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Abstract

We study the solvability of special vectorial Hamilton–Jacobi systems of the formF(Du(x))= 0
in a Sobolev space. In this paper we establish the general existence theorems for certain D
problems using suitable approximation schemes calledW1,p-reduction principles that generalize t
similar reduction principle for Lipschitz solutions. Our approach, to a large extent, unifies the ex
methods for the existence results of the special Hamilton–Jacobi systems under study. The
relies on a new Baire’s category argument concerning the residual continuity of a Baire-one fu
Some sufficient conditions forW1,p-reduction are also given along with certain generalization
some known results and a specific application to the boundary value problem for special
quasiregular mappings.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we study the Dirichlet problem for a special class of Hamilton–Ja
systems of the type:{

F(Du(x))= 0, x ∈Ω,
u(x)= ϕ(x), x ∈ ∂Ω, (1.1)
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whereΩ is a bounded open set inRn andu :Ω → Rm is a unknown vector field. Her
Du(x) is the Jacobi matrix ofu defined as anm × n matrix function by (Du)ij =
∂ui/∂xj , 1 � i �m, 1 � j � n, andF, ϕ are given in the problem.

Whenm = 1 the unknownu is a scalar function and problem (1.1) becomes a spe
case of the time-independent equations; in this case, the notion of viscosity so
has been successfully introduced and quite extensively studied, cf., the monogr
P.-L. Lions [8] and also [2,3].

Recently, the Hamilton–Jacobi systems for vector-valued functions have attra
great deal of attention in studying variational problems in the calculus of variation
nonlinear elasticity and in modeling phase transition problems in materials scienc
Dacorogna and Marcellini [4,5], Müller [9], and Müller and Šverák [10,11]. Most of
existence results for such systems have been established for solutions that are L
continuous. Two most efficient approaches have been developed largely based on a
category method (cf., [4,5,15]) and on a convex integration method of Gromov [
initiated by Müller and Šverák in [10] (see also [11–13]). Note that both methods
essentially on the suitable approximation schemes.

In the present paper, we study a rather weak notion of almost everywhere so
to the Dirichlet problem (1.1) in a Sobolev space. For such solutions, the zero set
HamiltonianF plays a descriptive role. Therefore, we let

K = F−1(0)= {
ξ ∈ Mm×n | F(ξ)= 0

}
,

whereMm×n is the space ofm × n matrices. For a vector fieldu :Ω → Rm, we write
u ∈W1,p(Ω; Rm) if each component ofu belongs to the usual Sobolev spaceW1,p(Ω).
Similarly, defineW1,p

0 (Ω; Rm) to be the closure inW1,p(Ω; Rm) of the classC∞
0 (Ω; Rm)

of vector fields fromΩ to Rm that are smooth and have compact support inΩ . We say two
functionsu,v inW1,p(Ω; Rm) to have the same boundary values and writeu= v on∂Ω or
u|∂Ω = v|∂Ω provided thatu− v ∈W1,p

0 (Ω; Rm). Givenv ∈W1,p(Ω; Rm), we denote by

v +W1,p
0 (Ω; Rm) theDirichlet classof all u ∈W1,p(Ω; Rm) having the same bounda

value asv. Note that for anyu ∈ W1,p(Ω; Rm) the Jacobi matrixDu(x) is defined for
almost everyx ∈Ω , each element being also anLp(Ω) function.

Definition 1.1. Let ϕ ∈ W1,p(Ω; Rm). By a W1,p-(almost everywhere) solution to the
Dirichlet problem (1.1) we mean a functionu ∈ ϕ+W1,p

0 (Ω; Rm) that satisfiesDu(x) ∈K
for almost everyx ∈Ω , whereK = F−1(0). Moreover, define the solution set to be

Spϕ (Ω;K)= {
u ∈ ϕ +W1,p

0 (Ω; Rm) |Du(x) ∈K a.e.x ∈Ω}
. (1.2)

Although it is an ultimate goal to characterize all the boundary dataϕ ∈W1,p(Ω; Rm)
for which the solution setSpϕ (Ω;K) is nonempty and to establish a well-posed selec
principle that renders a unique solution inSpϕ (Ω;K), as the viscosity solution does in th
scalar case, at this stage, only the existence problems have been studied and the s
principles for systems seem out of reach.

In this paper, we restrict ourselves only to the (countably)piecewise affineboundary
data.
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Definition 1.2. A function ψ ∈ W1,p(Ω; Rm) is said to be (countably)piecewise affine
onΩ if there exists a family of at most countably many disjoint open subsetsΩj, j =
1,2, . . . , of Ω such that|Ω\⋃∞

j=1Ωj | = 0 andψ|Ωj = ξj x + bj . In this case, we als
writeψ = ∑∞

j=1(ξj x + bj )χΩj , whereχΩj is the characteristic function ofΩj .

Often when dealing with piecewise affine functions or other piecewise-defined
tions, we need to glue the piece functions together. The following elementary resul
out useful; the proof is left for the interested reader.

Lemma 1.3. Let {Ωj } be a set of at most countably many disjoint open subsetsΩ . Let
u ∈W1,p(Ω; Rm) anduj ∈W1,p(Ωj ; Rm) satisfy thatuj |∂Ωj = u|∂Ωj for each indexj .
Suppose

∑
j ‖uj‖pW1,p(Ωj )

<∞ if p <∞ or supj ‖uj‖W1,∞(Ωj ) <∞ if p = ∞. Then the

mapũ= uχΩ\⋃
j Ωj

+ ∑
j ujχΩj belongs tou+W1,p

0 (Ω; Rm).

The Dirichlet problem (1.1) with piecewise affine boundary dataϕ can be reduced t
the similar problems with affine boundary dataϕ = ξx + b, but on different open sets. Fo
this reason, we denote byβp(K) the set of matricesξ for which the problem (1.1) has
W1,p-solution with boundary dataϕ = ξx; that is,

βp(K)=
{
ξ ∈ Mm×n | Spξx(Ω;K) �= ∅}

. (1.3)

Note that, forξ ∈ βp(K), if the solution setSpξx(Ω;K) contains a nontrivial solution

u �≡ ξx, then a typical Vitali covering argument shows that the setS
p
ξx(Ω;K)must contain

infinitely many solutions; this is certainly the case whenξ ∈ βp(K)\K. The Vitali covering
argument will play an important role throughout the whole theory developed in this p
we refer to [5] for suitable and most commonly used versions in this regard. The exis
results established below often indicate that in general whenξ ∈ βp(K)\K the solution se
S
p
ξx(Ω;K) is densein some complete metric space.

In this paper we are mainly interested in the nontrivial structures of the setβp(K)

and we shall prove certain self-enlarging properties ofβp(K). For example, given a se
U ⊂ Mm×n, we would like to know whether and when one can haveU ⊂ βp(K). For
compact setsK, a nearly optimal condition, known as thereduction principle, has been
given in Müller and Sychev [12]:

Definition 1.4 [12, Definition 1.1]. LetU,K be subsets ofMm×n. We sayU is reducibleto
K if for everyξ ∈ U, ε > 0, there exists a piecewise affine functionv ∈ ξx+W1,p

0 (Ω; Rm)
such that

Dv(x) ∈ U a.e.x ∈Ω;
∫
Ω

dist
(
Dv(x); K)

dx < ε|Ω |, (1.4)

where dist(η;K) is the distance function toK defined by

dist(η;K)= inf
ξ∈K |η− ξ |.
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The reduction principle is an approximation scheme, which gives the existence o
approximate solutions that are piecewise affine. However, such an approximation s
turns out to be sufficient for the existence of exact solutions; the following exis
theorem has been established by Müller and Sychev in [12] using the reduction prin

Theorem 1.5 [12, Theorem 1.2].LetU be bounded,K compact. IfU is reducible toK,
thenU ⊂ β∞(K). More generally, for any piecewise affine functionϕ ∈ W1,∞(Ω; Rm)
withDϕ(x) ∈ U ∪K a.e.x ∈Ω and for anyε > 0, there exists a solutionu ∈ S∞

ϕ (Ω;K)
to problem(1.1)satisfying‖u− ϕ‖L∞(Ω) < ε.

The proof of Theorem 1.5 given in [12] relies on constructingW1,1-Cauchy sequence
with only control ofL∞-norms. A similar idea has been also exploited in Yan [13] to d
with certain unbounded setsK.

The main purpose of this paper is to generalize this reduction principle to the case
the setK can be unboundedand solutionsu can belong to the Sobolev spaceW1,p(Ω; Rm).
Our new approximation scheme allows for unbounded setsK and non-affine pieces tha
are exact solutions and it recovers Müller and Sychev’s result quoted above. Furthe
our approach is completely different from the one used in [12], even for compact seK;
our methods rely more on a new Baire’s category argument motivated by a recent w
Kirchheim [7], which is also different from the Baire category method used in [4,5,15

We now introduce our approximation scheme, called theW1,p-reduction principles.

Definition 1.6. LetU,K ⊂ Mm×n, and let 1� p <∞.

(a) TheW1,p-reduction principle: Let U be bounded. We say thatU is W1,p-reducible
to K if there exists a constantc(p,U,K) > 0 such that, for some bounded op
setΩ ⊂ Rn with |∂Ω | = 0 and for everyξ ∈ U, ε > 0, there exists a functio
v ∈ ξx +W1,p

0 (Ω; Rm) satisfying the conditions (i) and (ii) given below:
(i) v = ∑

i∈N
viχΩi , where {Ωi} is a family of disjoint open subsets ofΩ with

|Ω\⋃
i∈N
Ω | = 0 such that∫

Ωi

∣∣Dvi(x)∣∣p dx � c(p,U,K)|Ωi |, ∀i ∈ N, (1.5)

and, eithervi |Ωi = ξix + bi with ξi ∈U orDvi(x) ∈K a.e.x ∈Ωi ;
(ii)

∫
Ω

dist(Dv(x);K)dx < ε|Ω |.
(b) The uniform localW1,p-reduction principle: For any setU , we say thatU is uniformly

locallyW1,p-reducibleto setK if for eachξ ∈ U there exists a bounded setUξ ⊂ U ,
containingξ , such thatUξ isW1,p-reducible toK with constant

c(p,Uξ ,K)� C
(
1+ |ξ |p), (1.6)

whereC = C(p,U,K)� 1 is a uniform constant independent ofξ .
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Remarks. (1) It follows from (1.5) and Jensen’s inequality that the functionv ∈ ξx +
W

1,p
0 (Ω; Rm) satisfies:

|ξ |p � 1

|Ω |
∫
Ω

|Dv|p dx � c(p,U,K). (1.7)

Therefore, ifU isW1,p-reducible toK then supξ∈U |ξ |p � c(p,U,K), and henceU must
be bounded.

(2) A Vitali covering argument shows that the constantc= c(p,U,K) is independent o
bounded setsΩ with |∂Ω | = 0. Also, ifU isW1,p-reducible toK, then the requirement
in the definition hold for arbitrary bounded open setsΩ . Moreover such a functio
v ∈ ξx +W1,p

0 (Ω; Rm) can also be chosen to satisfy

‖v − ξx‖Lp(Ω) < δ (1.8)

for any givenδ > 0.
(3) If U is boundedand reducible toK in the sense of Müller and Sychev (c

Definition 1.4), then, for any 1� p < ∞, U is W1,p-reducible toK, with constant
c(p,U,K) = sup{|ξ |p | ξ ∈ U}. Moreover, for bounded setsU , uniform localW1,p-
reduction principle is equivalent toW1,p-reduction principle.

The main result of this paper is the following existence theorem.

Theorem 1.7 (Main Theorem).Let 1 < p < ∞ and letU be uniformly locallyW1,p-
reducible to a closed setK. ThenU ⊂ βp(K). More generally, for any piecewise affin
functionϕ ∈W1,p(Ω; Rm) withDϕ(x) ∈U ∪K a.e.x ∈Ω and for anyε > 0, there exists
a solutionu ∈ Spϕ (Ω;K) to problem(1.1)satisfying

‖u− ϕ‖Lp(Ω) < ε;
∫
Ω

|Du|p � C
(

|Ω | +
∫
Ω

|Dϕ|p
)
, (1.9)

whereC = C(p,U,K)� 1 is the uniform constant in(1.6).

Remark. For bounded setsU,K, from Remark (3) of Definition 1.6 and the Sobol
embedding theorem, usingW1,p-reduction withp > n, we can easily see that our ma
theorem, Theorem 1.7, implies Theorem 1.5.

We prove our main theorem using a new approach which is quite different from
of [12,13]; the proof will be given in Section 2. Sections 3 and 4 will be devoted to se
applications of this theorem whereW1,p-reduction principles can be established, includ
some known results obtained by using different methods.

2. Proof of the main theorem

The proof of the main theorem, Theorem 1.7, will be based on the following sp
case of the theorem.
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Theorem 2.1. Let 1< p <∞ and letU be a bounded set which isW1,p-reducible to a
closed setK with constantc(p,U,K). ThenU ⊂ βp(K). Moreover, for any bounded ope
setΩ ⊂ Rn, and for anyξ ∈ U, b ∈ Rm andε > 0, there exists a solutionu ∈ Spξx+b(Ω;K)
satisfying∥∥u− (ξx + b)∥∥

Lp(Ω)
< ε;

∫
Ω

|Du|p dx � c(p,U,K)|Ω |. (2.1)

The proof of this theorem will be given at the end of this section, but we first show
special case in fact implies the main theorem.

Proof of Theorem 1.7. Let U be uniformly locallyW1,p-reducible toK. Let ϕ ∈
W1,p(Ω; Rm) be a piecewise affine function with

Dϕ(x) ∈ U ∪K a.e.x ∈Ω.
We write ΩU = {x ∈ Ω | Dϕ(x) ∈ U} andΩK = {x ∈ Ω | Dϕ(x) ∈ K\U}. By the
definition of piecewise affine functions, we can assumeΩK andΩU are disjoint open
sets except for a measure zero set and|Ω\(ΩK ∪ΩU)| = 0. Let

ϕ = ϕχΩK +
∑
i∈N

(ξix + bi)χΩi , ξi ∈U ;
∣∣∣∣ΩU∖ ⋃

i∈N

Ωi

∣∣∣∣ = 0.

The fact thatϕ ∈W1,p(Ω; Rm) implies

‖Dϕ‖pLp(Ω) =
∫
ΩK

|Dϕ|p dx +
∑
i∈N

|ξi |p|Ωi |<∞. (2.2)

By the uniform localW1,p-reduction assumption, for eachi ∈ N, there exists a bounde
setUi ⊂U , containingξi , such thatUi isW1,p-reducible toK with constant

c(p,Ui,K)� C
(
1+ |ξi |p

)
,

whereC = C(p,U,K)� 1 is a constant. We apply Theorem 2.1 toUi andK with open
bounded setΩi to obtain a functionui ∈ Spξix+bi (Ωi;K) satisfying∥∥ui − (ξix + bi)

∥∥p
Lp(Ωi)

< εp/2i;∫
Ωi

|Dui |p dx � C
(
1+ |ξi |p

)|Ωi |. (2.3)

Let

u= ϕχΩK +
∑
i∈N

uiχΩi .

Then, by Lemma 1.3, we easily haveu ∈ Spϕ (Ω;K) and, by (2.3), we also have

‖u− ϕ‖pLp(Ω) =
∑∥∥ui − (ξix + bi)

∥∥p
Lp(Ω)

< εp
∑

1/2i = εp.

i∈N i∈N



B. Yan / Bull. Sci. math. 127 (2003) 467–483 473

),

1.6,

,

Moreover, by (2.2), (2.3), usingC � 1, it follows that∫
Ω

|Du|p dx =
∫
ΩK

|Dϕ|p dx +
∑
i∈N

∫
Ωi

|Dui |p dx

�
∫
ΩK

|Dϕ|p dx +C
∑
i∈N

(|Ωi | + |ξi |p|Ωi |
)

� C
(

|Ω | +
∫
Ω

∣∣Dϕ(x)∣∣p dx).
This completes the proof of our main theorem, Theorem 1.7.✷

The rest of this section is devoted to the proof of Theorem 2.1.
Given ξ ∈ U, b ∈ Rm, let V be the set of functionsv ∈ ξx + b +W1,p

0 (Ω; Rm) that
satisfy the condition (i) of Definition 1.6. Then the setV is nonempty since, by (1.7
ξx + b ∈ V .

Let X be the closure ofV in the metric spaceLp(Ω; Rm) with the metric defined by

ρ1(f, g)=
∑

1�i�m

∥∥f i − gi∥∥
Lp(Ω)

.

Then(X , ρ1) is a complete metric space. Furthermore, by Remark (1) of Definition
one easily has

Lemma 2.2. One hasX ⊂ ξx + b+W1,p
0 (Ω; Rm). Moreover,∀v ∈ X ,∫

Ω

∣∣Dv(x)∣∣p dx � c(p,U,K)|Ω |.

To continue the proof, we prove the following result.

Proposition 2.3. For anyf ∈X , there exists a sequence{fj } in V such that

‖fj − f ‖Lp(Ω) → 0,
∫
Ω

dist
(
Dfj (x);K

)
dx→ 0. (2.4)

Proof. Given anyε > 0, sincef ∈X , there exists av ∈ V such that

‖f − v‖Lp(Ω) < ε. (2.5)

By the definition of setV , we can writev = ∑
i∈N
viχΩi as the condition (i) of

Definition 1.6. LetA be the set of indicesi ∈ N for which vi |Ωi = ξix + bi with ξi ∈ U
and letB be the set of indicesi ∈ N for whichDvi(x) ∈ K a.e.x ∈Ωi . For eachi ∈ A,
sinceξi ∈ U andU is W1,p-reducible toK, by virtue of Remark (2) of Definition 1.6
there existswi ∈ vi +W1,p

0 (Ω; Rm) satisfying
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(a) wi = ∑
j∈N

w
j
i χΩji

, where{Ωji }j∈N is a family of disjoint open subsets ofΩi with

|Ωi\ ∪j∈NΩ
j
i | = 0 such that∫

Ω
j
i

∣∣Dwji (x)∣∣p dx � c(p,U,K)|Ωji |, ∀j ∈ N,

and, eitherwji |Ωji = ξj x + bj , ξj ∈U , orDwji (x) ∈K a.e.x ∈Ωji ;

(b)
∫
Ωi

dist(Dwi(x);K)dx < ε|Ωi |;
(c) ‖wi − vi‖pLp(Ωi) < εp/2i .

Let

u=
∑
i∈A
wiχΩi +

∑
i∈B
viχΩi .

Then, from the definition ofV , it follows thatu ∈ V and, by property (c) above,

‖u− v‖pLp(Ω) =
∑
i∈A

|wi − vi‖pLp(Ωi) < εp.

Moreover, from (b) above,∫
Ω

dist(Du;K)dx =
∑
i∈A

∫
Ωi

dist(Dwi;K)dx < ε
∑
i∈A

|Ωi|< ε|Ω |.

Finally, choosingε = 1/j andfj = u ∈ V proves the result. ✷
We now follow some idea in a recent work of Kirchheim [7] of using a Baire’s cate

theorem. We refer to [1, Chapter 10] for details on the Baire’s category theory for se
functions in metric spaces.

Let {ej } be the standard basis ofRn. Forh > 0, define

Ωj,h = {x ∈Ω | x + tej ∈Ω, ∀0 � t � h}.
ThenΩj,h is an open subset ofΩ and for any compact setF �Ω , there existsh0> 0 such
thatF ⊂Ωj,h for all 0< h< h0 and hence|Ω\Ωj,h| → 0 ash→ 0+.

Let Y ≡ Lp(Ω; Mm×n) be the metric space endowed with theLp-metric defined by

ρ2(A,B)=
∑

1�i�m, 1�j�n
‖Aij −Bij ‖Lp(Ω).

DefineTh : (X , ρ1)→ (Y, ρ2) by letting

(Thf )ij =
{
f i(x+hej )−f i(x)

h
, x ∈Ωj,h,

0, x /∈Ωj,h.
(2.6)

Proposition 2.4. For 1 < p < ∞, h > 0, map Th : (X , ρ1) → (Y, ρ2) is continuous
between the two metric spaces. Moreover,∀f ∈X , it followsThf →Df in Y ash→ 0+.
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Proof. It is easy to see that forf,g ∈ X and for anyh > 0, 1 � i �m, 1 � j � n,∥∥(Thf − Thg)ij
∥∥
Lp(Ω)

� 2

h

∥∥f i − gi∥∥
Lp(Ω)

.

This provesTh : (X , ρ1)→ (Y, ρ2) is continuous for anyh > 0. To show

lim
h→0+ ρ2(Thf,Df )= 0

for all f ∈ X , since 1<p <∞, it suffices to show, for all 1� i �m, 1 � j � n,

(a) (Thf )ij converges weakly to∂f i/∂xj in Lp(Ω) ash→ 0+, and
(b) limh→0+ ‖(Thf )ij ‖Lp(Ω) = ‖∂f i/∂xj‖Lp(Ω).

Note that, by Lemma 2.2,X ⊂W1,p(Ω; Rm). Therefore, it is easy to show that, for a
h > 0,∥∥(Thf )ij∥∥Lp(Ω) � ∥∥∂f i/∂xj∥∥Lp(Ω) <∞. (2.7)

Using this inequality, to prove (a), it is sufficient to prove

lim
h→0+

∫
Ωj,h

f i(x + hej )− f i(x)
h

φ(x) dx =
∫
Ω

∂f i(x)

∂xj
φ(x) dx (2.8)

for each 1� i � m, 1 � j � n and any test functionφ ∈ C∞
0 (Ω). Given any such

φ, let h > 0 be small enough that the support ofφ is contained inΩj,h. The right-
hand side of (2.8) equals− ∫

Ω
f i∂φ/∂xj , while the integral on the left-hand sid

equals
∫
Ω
f i(x)(φ(x − hej )− φ(x))/hdx, which, by Lebesgue Dominated Convergen

Theorem, tends to− ∫
Ω f

i∂φ/∂xj ash→ 0+. Hence (a) is proved. From (a) we have∥∥∂f i/∂xj∥∥Lp(Ω) � lim inf
h→0+

∥∥(Thf )ij∥∥Lp(Ω),
which, together with (2.7), proves (b). This completes the proof.✷

The following result is crucial for proving the theorem.

Proposition 2.5. There exists a dense subsetG ⊂ X such that for anyf ∈ G and any
sequence{fj } in X with ‖fj − f ‖Lp(Ω) → 0 one has

‖Dfj −Df ‖Lp(Ω) → 0.

Proof. Recall that aBaire-one functionis defined to be a pointwise limit of a sequence
continuous functions between two metric spaces; cf., [1]. Proposition 2.4 asserts t
gradient operatorD :X → Y is a Baire-one function. By a Baire’s category theorem
Theorem 10.13], there exists aresidual setG⊂X , i.e., a set whose complement is offirst
categoryand hence itself isdense, such thatD :X → Y is continuous at everyf ∈G; this
continuity is exactly the conclusion of the proposition.✷
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Remark. Proposition 2.5 is areverseSobolev type estimate and is exactly what Mül
and Sychev needed in [12] for their existence theorems; but they established this u
totally different approach.

Completion of proof of Theorem 2.1. SinceK is closed, Propositions 2.3 and 2.5 imp
that anyf ∈G is a solution of

Df (x) ∈K, f − (ξx + b) ∈W1,p
0

(
Ω; Rm

)
.

HenceG ⊂ Spξx+b(Ω;K). SinceG is dense inX andξx + b ∈ X , we easily fulfill the
first requirement of (2.1), whereas the second follows easily from Lemma 2.2. The
of Theorem 2.1 is completed.✷

3. Reduction by open lamination convex hulls

We first recall the notion oflamination convex hullsof sets of matrices. Given any s
K ⊂ Mm×n, let

γ (K)= {
tη1 + (1− t)η2 | t ∈ (0,1), ηi ∈K, rank(η1 − η2)= 1

}
. (3.1)

Note thatγ (K) = ∅ if K does not contain any two matrices with rank-one differen
DefineL0(K)=K and inductively

Lj+1(K)= Lj(K)∪ γ
(
Lj(K)

)
, j = 0,1, . . . . (3.2)

Then, define thelamination convex hullof K to be the set

L(K)=K lc =
∞⋃
j=0

Lj(K). (3.3)

Remark. From definition,L(K) is contained in the convex hull ofK, andL(K) is open if
K is open; moreover,

K ⊂ L(K)= L
(
L(K)

)
(3.4)

for any setK ⊂Mm×n.

The following important result elucidates the close relationship of lamination co
hulls with the reduction principles (or relaxation properties); we refer to Yan [13] f
detailed proof of this result.

Lemma 3.1 [13, Lemma 3.4].Let U be an open set inMm×n and let η ∈ U and
η= tη1 + (1− t)η2 with t ∈ (0,1) andrank(η1 − η2)= 1. Then, for anyε > 0, there exist
finitely many pointsη3, . . . , ηs in U and a piece-wise affine mapu ∈ ηx +W1,∞

0 (Ω; Rm)
such that{

Du(x) ∈ {η1, η2, η3, . . . , ηs} a.e.x ∈Ω;
|{x ∈Ω |Du(x) /∈ {η1, η2}}|< ε|Ω |.
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Definition 3.2. Let A⊂ Mm×n be a bounded set with nonempty interior (i.e., intA �= ∅).
We say a subsetB of ∂A is arank-one boundary setof A provided that for eachξ ∈ intA
there exist rank-one matrixη and numberst− < 0 < t+ such thatξ + t±η ∈ B and
ξ + tη ∈ intA for all t ∈ (t−, t+).

Remark. It is easy to see that∂A is itself a rank-one boundary set ofA. However, later on
we shall see that there may be other rank-one boundary sets smaller than∂A.

The following theorem provides another proof and a generalization of the res
Yan [13, Corollary 3.3].

Theorem 3.3. LetA⊂Mm×n be bounded and letB be a rank-one boundary set ofA when
intA �= ∅ and letB = ∅ whenintA= ∅. LetK = (A∩∂A)∪B ⊂ ∂A. If U = L(A) is open,
thenU is reducible toK. In particular,L(A)⊂ β∞(�K) if L(A) is open and bounded.

Proof. SinceU = L(A) is bounded, there exists a constantM > 0 such that

|η| + dist(η;K)�M, ∀η ∈ U. (3.5)

Let ξ ∈ U andε > 0. SinceU = L(A) is bounded and open, a repeated use of Lemma
shows that there exist two finite sets{ξ1, ξ2, . . . , ξr } ⊂ A ⊂ U and {η1, η2, . . . , ηq } ⊂ U
and a piece-wise affine mapu ∈ ξx +W1,∞

0 (Ω; Rm) such that{
Du(x) ∈ {ξ1, . . . , ξr } ∪ {η1, . . . , ηq} a.e.x ∈Ω;
|{x ∈Ω |Du(x) /∈ {ξ1, ξ2, . . . , ξr }}|< ε|Ω|

2M .
(3.6)

Note that this already shows thatU is reducible toA and thus toĀ, which, by our main
theorem (Theorem 1.7), gives another proof of the result of Yan [13, Corollary 3.3].

The following is devoted to provingU is in fact reducible to the setK = (A∩ ∂A)∪B.
If int A = ∅, then we haveA ⊂ ∂A and B = ∅ and thusK = A; the theorem is

already proved from (3.6). Therefore, we assume intA �= ∅. LetΩ ′ = {x ∈Ω | Du(x) /∈
{ξ1, ξ2, . . . , ξr }}. Then |Ω ′| < ε|Ω |/2M. Let I be the set of indicesi ∈ {1,2, . . . , r} for
which ξi ∈ intA andJ the set of remaining indices for whichξi ∈ A\ intA = A ∩ ∂A,
a subset ofK. We now fix i ∈ I and letΩi = {x ∈Ω |Du(x) = ξi} = ⋃

j∈N
Ωij , where

u= ξix+bj onΩij for eachj ∈ N andξi ∈ intA. SinceB is a rank-one boundary set ofA,
there exist a rank-one matrixη with |η| = 1 and numberst− < 0< t+ such thatξi + t±η ∈
B ⊂K andξi + tη ∈ intA for all t ∈ (t−, t+). Choose 0< δ <min{−t−, t+, ε/4} and let

ξ−
δ = ξi + (t− + δ)η, ξ+

δ = ξi + (t+ − δ)η; tδ = t+ − δ
t+ − t− − 2δ

.

Then,ξ±
δ ∈ intA, dist(ξ±

δ ;K)� δ andξi = tδξ−
δ + (1− tδ)ξ+

δ ∈ intA. Using Lemma 3.1

we obtain a piecewise affine mapwj ∈ (ξix + bj )+W1,∞
0 (Ωij ; Rm) such that{

Dwj (x) ∈ intA⊂A⊂U a.e.x ∈Ωij ;
|{x ∈Ωij |Dwj (x) /∈ {ξ−, ξ+}}|< ε|Ωij | .

(3.7)

δ δ 4M
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Definevi = ∑
j∈N

wjχΩij ∈ u+W1,p
0 (Ωi; Rm) and let

v = uχΩ ′ +
∑
i∈I
viχΩi +

∑
j∈J
uχΩj .

Then v ∈ u + W
1,∞
0 (Ω; Rm) is piecewise affine and satisfiesDv(x) ∈ U = L(A) a.e.

x ∈Ω . Moreover, by (3.7),∫
Ωi

dist(Dvi;K)=
∑
j∈N

∫
Ωij

dist(Dwj ;K)

=
∑
j∈N

[ ∫
{Dwj=ξ±

δ }
+

∫
{Dwj �=ξ±

δ }
dist(Dwj ;K)

]

<
∑
j∈N

δ|Ωij | +
∑
j∈N

M
ε|Ωij |
4M

< ε|Ωi |/4+ ε|Ωi |/4 = ε|Ωi |/2.
Hence

∑
i∈I

∫
Ωi

dist(Dvi;K)dx < ε|Ω |/2. On the other hand,∫
Ω ′

dist(Du;K)dx �M|Ω ′|< ε|Ω |/2.

Finally, we have∫
Ω

dist(Dv;K)dx =
∫
Ω ′

dist(Du;K)+
∑
i∈I

∫
Ωi

dist(Dvi ;K)

< ε|Ω |/2+ ε|Ω |/2= ε|Ω |,
as required by (ii) of Definition 1.6. This provesU is reducible toK; the proof is
completed. ✷

Recall that in Müller and Šverák [10] (following [6]) a sequence of sets{Uj } is called
an in-approximationof a setK provided the following conditions hold:

(a) Uj ⊂ L(Uj+1), ∀j = 1,2, . . . ;
(b) η ∈K wheneverηj → η and dist(ηj ;Uj)→ 0 for all j ∈ N.

Remark. Condition (a) impliesL(Uj )⊂ L(Uj+1) for all j ∈ N.

Lemma 3.4. Let {Uj } be an in-approximation ofK and let

d(η)= dist(η;K), dj (η)= dist(η;Uj).
Then, for anyδ > 0 andj ∈ N, there exist constantsC > 0 andJ ∈ N depending onδ, j
with J � j such that

d(η)� δ
(|η|2 + 1

) +CdJ (η), ∀η ∈ Mm×n. (3.8)
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Proof. Suppose not. Then, there existδ0 > 0 andj0 ∈ N such that for eachj � j0 there
exists anηj ∈ Mm×n verifying

d(ηj ) > δ0
(|ηj |2 + 1

) + jdj (ηj ).
Since d(η) grows linearly, this inequality implies{ηj } is bounded; hence we assum
ηj → η. The same inequality also impliesdj (ηj )→ 0. The in-approximation propert
thus impliesη ∈K and henced(ηj )→ 0. This contradicts withd(ηj ) > δ0. The result is
proved. ✷

The following theorem has been proved by Müller and Šverák [10]. We provi
different proof using mainly the reduction principle.

Theorem 3.5. Let {Uj } be a family of uniformly bounded open sets, which forms an
approximation of a compact setK. Let U = ⋃

j∈N
L(Uj ). ThenU is reducible toK.

ThereforeU ⊂ β∞(K).

Proof. The uniform boundedness of{Uj } impliesU = ⋃
j∈N

L(Uj ) is bounded, so we
assume|η| �M for all η ∈U . Let ξ ∈U andε > 0 be given. Assumeξ ∈ L(Uj0) for some
j0 ∈ N. Let δ = ε/2(M2 + 1) andj = j0 in the lemma above. We obtain constantsC > 0
andJ � j0 such that

d(η)� δ
(|η|2 + 1

) +CdJ (η), ∀η ∈ Mm×n. (3.9)

Sinceξ ∈ L(Uj0)⊂ L(UJ ), by a similar argument as in the proof of Theorem 3.3, we h

a piecewise affine mapu ∈ ξx +W1,∞
0 (Ω; Rm) with the property that{

Du(x) ∈ L(UJ )⊂U a.e.x ∈Ω;
|{x ∈Ω |Du(x) /∈Uj }|< ε|Ω|

4CM .
(3.10)

Using (3.9) it follows that∫
Ω

d
(
Du(x)

)
dx � δ

∫
Ω

(|Du|2 + 1
)
dx +C

∫
Ω

dJ (Du)dx

� δ
∫
Ω

(
M2 + 1

)
dx +C

∫
{Du(x)/∈UJ }

2M dx

� ε

2
|Ω | + ε

2
|Ω | = ε|Ω |.

Hence, by definition,U is reducible toK. This proves the theorem.✷
A modification of proof of Theorem 3.3 also yields a sufficient condition forW1,p-

reduction; the following is some kind of self-enlarging property of the setβp(K). See also
Yan [13, Theorem 3.2].

Theorem 3.6. LetK ⊂Mm×n be a closed set and letA⊂ βp(K) be a set satisfying

c0 = sup
ξ∈A

1

|Ω |
∫

|Duξ |p dx <∞, (3.11)
Ω
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where uξ ∈ Spξx(Ω;K) is some solution for givenξ ∈ A. SupposeU = L(A) is

open and bounded. ThenU is W1,p-reducible toK with constantc = c(p,U,K) =
max{c0,supη∈U |η|p}. Therefore,U = L(A)⊂ βp(K).

Proof. This result has been proved in [13] and here we provide a different proof
theW1,p-reduction principle. We adopt the proof of Theorem 3.3 up to (3.6). We
modify the piecewise affineu on the set{x ∈Ω |Du(x) ∈ A}. On each piece, saỹΩ , of
this set whereu= ξx + b with someξ ∈A we replaceu by the solutionũ ∈ Spξx+b(Ω̃;K)
obtained by a Vitali covering argument from the functionuξ ∈ Spξx(Ω;K) given in (3.11).
We keepu unchanged elsewhere. The new function so obtained satisfies the condit
of Definition 1.6 with constant

c(p,U,K)= max
{
c0,sup{|η|p | η ∈U}}.

Clearly the new function also satisfies condition (ii) of Definition 1.6 in view of (3.6). T
proves theW1,p-reduction principle and hence the theorem follows by our main theo
Theorem 1.7. ✷

4. Boundary value problem for special weakly quasiregular mappings

As a specific application of ourW1,p-reduction principle, we study the boundary va
problem for certain special weakly quasiregular mappings in higher dimensions.
following, we assumen� 3, L > 1. Let

KL = {
ξ ∈ Mn×n | |ξ |n = Ldetξ

}
, (4.1)

UL = {
ξ ∈ Mn×n | |ξ |n < Ldetξ

}
, (4.2)

where the matrix norm|ξ | is defined to be the operator norm given by

|ξ | = max
h∈Rn, |h|�1

|ξh|.

A mapu ∈W1,p(Ω; Rn) is called aspecial weaklyL-quasiregularmapping if∣∣Du(x)∣∣n = LdetDu(x), i.e., Du(x) ∈KL a.e.x ∈Ω.
We are interested in the Dirichlet boundary value problem for special we

quasiregular mappings:

Du(x) ∈KL a.e.x ∈Ω; u ∈ ϕ +W1,p
0

(
Ω; Rn

)
. (4.3)

If p � n andϕ = ξx + b is affine, then a necessary condition for (4.3) to have a solutio
|ξ |n � Ldetξ . It turns out this is also a sufficient condition.

Theorem 4.1. Let p > 1. Then, for anyε > 0 and any piecewise affine mapϕ ∈
W1,p(Ω; Rn) with∣∣Dϕ(x)∣∣n � LdetDϕ(x) a.e.x ∈Ω, (4.4)
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there exists a functionu ∈ ϕ +W1,p
0 (Ω; Rm) such that

Du(x) ∈KL a.e.x ∈Ω; ‖u− ϕ‖Lp(Ω) < ε.

However, condition (4.4) may not be needed for certain values ofp < n. In fact, no such
conditions are needed at all ifp is not too large.

Theorem 4.2. Let 1 < p < nL
L+1. Then, for anyε > 0 and any piecewise affine ma

ϕ ∈W1,p(Ω; Rn), there exists a functionu ∈ ϕ+W1,p
0 (Ω; Rn) such that

Du(x) ∈KL a.e.x ∈Ω; ‖u− ϕ‖Lp(Ω) < ε.

Theorems 4.1 and 4.2 have been proved in Yan [14,15] using different method
show below that these results also follow from our main theorem by reduction princi

First of all, we have the following result.

Theorem 4.3. (i) For any1 � p <∞, UL is uniformly locallyW1,p-reducible toKL.
(ii) For any 1 � p < nL

L+1, the whole setMn×n is uniformly locallyW1,p-reducible
toKL.

Note then that Theorems 4.1 and 4.2 follow easily from this theorem and our
theorem, Theorem 1.7.

To prove Theorem 4.3, we define the following bounded sets inMn×n for anyλ > 0.

Bλ = {|ξ |< λ},
Uλ = {|ξ |n < Ldetξ < λn

}
,

P λ = {|ξ |n = Ldetξ < λn
}
,

Qλ = {|ξ |n = |detξ |< λn}.
Lemma 4.4. L(Uλ) = Uλ, Pλ is a rank-one boundary set ofUλ, andUλ is reducible
toKL.

Proof. It is easy to see thatγ (Uλ) = Uλ and henceL1(U
λ) = Uλ; this shows tha

L(Uλ) = Uλ. We next show thatPλ is a rank-one boundary set ofUλ. To this end, let
ξ ∈ Uλ; that is, |ξ |n < Ldetξ < λn. By matrix polar decompositions, we find rotatio
R,Q ∈ SO(n) such that

ξ =R


εn 0

εn−1
. . .

0 ε1

Q≡Rξ̃Q,

where 0< ε1 � ε2 � · · · � εn−1 � εn satisfyεnn < Lε1ε2 · · ·εn < λn. Let η(t) = ξ̄ + t η̃,
whereη̃= e1 ⊗ e2 is the rank-one matrix with the only nonzero element at(1,2)-position.
Then it is easy to show (cf., [15]) that there exists a uniquet0> 0 such that

η(±t0)= ξ̃ ± t0η̃ ∈ Pλ, η(t)= ξ̃ + t η̃ ∈Uλ, ∀t ∈ (−t0, t0).
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Now letη=Rη̃Q andt± = ±t0. Then we have rankη= 1, ξ + t±η ∈ Pλ andξ + tη ∈ Uλ
for all t ∈ (t−, t+). This proves thatPλ is a rank-one boundary set ofUλ. Finally, using
Theorem 3.3 withA=Uλ andB = Pλ, sinceUλ is open, and henceK = (A∩ ∂A)∪B =
Pλ, we haveUλ = L(Uλ) is reducible toK = Pλ. SincePλ ⊂KL, we have thus prove
thatUλ is reducible toKL. ✷
Lemma 4.5. Bλ = L(Qλ) and, for1� p < nL

L+1, Qλ ⊂ βp(KL); moreover, for allξ ∈Qλ,
there existsu= uξ ∈ Spξx(B;KL) such that

∫
B |Duξ |p dx � C1|ξ |p|B|, whereB is the unit

ball in Rn andC1 = C1(n,p,L)� 1 is a constant. In particular, for1 � p < nL
L+1, Bλ is

W1,p-reducible toKL with constantc(p,Bλ,KL)= C1λ
p .

Proof. Bλ = L(Qλ) follows from direct calculation (cf., [13,14]). For anyξ ∈ Qλ,
consideru= uξ = ξx/|x|r . One can selectr so that, for 1� p < nL

L+1, uξ ∈ Spξx(B;KL)
and

∫
B |Duξ |p dx � C1|ξ |p|B| for a constantC1 = C1(n,p,L) � 1 (cf., [14]). Finally,

Theorem 3.6 impliesBλ isW1,p-reducible toKL with constantc(p,Bλ,KL)= C1λ
p . ✷

Proof of Theorem 4.3. (i) For anyξ ∈ UL, let λ = (2L)1/n|ξ |> 0 andUξ = Uλ defined
above. Thenξ ∈ Uξ . By Lemma 4.4,Uξ = Uλ is reducible toKL and is thusW1,p-
reducible toKL with constant

c(p,Uξ ,KL)= sup
{|η|p | η ∈Uξ

}
� λp = (2L)p/n|ξ |p.

Therefore, by Definition 1.6,UL is uniformly locallyW1,p-reducible toKL for all p � 1.
(ii) For any ξ ∈ Mn×n, let λ = |ξ | + 1> 0 andUξ = Bλ as above. Thenξ ∈ Uξ . Let

1 � p < nL
L+1. Then, by Lemma 4.5,Uξ = Bλ isW1,p-reducible toKL with constant

c(p,Uξ ,KL)= C1λ
p = C1

(|ξ | + 1
)p � C

(|ξ |p + 1
)
,

which proves the uniform localW1,p-reduction ofMn×n toKL for 1 � p < nL
L+1. ✷
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