi}, σkij = |Gkij |/|Ωkj |.

Sincevkj ∈ hk + W 1,∞
0 (Ωkj ), we easily see that for allk = 1, 2, · · ·

bkj =
s∑
i=1

σkij bi,

s∑
i=1

σkij = 1.(3.5)

Note that, for anyj ≥ 3, bkj → b1 ask → ∞ and, by the assumption of our
selection,b1 is an extreme point of conv{b1, b2, · · · , bs}. We easily obtain
from (3.5) that for eachj = 3, · · · , s

lim
k→∞

σkij = 0, ∀ i = 2, 3, · · · , s.(3.6)

6. Definefk = χΩk
1 ∪Ωk

2
hk+

∑s
j=3 χΩk

j
vkj onΩ. Then,fk is piece-wise

affine and belongs toW 1,∞
0 (Ω), and one hasDfk(x) ∈ {b1, b2, · · · , bs} a.e.

in Ω. Note that, for anyi = 3, · · · , s, the set{x ∈ Ω |Dfk(x) = bi} equals
(up to a set of measure zero)∪sj=3G

k
ij , where setsGkij are defined in Step 5.

Hence, by (3.6), we have

lim
k→∞

|{x ∈ Ω |Dfk(x) = bi}| = 0 ∀ i ≥ 3.

This proves the measure of the set{x ∈ Ω |Dfk(x) /∈ {b1, b2}} tends
to zero ask → ∞. We choose a largēk such that|{x ∈ Ω |Dfk̄(x) /∈
{b1, b2}}| < ε.

7. Finally, letu(x) ≡ ηx + fk̄(x) a for x ∈ Ω. We easily see thatu is a
piece-wise affine map and satisfies all the requirements of the lemma. This
completes the proof.

Proposition 3.5.LetB = L(A) be an open set inMm×n. Then for anyξ ∈
B andε > 0, there exist a piece-wise affine mapu ∈ ξx + W 1,∞

0 (Ω;Rm)
and two sets of finitely many points{α1, α2, · · · , αr} ⊂ A and{ξ1, ξ2, · · · ,
ξq} ⊂ B such that

Du(x) ∈ {α1, · · · , αr} ∪ {ξ1, · · · , ξq}, a.e. x ∈ Ω

and the measure|{x ∈ Ω |Du(x) /∈ {α1, α2, · · · , αr}}| < ε.
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Proof. Given ξ ∈ B = L(A), we haveξ ∈ Lk(A) ⊂ B, wherek is
the minimal such index. Thenξ = tη1 + (1 − t)η2 for somet ∈ (0, 1)
and η1, η2 ∈ Lk−1(A) with rank(η1 − η2) = 1. SinceB is open and
ξ ∈ B, by Lemma 3.1, we have a mapu1 ∈ ξx + W 1,∞

0 (Ω;Rm) and a set
{η3, · · · , ηs} ⊂ B such that

Du1(x) ∈ {η1, η2} ∪ {η3, · · · , ηs} a.e. x ∈ Ω;
|{x ∈ Ω |Du1(x) /∈ {η1, η2}}| < ε1 < ε.

If k = 1, the result is proved since thenη1, η2 ∈ A. If k ≥ 2, we can apply
similar arguments to eachηj ∈ Lk−1(A) ⊂ B and to each component of
the setΩj = {x ∈ Ω |Du1(x) = ηj} whereu1 is affine to adjust the value
Du1(x) = ηj to values in the setLk−2(A) for mostx ∈ Ωj ,wherej = 1, 2.
Repeating this argument in a finite number of steps, one can eventually reach
at the conclusion of the proposition.

Assume nowA ⊂ βp(K) satisfies (3.3) andB = L(A) is open.
Let ξ ∈ B and letu be a map determined in the previous proposition.

Let Σ = {x ∈ Ω |Du(x) ∈ A} = ∪∞
j=1Σj , whereu|Σj = αi(j)x + dj

is affine for some1 ≤ i(j) ≤ r. By Lemma 3.1 and condition (3.3), there
existsvj ∈ u + W 1,p

0 (Σj ;Rm) such thatDvj(x) ∈ K a.e. inΣj and∫
Σj

|Dvj |p dx ≤ c0 |Σj |.
Let ũ = χΩ\Σu +

∑∞
j=1 χΣjvj . Then ũ ∈ ξx + W 1,p

0 (Ω;Rm) and
satisfies

Dũ(x) ∈ K ∪ {ξ1, · · · , ξq};(3.7)

Ωε = {x ∈ Ω |Dũ(x) ∈ {ξ1, · · · , ξq}};(3.8)

|Ωε| < ε;(3.9) ∫
Ω\Ωε

|Dũ|p dx ≤ c0 |Ω \ Ωε|.(3.10)

Proof of Theorem 3.2

The proof is based on the previous construction and the boundedness as-
sumption onB = L(A). We assume, for a constantλ < ∞, |η| < λ for all
η ∈ B.

Let ξ ∈ B be given. We use the construction described above. Note that,
in addition to (3.7)–(3.10), it also follows that

∫
Ωε

|Dũ|p dx ≤ λp |Ωε|.
In the following, let εk → 0+ be a decreasing sequence satisfying∑
k ε

1/p
k < ∞.

Let u1 ∈ ξx + W 1,p
0 (Ω;Rm) be the functionũ defined above with

ε = ε1. We modify the values ofu1 on each open set whereDu1 /∈ K.
Let Ω1 = Ωε be the set defined in the construction. WriteΩ1 = ∪∞

j=1∆j
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such thatu1|∆j = ξjx + dj andξj ∈ B. For eachj, we use the previous
construction forξj ∈ B with domain∆j and numberε = ε2/2j to obtain a
mapṽj ∈ u1 + W 1,p

0 (∆j ;Rm) such that

Dṽj(x) ∈ K ∪ {ξ′
1, · · · , ξ′

q′};(3.11)

∆′
j = {x ∈ ∆j |Dṽj(x) ∈ {ξ′

1, · · · , ξ′
q′}};(3.12)

|∆′
j | < ε2/2j ;(3.13) ∫

∆j\∆′
j
|Dṽj |p dx ≤ c0 |∆j \ ∆′

j |.(3.14)

LetΩ2 = ∪∞
j=1∆

′
j . Then|Ω2| < ε2. Defineu2 = χΩ\Ω1u1 +

∑∞
j=1 χ∆j ṽj .

Thenu2 ∈ ξx+W 1,p
0 (Ω;Rm) satisfies thatu2 = u1 onΩ \Ω1,Du2(x) ∈

B a.e. inΩ2, Du2(x) ∈ K for a.e. inΩ \ Ω2, and
∫
Ω1\Ω2

|Du2|p dx ≤
c0 |Ω1 \ Ω2|.

We then modify the values ofu2 on the setΩ2 as we did foru1 onΩ1
to obtainu3 andΩ3. Continuing in this way, we obtain a sequence{uk} in
ξx + W 1,p

0 (Ω;Rm) and open setsΩk ⊂ Ωk−1 ⊂ Ω such that

|Ωk| < εk;(3.15)

Duk(x) ∈ B a.e. inΩk;(3.16)

Duk(x) ∈ K a.e. inΩ \ Ωk;(3.17)

uk+1 = uk onΩ \ Ωk;(3.18) ∫
Ωk\Ωk+1

|Duk+1|p dx ≤ c0 |Ωk \ Ωk+1|.(3.19)

First of all, note that conditions (3.16), (3.19) yield∫
Ωk

|Duk+1|p dx ≤ c0 |Ωk \ Ωk+1| + λp |Ωk+1| ≤ C0 |Ωk|,

whereC0 = max{c0, λp}. Hence, by (3.18),

‖Duk+1 − Duk‖Lp(Ω) = ‖Duk+1 − Duk‖Lp(Ωk)

≤ 2C1/p
0 |Ωk|1/p.(3.20)

Furthermore, by (3.15)–(3.19), we easily obtain that∫
Ω |Duk+1|p dx ≤ C0 |Ω|;(3.21) ∫

Ω distp(Duk(x);K) dx ≤ C ′ |Ωk| < C ′ εk,(3.22)

whereC ′ is a constant and dist(η;K) is the distance function to the setK.

Finally, conditions (3.20), (3.21) and the convergence of
∑
k ε

1/p
k imply

that the sequence{uk} is a Cauchy sequence inξx + W 1,p
0 (Ω;Rm). Let

ū ∈ ξx + W 1,p
0 (Ω;Rm) be the limit of this sequence. SinceK is closed,
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condition (3.22) impliesDū(x) ∈ K for almost everyx ∈ Ω. This proves
ξ ∈ βp(K); hence,B ⊂ βp(K).

The proof of Theorem 3.2 is now completed.

Remark. From (3.21) in the proof above we easily see that the solution
ū ∈ ξx + W 1,p

0 (Ω;Rm) obtained in the proof also satisfies

1
|Ω|

∫
Ω

|Dū|p dx ≤ C0 ≡ max{c0, sup
η∈B

|η|p}.(3.23)

4. Linear boundary values of weakly quasiregular mappings

In this section, we prove main results Theorems 1.3 and 1.5.
To apply the general existence theorem proved before, we introduce some

notations.
Given a numberλ > 0, define

R(n) = {ξ ∈ Mn×n | |ξ|n = | det ξ|};(4.1)

Aλ = {ξ ∈ R(n) | |ξ| < λ};(4.2)

Bλ = {ξ ∈ Mn×n | |ξ| < λ};(4.3)

SO(n) = {ξ ∈ R(n) | det ξ = 1}.(4.4)

It is easy to see that the conformal setK1 = {ξ ∈ R(n) | det ξ ≥ 0}.
We have the following result.

Proposition 4.1.Ln−1(Aλ) = Bλ. ThereforeBλ = L(Aλ) is an open set.

Proof. The proof follows from a refinement of the argument in Yan [27].
SinceAλ ⊂ Bλ andBλ is convex and henceL(Aλ) ⊆ Bλ, it suffices
to showBλ ⊆ Ln−1(Aλ). Let ξ ∈ Bλ, ξ /= 0. By singular value de-
compositions of matrices, there existQ1, Q2 ∈ SO(n) such thatξ =
Q1diag(σ1, · · · , σn)Q2, where|σ1| ≤ · · · ≤ |σn|, σn /= 0 and|σn| < λ.
Let R2 = σnQ2; then

ξ = Q1diag(ε1, · · · , εn−1, 1)R2,(4.5)

whereεi = σi
σn

∈ [−1, 1] for i = 1, · · · , n− 1. Let, for j = 0, 1, · · · , n− 1,

Sj={diag(ε1, · · · , εn) | |εi|≤1, ∀ i ≥ 1; |εk| = 1, ∀ k ≥ j + 1; εn = 1}.
(4.6)
Note that anyη = diag(ε1, · · · , εn) ∈ Sj can be written asη = tη+ + (1 −
t)η− with t = (1 + εj)/2 ∈ [0, 1] and

η± = diag(ε1, · · · , εj−1,±1, εj+1, · · · , εn) ∈ Sj−1;
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clearly, rank(η+−η−) = 1.Hence,Sj ⊆ L1(Sj−1) for j = 1, 2, · · · , n−1.
This provesSn−1 ⊆ Ln−1(S0). Finally, by (4.5), we have

ξ ∈ Q1 Sn−1 R2 ⊆ Q1 Ln−1(S0)R2 ⊆ Ln−1(Q1 S0 R2) ⊆ Ln−1(Aλ).

ThereforeBλ ⊆ Ln−1(Aλ); the proof is completed.

Proposition 4.2.Letn ≥ 3,L ≥ 1 and1 ≤ p < nL
L+1 , and letB be the open

unit ball inRn. Then for anyξ ∈ R(n) there exists a weaklyL-quasiregular
mapuξ ∈ ξx + W 1,p

0 (B;Rn) such that
1

|B|
∫
B

|Duξ|p dx ≤ C |ξ|p,
whereC is a constant depending only onn, L andp.

Proof. Let ξ ∈ R(n) be given. Ifξ ∈ K1 we chooseuξ ≡ ξx. Assume
ξ ∈ R(n) \ K1. Define

uξ(x) =
ξx

|x|δ , δ =
L + 1
L

, ∀ x /= 0.(4.7)

Since1 ≤ p < nL
L+1 , an elementary computation shows thatuξ ∈ W 1,p(B;

Rn),Duξ(x) ∈ KL (in factDuξ(x) ∈ ∂KL) for all x /= 0 anduξ|∂B = ξx.
Furthermore, using the formula|Duξ(x)| = |x|−δ|ξ|, one easily has

1
|B|

∫
B

|Duξ|p dx ≤ cn,p,δ |ξ|p.
This completes the proof. Finally let us notice that the mapsuξ we have
used in the proof also satisfyDuξ(x) ∈ K1 ∪ ∂KL for a.e.x ∈ B.

Proof of Theorem 1.3

Let ξ ∈ Mn×n be given. We assumeξ /= 0. Let λ = 2|ξ|. Thenξ ∈ Bλ.
From Proposition 4.1,L(Aλ) = Bλ is open and bounded; one also has
supη∈Bλ

|η|p ≤ C1 |ξ|p. Also, from Proposition 4.2, the setA = Aλ ⊂
βp(KL) satisfies the condition (3.3) in Theorem 3.2 with constantc0 ≤
C2 |ξ|p. Therefore, Theorem 3.2 impliesξ ∈ βp(KL). This proves the the-
orem.

Using Lemma 3.1 and the remark following the proof of Theorem 3.2,
we easily obtain the following result from Theorem 1.3.

Corollary 4.3. Let n ≥ 3, L ≥ 1 and 1 ≤ p < nL
L+1 . Then, for anyξ ∈

Mn×n, b ∈ Rn and ε > 0, there exists a weaklyL-quasiregular map
uε ∈ ξx + b + W 1,p

0 (Ω;Rn) satisfying∫
Ω

|Duε|p dx ≤ C3 |ξ|p |Ω|, ‖uε − ξx − b‖Lp(Ω) < ε,(4.8)

whereC3 is a constant depending only onn andp.
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Proof of Theorem 1.5

Letn ≥ 3,L ≥ 1 and1 ≤ p < nL
L+1 . Letϕ ∈ W 1,p(Ω;Rn) be a piece-wise

affine map. LetΩ = ∪∞
j=1Ωj ∪ N , |N | = 0, be such thatϕ|Ωj = ξjx + bj

is affine for allj ≥ 1. The conditionϕ ∈ W 1,p(Ω;Rn) implies

∞∑
j=1

|ξj |p |Ωj | < ∞.(4.9)

We apply Corollary 4.3 to eachξj , bj andΩj and obtain weaklyL-quasireg-
ular mapsuj ∈ ϕ + W 1,p

0 (Ωj ;Rn) satisfying∫
Ωj

|Duj |p dx ≤ C3 |ξj |p |Ωj |, ‖uj − ϕ‖Lp(Ωj) <
ε

2j/p
.

Then it is easily seen that the mapu =
∑
j χΩjuj belongs toϕ+W 1,p

0 (Ω;
Rn), is weaklyL-quasiregular and satisfies‖u − ϕ‖Lp(Ω) < ε. The proof
is completed.

Finally, from the previous proofs and the note in the proof of Proposition
4.2, we easily obtain the following slightly stronger result.

Theorem 4.4.Let n ≥ 3, L ≥ 1 and1 ≤ p < nL
L+1 . Then, for any piece-

wise affine mapϕ ∈ W 1,p(Ω;Rn) and ε > 0, there exists a mapuε ∈
ϕ + W 1,p

0 (Ω;Rn) such thatDuε(x) ∈ K1 ∪ ∂KL a.e. inΩ and ‖uε −
ϕ‖Lp(Ω) < ε.

Remark.We don’t know whether the setK1 ∪ ∂KL in this theorem can be
replaced simply by∂KL.

Acknowledgement.The author would like to thank Tadeusz Iwaniec and Vladimı́r Šveŕak
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