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Abstract

We study the solvability of special vectorial Hamilton—Jacobi systems of the faqibu(x)) =0
in a Sobolev space. In this paper we establish the general existence theorems for certain Dirichlet
problems using suitable approximation schemes calléd’ -reduction principles that generalize the
similar reduction principle for Lipschitz solutions. Our approach, to a large extent, unifies the existing
methods for the existence results of the special Hamilton—Jacobi systems under study. The method
relies on a new Baire’s category argument concerning the residual continuity of a Baire-one function.
Some sufficient conditions fo 17 -reduction are also given along with certain generalization of
some known results and a specific application to the boundary value problem for special weakly
quasiregular mappings.
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1. Introduction

In this paper we study the Dirichlet problem for a special class of Hamilton—Jacobi
systems of the type:

{F@maan X €82, (1.1)

ux)=¢x), x€0d82,
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where 2 is a bounded open set R" andu: 2 — R™ is a unknown vector field. Here
Du(x) is the Jacobi matrix of; defined as ann x n matrix function by (Du);; =
du'/axj, 1<i<m, 1< j<n,andF, ¢ are given in the problem.

Whenm = 1 the unknowru is a scalar function and problem (1.1) becomes a special
case of the time-independent equations; in this case, the notion of viscosity solutions
has been successfully introduced and quite extensively studied, cf., the monograph of
P.-L. Lions [8] and also [2,3].

Recently, the Hamilton—Jacobi systems for vector-valued functions have attracted a
great deal of attention in studying variational problems in the calculus of variations and
nonlinear elasticity and in modeling phase transition problems in materials science; cf.,
Dacorogna and Marcellini [4,5], Miller [9], and Miiller and Sverak [10,11]. Most of the
existence results for such systems have been established for solutions that are Lipschitz
continuous. Two most efficient approaches have been developed largely based on a Baire’s
category method (cf., [4,5,15]) and on a convex integration method of Gromov [6] as
initiated by Miiller and Sverak in [10] (see also [11-13]). Note that both methods rely
essentially on the suitable approximation schemes.

In the present paper, we study a rather weak notion of almost everywhere solutions
to the Dirichlet problem (1.1) in a Sobolev space. For such solutions, the zero set of the
HamiltonianF plays a descriptive role. Therefore, we let

K =F0) ={geM™" | F(£) =0},

whereM™*" is the space ofn x n matrices. For a vector field: 2 — R™, we write

u € WP (£2; R™) if each component ai belongs to the usual Sobolev spaeé:? (£2).
Similarly, defineWé”’(Q; R™) to be the closure ifV1-7 (§2; R™) of the clasCge (£2; R™)

of vector fields from2 to R™ that are smooth and have compact suppof2itWe say two
functionsu, vin WL (§2; R™) to have the same boundary values and writev on 32 or
ulso = vlse provided thatt — v W&”’(Q; R™). Givenv € WL-P(£2; R™), we denote by
v+ Wé”’(fz; R™) the Dirichlet classof all u € W7 (£2; R™) having the same boundary
value asv. Note that for any: € W7 (2; R™) the Jacobi matrixDu(x) is defined for
almost every € £2, each element being also & (£2) function.

Definition 1.1. Let ¢ € WP (£2; R™). By a Wb P-(almost everywhejesolutionto the
Dirichlet problem (1.1) we mean a functiare ¢ + Wé”’(fz; R™) that satisfieDu(x) € K
for almost every € 2, wherek = F~1(0). Moreover, define the solution set to be

SP(2:K)={uegp+ W&*”(sz; R™)| Du(x) € K a.e.x € 2}. (1.2)

Although it is an ultimate goal to characterize all the boundary datav™-?(2; R™)
for which the solution se$}, (£2; K) is nonempty and to establish a well-posed selection
principle that renders a unique solution§fi(£2; K), as the viscosity solution does in the
scalar case, at this stage, only the existence problems have been studied and the selection
principles for systems seem out of reach.

In this paper, we restrict ourselves only to the (countaplgrewise affinéoundary
data.
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Definition 1.2. A function ¢ € W7 (£2; R™) is said to be (countablypiecewise affine
on £ if there exists a family of at most countably many disjoint open sub@gts;j =
1,2,..., of 2 such thaﬂQ\U?"zl Qj|=0andy |, =&jx + b;. In this case, we also
write ¢ = Z?il(gjx +bj)xe;, Whereyg; is the characteristic function «2;.

Often when dealing with piecewise affine functions or other piecewise-defined func-
tions, we need to glue the piece functions together. The following elementary result turns
out useful; the proof is left for the interested reader.

Lemma 1.3. Let {£2;} be a set of at most countably many disjoint open subQetket

ueWhr(2;R™ andu; € Whr(2;; R™) satisfy thatuj|ae; = ulag, for each index;.

Supposg_; ||uj||a/1,p(9‘) <ooif p<ooorsup llujllyie(g, <ooif p=oco. Thenthe
J J

mapi = uxe\U; 2 + Zj ujxs, belongs ta: + W&”’(.Q; R™).

The Dirichlet problem (1.1) with piecewise affine boundary datean be reduced to
the similar problems with affine boundary data- £x + b, but on different open sets. For
this reason, we denote kg, (K) the set of matrice$ for which the problem (1.1) has a
wtP-solution with boundary data = £x; that is,

Bp(K) ={& €M™ | SL.(2; K) #0}. (1.3)

Note that, foré € ,(K), if the solution setSé’x(.Q; K) contains a nontrivial solution

u # &x, then a typical Vitali covering argument shows that theSsets2; K) must contain
infinitely many solutions; this is certainly the case wifen 8, (K)\ K. The Vitali covering
argument will play an important role throughout the whole theory developed in this paper;
we refer to [5] for suitable and most commonly used versions in this regard. The existence
results established below often indicate that in general Wheg, (K)\ K the solution set
S£,(£2; K) is denséin some complete metric space.

In this paper we are mainly interested in the nontrivial structures of the$ s&X)
and we shall prove certain self-enlarging propertiegpfK). For example, given a set
U c M™% we would like to know whether and when one can have §,(K). For
compact setX, a nearly optimal condition, known as theduction principle has been
given in Miiller and Sychev [12]:

Definition 1.4[12, Definition 1.1]. LetU, K be subsets d1”*"". We sayU is reducibleto

K ifforeveryé e U, ¢ > 0, there exists a piecewise affine functioa &x + Wé”’(fz; R™)
such that

Dv(x)eU a.exes2; /dist(Dv(x); K)dx <¢|82], (1.4)
ko)

where dist(n; K) is the distance function t& defined by

dist(n; K) = inf |n —£&|.
Ist(n; K) SIQKIW &l
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The reduction principle is an approximation scheme, which gives the existence of only
approximate solutions that are piecewise affine. However, such an approximation scheme
turns out to be sufficient for the existence of exact solutions; the following existence
theorem has been established by Muller and Sychev in [12] using the reduction principle.

Theorem 1.5[12, Theorem 1.2]Let U be boundedK compact. IfU is reducible toK,
thenU C Boo(K). More generally, for any piecewise affine functiore W1>°(£2; R™)
with Dp(x) e U U K a.e.x € £2 and for anys > 0, there exists a solutiom € SgO(.Q; K)
to problem(1.1) satisfying|lu — ¢||L= () < &.

The proof of Theorem 1.5 given in [12] relies on constructiti§-Cauchy sequences
with only control of L°°-norms. A similar idea has been also exploited in Yan [13] to deal
with certain unbounded sefs.

The main purpose of this paper is to generalize this reduction principle to the case where
the setk can be unbounded and solutiansan belong to the Sobolev spadé-? (£2; R™).
Our new approximation scheme allows for unbounded &etnd non-affine pieces that
are exact solutions and it recovers Miller and Sychev’s result quoted above. Furthermore,
our approach is completely different from the one used in [12], even for compad sets
our methods rely more on a new Baire’s category argument motivated by a recent work of
Kirchheim [7], which is also different from the Baire category method used in [4,5,15].

We now introduce our approximation scheme, calleditie” -reduction principles

Definition 1.6. Let U, K ¢ M™*" 'and let 1< p < oo.

(a) The wl-P-reduction principle Let U be bounded. We say that is W1-?-reducible
to K if there exists a constant(p, U, K) > 0 such that, for some bounded open
set 2 c R" with |3£2| = 0 and for everyt € U, ¢ > 0, there exists a function
veéx+ W&”’(Q; R™) satisfying the conditions (i) and (ii) given below:
(i) v=">;cnvixe, where{2;} is a family of disjoint open subsets @2 with
12\ U;en £21 = 0 such that

/|Dv,-(x)|”dx<c(p, U,K)|2i|, VieN, (1.5)
£2;
and, eithew; |, =&x + b; with & e U or Dv; (x) € K a.e.x € £2;;
(ii) fQ dist(Dv(x); K)dx < €|£2].
(b) The uniform locaW?-reduction principle For any seU/, we say that is uniformly

locally Wt-P-reducibleto setk if for eaché e U there exists a bounded gt C U,
containingg, such thatUs is W17 -reducible tok with constant

c(p. Us, K) < C(1+[£]7), (1.6)

whereC = C(p, U, K) > 1 is a uniform constant independenttof
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Remarks. (1) It follows from (1.5) and Jensen’s inequality that the functioa &éx +
Wol”’ (£2; R™) satisfies:
1

E1P < —
|£2]

/lel”dec(p, U, K). @.7)
Q

Therefore, ifU is W1-P-reducible tok then SUpey 17 < c(p, U, K), and hencé&/ must
be bounded.

(2) A Vitali covering argument shows that the constasatc(p, U, K) is independent of
bounded sets2 with [352| = 0. Also, if U is Wl-P-reducible toK , then the requirements
in the definition hold for arbitrary bounded open s&s Moreover such a function

veéx + W&”’(.Q; R™) can also be chosen to satisfy
lv—éxlLra) <$ (1.8)

for any givens > 0.

(3) If U is boundedand reducible toK in the sense of Miller and Sychev (cf.,
Definition 1.4), then, for any X p < oo, U is Wh?-reducible toK, with constant
c(p,U,K) = sup|€|” | £ € U}. Moreover, for bounded sets, uniform local Wl-7-
reduction principle is equivalent -7 -reduction principle.

The main result of this paper is the following existence theorem.

Theorem 1.7 (Main Theorem)Let 1 < p < oo and letU be uniformly locallyw?-7-
reducible to a closed set. ThenU C g,(K). More generally, for any piecewise affine
functionp € W7 (£2; R™) with Dg(x) € U UK a.e.x € £2 and for anye > 0, there exists
a solutionu € S({,’(.Q; K) to problem(1.1) satisfying

lu —ellLre) <é: /IDMI”<C<IQI+/ID¢I”>, (1.9)
Q Q

whereC = C(p, U, K) > 1is the uniform constant ifiL.6).

Remark. For bounded set#/, K, from Remark (3) of Definition 1.6 and the Sobolev
embedding theorem, using7-reduction withp > n, we can easily see that our main
theorem, Theorem 1.7, implies Theorem 1.5.

We prove our main theorem using a new approach which is quite different from that
of [12,13]; the proof will be given in Section 2. Sections 3 and 4 will be devoted to several
applications of this theorem whet&!-? -reduction principles can be established, including
some known results obtained by using different methods.

2. Proof of the main theorem

The proof of the main theorem, Theorem 1.7, will be based on the following special
case of the theorem.
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Theorem 2.1. Let1 < p < oo and letU be a bounded set which &*-7-reducible to a
closed seK with constant(p, U, K). ThenU C B,(K). Moreover, for any bounded open
set2 c R",andforany € U, b € R™ ande > 0, there exists a solutiom € S§x+b(.(2; K)
satisfying

|u — &x +b) ||Lp(9) <e: / |Du|” dx < c(p, U, K)|£2]. (2.1)
2

The proof of this theorem will be given at the end of this section, but we first show this
special case in fact implies the main theorem.

Proof of Theorem 1.7. Let U be uniformly locally Wl-7-reducible toK. Let ¢
WP (£2; R™) be a piecewise affine function with
Dp(x)eUUK a.exef2.

We write 2V = {x € 2 | Dp(x) € U} and 2K = {x € 2 | Dp(x) € K\U}. By the
definition of piecewise affine functions, we can assum® and 2V are disjoint open
sets except for a measure zero set gpY(25X U 2Y)| =0. Let

¢ =gxox + Y (Ex+b)xe, &€U; ’QU\ i =0
ieN ieN
The fact thatp € W7 (£2; R™) implies
161y = [ D917 dx+ 3 171521 < . (2.2)

QK ieN

By the uniform localw?-reduction assumption, for eaéte N, there exists a bounded
setU; c U, containingg;, such that/; is Wh7-reducible tok with constant

c(p, Ui, K) <C(1+&17),
whereC = C(p, U, K) > 1 is a constant. We apply Theorem 2.1tfpand K with open
bounded sef2; to obtain a function; € S§x+h,- (£2;; K) satisfying
|ui — Eix + bi)”]zp(gi) <el/2';
f|Du,-|1’dx<0(1+|s,-|f’)|9,-|. (2.3)
£2;

Let

U=g@gxok + ZuiXQ,--
ieN

Then, by Lemma 1.3, we easily haves S} (£2; K) and, by (2.3), we also have

e =l ooy =D Jui = Gix + 60|} ) <" Y _1/2 =P,
ieN ieN
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Moreover, by (2.2), (2.3), using > 1, it follows that

/|Du|pdx:/|D<p|pdx+Z /IDui|”dx

Q QK ieN Qi
< [ 1Derax+c Y (1+ 161120
QK ieN

< c(|9| +/ |D<p(x)|”dx).

This completes the proof of our main theorem, Theorem 1(7.

The rest of this section is devoted to the proof of Theorem 2.1.

Givené e U, b € R™, let V be the set of functions € &x + b + Wol”’(.Q; R™) that
satisfy the condition (i) of Definition 1.6. Then the Sétis nhonempty since, by (1.7),
Ex+beV.

Let X be the closure oV in the metric spacé&? (£2; R™) with the metric defined by

=3 I =&l

1<i<m

Then (X, p1) is a complete metric space. Furthermore, by Remark (1) of Definition 1.6,
one easily has

Lemma22.0OnehasY céx+b+ Wg’p(.Q; R™). MoreoveryYv € X,
/ |Dv(x)|” dx < c(p, U, K)|£2].
Q

To continue the proof, we prove the following result.
Proposition 2.3. For any f € X, there exists a sequengg;} in V such that

I fi — flir2y = 0, /dist(ij(x); K)dx — 0. (2.4)
2

Proof. Given anye > 0, sincef € X, there exists @ € V such that

If—vlLre) <e. (2.5)

By the definition of setV, we can writev = ), vixe, as the condition (i) of
Definition 1.6. LetA be the set of indicese N for which v;|o, = &x + b; with & e U
and letB be the set of indicese N for which Dv; (x) € K a.e.x € £2;. For each € A,
sinceg; € U andU is WhP-reducible tok, by virtue of Remark (2) of Definition 1.6,

there existav; € v; + Wé”’(fz; R™) satisfying
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(@) w; = ZjeN wijxgi,-, Where{Qlf}jeN is a family of disjoint open subsets @f; with

12/\ Ujen £2/| = 0 such that

/|Dw;’(x>|f’dx <e(p.UK)IR2]]. VieN,
@/

and, eithenul.j|9_.,- =&jx+bj, €U, or le.j(x) e K aexe .Ql.j;
(b) [, disttDw; (x); K)dx < &|$2;
©) llw;i — vi”zp(gl,) <l )2l

Let
u= ZwiXQ,- + ZviX.Q;-
ieA ieB
Then, from the definition o¥, it follows thatu € V and, by property (c) above,
e =017 oy =D wi = vill} g, <"
icA
Moreover, from (b) above,

/dist(Du;K)dx:Z /dist(Dw,-;K)dx<sZ|.Q,-| <&l
2

i€eA 2 icA

Finally, choosing = 1/j and f; = u € V proves the result. O

We now follow some idea in a recent work of Kirchheim [7] of using a Baire’s category
theorem. We refer to [1, Chapter 10] for details on the Baire’s category theory for sets and
functions in metric spaces.

Let {e;} be the standard basis Bf'. Fori > 0, define

Qin=1{xeQ|x+tej R, VOt <h).

Thens$2; , is an open subset 62 and for any compact sét € £2, there existég > 0 such
that F C £2;, forall 0 < i < ho and hencé2\$2; ,| — 0 ash — 0%,
Let)Y = LP(£2; M™*™) be the metric space endowed with thé-metric defined by

p2(A.B)= Y Ay - BijllLr ).
1<i<m, 1<j<n
DefineT}, : (X, p1) — (), p2) by letting

frathe)— 1 (x) Q.
(Thf)ij = I o FEgh (2.6)
0, X &2
Proposition 2.4. For 1 < p < oo, h > 0, map T, : (X, p1) — (Y, p2) is continuous
between the two metric spaces. Moreovef,c X, it follows T, f — Df in Y ash — O*.
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Proof. Itis easy to see that fof, g € X andforany: >0, 1<i <m, 1< j <n,

2. . .
| (T f — The)is ”LP(Q) S 7 |- ”LP(.Q)'
This provesT}, : (X, p1) — (Y, p2) is continuous for anyt > 0. To show
lim p2(Ty f, Df) =0
h—0t
forall f € X, since 1< p < oo, it suffices to show, forall KXi <m, 1< j <n,

(@) (T f)ij converges weakly teff/axj in L?(£2) ash — 0™, and
(0) limy,_ o+ I1(Th ijliLr2y = 10f"/0xjllLr(2)-

Note that, by Lemma 2.2y ¢ W17 (§2; R™). Therefore, it is easy to show that, for any
h>0,

| (Thfi ||LP(S2) < [af'/ox; ”Lp(g) < 00. (2.7)
Using this inequality, to prove (a), it is sufficient to prove
i he i) — i i
lim J'(x + hej) f(X)¢(x)dx:/8f ()

h—0t h Xj
Q],h

d(x)dx (2.8)

for each 1<i <m, 1< j <n and any test functio® € C3°(£2). Given any such
¢, let h > 0 be small enough that the support ¢fis contained ins2; ;. The right-
hand side of (2.8) equals- [, fid¢/dx;, while the integral on the left-hand side
equalsfQ Fi)(p(x — hej) — ¢(x))/ hdx, which, by Lebesgue Dominated Convergence
Theorem, tends te- fg fi8¢/an ash — 0%. Hence (a) is proved. From (a) we have

[0 101 Lo gy <UMINE [T 1251
which, together with (2.7), proves (b). This completes the proaf.
The following result is crucial for proving the theorem.
Proposition 2.5. There exists a dense subggtc X' such that for anyf € G and any

sequencgf;} in X with || f; — fllLr2) — Oone has

IDfj — DfllLr2y — O.

Proof. Recall that éBaire-one functions defined to be a pointwise limit of a sequence of
continuous functions between two metric spaces; cf., [1]. Proposition 2.4 asserts that the
gradient operatob : X — ) is a Baire-one function. By a Baire’s category theorem [1,
Theorem 10.13], there existg@sidual setG C X, i.e., a set whose complement isfioét
categoryand hence itself idensesuch thatD : X — ) is continuous at every < G; this
continuity is exactly the conclusion of the propositior
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Remark. Proposition 2.5 is aeverseSobolev type estimate and is exactly what Muller
and Sychev needed in [12] for their existence theorems; but they established this using a
totally different approach.

Completion of proof of Theorem 2.1. SinceK is closed, Propositions 2.3 and 2.5 imply
that anyf € G is a solution of

Df(x)eK, f—(Ex+b)eWyP(2;R").

HenceG C SS”Hb(Q; K). SinceG is dense inX andéx + b € X, we easily fulfill the
first requirement of (2.1), whereas the second follows easily from Lemma 2.2. The proof
of Theorem 2.1 is completed.O

3. Reduction by open lamination convex hulls

We first recall the notion ofamination convex hullsf sets of matrices. Given any set
K c M™n et

y(K)={mi+ @A —0n2|1€(0,1), n; € K,rankiny — n2) = 1}. 3.1)

Note thaty (K) = ¢ if K does not contain any two matrices with rank-one difference.
DefineLo(K) = K and inductively

Lit1(K)=L;(K)Uy(L;j(K)), j=0,1,.... (3.2)

Then, define thé&amination convex hulbf K to be the set

LK)=K"=|]L;K). (3.3)
j=0

Remark. From definition,£(K) is contained in the convex hull &, and£(K) is open if
K is open; moreover,

K C L(K) = L(L(K)) (3.4)
for any setk ¢ M™*".

The following important result elucidates the close relationship of lamination convex
hulls with the reduction principles (or relaxation properties); we refer to Yan [13] for a
detailed proof of this result.

Lemma 3.1 [13, Lemma 3.4].Let U be an open set itM”*" and letn € U and
n=tn1+ (1—1t)n2 withz € (0, 1) andrank(n1 — n2) = 1. Then, for any > 0, there exist
finitely many pointgs, ..., ny in U and a piece-wise affine magpe nx + W&’”(Q; R™)
such that
{ Du(x) € {n1,m2,n3,...,ns} a.€.x € 2;
l{x € 2| Du(x) & {n1, n2}}| < el$2|.
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Definition 3.2. Let A ¢ M™*" be a bounded set with nonempty interior (i.e., Ang 0).
We say a subse® of 0 A is arank-one boundary setf A provided that for each € int A
there exist rank-one matriy and numbers— < 0 < ¢* such thatté + r*5 € B and
E+meintAforallr e (t—, ).

Remark. It is easy to see thatA is itself a rank-one boundary set af However, later on,
we shall see that there may be other rank-one boundary sets smallérdhan

The following theorem provides another proof and a generalization of the result of
Yan [13, Corollary 3.3].

Theorem 3.3. Let A ¢ M™*" be bounded and l&® be a rank-one boundary set afwhen
intA #¢andletB =@ whenintA=¢.LetK = (ANJA)UB CIA.IfU = L(A)is open,
thenU is reducible toK. In particular, L(A) C Bso(K) if L(A) is open and bounded.

Proof. SinceU = L(A) is bounded, there exists a constant- 0 such that
In| +dist(n; K) <M, VneU. (3.5)

Let& € U ande > 0. SinceU = L(A) is bounded and open, a repeated use of Lemma 3.1
shows that there exist two finite ses, &2, ...,&} C ACU and{n1,n2,...,n4} CU

and a piece-wise affine mape £x + W01’°°(52; R™) such that

Du(x)ef{&1,...,51U{n,....,nq} aexes2;
e2] (36)
l{x € 2| Du(x) ¢ {£1,82,.... 5} < %7 -

Note that this already shows thétis reducible toA and thus toA, which, by our main
theorem (Theorem 1.7), gives another proof of the result of Yan [13, Corollary 3.3].
The following is devoted to proving is in fact reducible to the s&€ = (AN0JA) U B.
If int A =¢, then we haveA c A and B = ¢ and thuskK = A; the theorem is
already proved from (3.6). Therefore, we assumedint . Let 2’ = {x € 2 | Du(x) ¢
{81,62,...,&}}). Then|2'| < ¢|82|/2M. Let I be the set of indicese {1, 2,...,r} for
which & e intA and J the set of remaining indices for whicgh € A\intA = ANJA,
a subset oK. We now fixi € I and let2; = {x € 2 | Du(x) =&} = UjeN £2;;, where
u=§&x+b;ons; foreachj e Nandg; eint A. SinceB is a rank-one boundary set Af
there exist a rank-one matrixwith || = 1 and numbers~ < 0 < r+ such that; +*n €
BcC K and§ +tpeintAforallt e (¢, t+). Choose O< § < min{—t—,t™, /4} and let

ot =8

Tt —t— =25

Then,&" cintA, dist€"; K) <8 andg; = 13¢5 + (1—15)&;” € intA. Using Lemma 3.1,
we obtain a piecewise affine mag < (§x +b;) + W&’“(Qij; R™) such that

E =&+ G+, & =&+0" -omn; ts

6|.Q,'_/| (37)

Dwj(x)eintACACU a.excf2j;
[{x € 2ij | Dw;(x) ¢ {& . &1 < =
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Definev; = ZjeN wjxXe; €U+ W&”’(Qi; R™) and let
V=uyo +ZUiXQi —G—Zuxgj.
iel jedJ
Thenv e u + W&’“(Q; R™) is piecewise affine and satisfid3v(x) € U = L(A) a.e.
x € £2. Moreover, by (3.7),

/dist(Dv,-; K)= / dist(Dw ; K)

]ENQ

_Z[ / / dist(ij;K)}

JjeN {Dw;=&F)  (Dw;#EF)

<Y 12,1 +ZME|“Q”|

jeN jeN
<e|2i|/4+¢|2i|/4=¢|82i]/2.

Hence},;; [o, dist(Dv;; K)dx < €$2|/2. On the other hand,

/dist(Du; K)dx < M|2'| <¢e|82]|/2.
9/
Finally, we have

/dlst(Dv K)dx_/dlst(Du K)+> /dlst(Dv,, K)
iel 2
<e|Q|/2+e|Q|/2_8|.Q|,
as required by (ii) of Definition 1.6. This provds is reducible toK; the proof is
completed. O

Recall that in Miiller and Sverak [10] (following [6]) a sequence of $etg is called
anin-approximatiorof a setk provided the following conditions hold:

@ U;CcLUj+1), Vj=1,2,...;
(b) n € K whenevem; — n and distn;; U;) — O forall j e N.

Remark. Condition (a) impliesC(U;) C L(U;41) forall j e N.

Lemma3.4. Let{U;} be an in-approximation ok and let
d(n) =dist(n; K), dj(n) =dist(n; U;).

Then, for anys > 0 and j € N, there exist constants > 0 and J € N depending 018, j
with J > j such that

dm) <8(In>+1) +Cdy(m), VYnem™ ", (3.8)
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Proof. Suppose not. Then, there exégt> 0 and jo € N such that for each > jo there
exists am; € M™*" verifying

d(nj) > so(In;j1*+1) + jd; (n)).
Since d(n) grows linearly, this inequality implie$n;} is bounded; hence we assume
n; — n. The same inequality also implie& (n;) — 0. The in-approximation property
thus impliesy € K and hencel(n;) — 0. This contradicts witll(5;) > 8. The result is
proved. O

The following theorem has been proved by Miiller and Sverék [10]. We provide a
different proof using mainly the reduction principle.

Theorem 3.5. Let {U;} be a family of uniformly bounded open sets, which forms an in-
approximation of a compact s&. Let U = (J;.y £(U;). ThenU is reducible tokK.
ThereforelU C Boo(K).

Proof. The uniform boundedness ¢¥;} implies U = {J; .y £(U;) is bounded, so we
assumen| < M foralln e U. Leté € U ande > 0 be given. Assumé € L(U,) for some
joeN. Lets =¢/2(M? + 1) andj = jo in the lemma above. We obtain constaéts- 0
andJ > jp such that

d(m) <8(Inf*+1)+Cds(m), YneM™". (3.9)
Sincet € L(Uj,) C L(Uy;), by a similar argument as in the proof of Theorem 3.3, we have
a piecewise affine map € £x + W&’O"(Q; R™) with the property that

{ Du(x)e LWUy)cU a.exe$2;

(x €2 | Dux) ¢ U}l < £21

(3.10)

Using (3.9) it follows that

/d(Du(x))dx ga/(|Du|2+1)dx+c/dj(Du)dx

2 2 2
ga/(M2+1)dx+c / 2M dx
2 (Du()gU))

<olel+Siel=¢le
S 2 g/l = el
Hence, by definitionlJ is reducible toK . This proves the theorem.O

A modification of proof of Theorem 3.3 also yields a sufficient condition ot ?-
reduction; the following is some kind of self-enlarging property of the8s¢K ). See also
Yan [13, Theorem 3.2].
Theorem 3.6. Let K C M™*" be a closed set and let C 8,(K) be a set satisfying

1
co= Sup—/ |Dug|? dx < oo, (3.12)
gea |52] J
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where uz € SE”X(Q;K) is some solution for giverf € A. SupposeU = L(A) is
open and bounded. Theti is Wl P-reducible to K with constantc = ¢(p, U, K) =
maxco, SUP,cy [1|7}. ThereforelU = L(A) C Bp(K).

Proof. This result has been proved in [13] and here we provide a different proof using
the W-P-reduction principle. We adopt the proof of Theorem 3.3 up to (3.6). We then
modify the piecewise affine on the sef{x € £2 | Du(x) € A}. On each piece, saﬁ, of

this set wheres = £x 4 b with somet € A we replace: by the solution: € S§x+b(§; K)
obtained by a Vitali covering argument from the functione Sg’x(fz; K) givenin (3.11).

We keepu unchanged elsewhere. The new function so obtained satisfies the condition (i)
of Definition 1.6 with constant

c(p, U, K)=max{co, suf|n|” | n € U}}.

Clearly the new function also satisfies condition (ii) of Definition 1.6 in view of (3.6). This
proves theW-?-reduction principle and hence the theorem follows by our main theorem,
Theorem 1.7. O

4. Boundary value problem for special weakly quasiregular mappings
As a specific application of ou¥1-?-reduction principle, we study the boundary value

problem for certain special weakly quasiregular mappings in higher dimensions. In the
following, we assume >3, L > 1. Let

Kp={& eM™ | |§]" = Ldet}, (4.1)
UL ={eeM™"||&]" < Ldet}, (4.2)
where the matrix norn¥| is defined to be the operator norm given by
= hl.
€1 heRT%@'E |

A mapu € WL7(2; R") is called aspecial weakly.-quasiregularmapping if
|Du(x)|" = LdetDu(x), i.e., Du(x)eK, aexcef.

We are interested in the Dirichlet boundary value problem for special weakly
quasiregular mappings:

Du(x)eK, aexe®; uecp+ Wy (2;R"). (4.3)

If p >nandy =&x + b is affine, then a necessary condition for (4.3) to have a solution is
|£|" < Ldeté. It turns out this is also a sufficient condition.

Theorem 4.1. Let p > 1. Then, for anye > 0 and any piecewise affine map e
wLr(2; R") with

|Do(x)|" < LdetDp(x) a.ex €2, (4.4)
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there exists a function € ¢ + W&’p(fz; R™) such that
Du(x) e K a.e.x € $2; lu —@llLro) <e.

However, condition (4.4) may not be needed for certain valugs-of:. In fact, no such
conditions are needed at alljfis not too large.

Theorem 4.2. Let1l < p < L”h. Then, for anye > 0 and any piecewise affine map

¢ € WLr(£2; R"), there exists a functiom € ¢ + Wé’p(Q; R) such that

Du(x) e K a.e.x € $2; lu —@llLr2) <e.

Theorems 4.1 and 4.2 have been proved in Yan [14,15] using different methods. We
show below that these results also follow from our main theorem by reduction principle.
First of all, we have the following result.

Theorem 4.3. (i) For any1 < p < oo, Uy is uniformly locallyW?-reducible toK; .
(i) Foranyl < p < L”—jl the whole seM”*" is uniformly locally W-7-reducible
toK;.

Note then that Theorems 4.1 and 4.2 follow easily from this theorem and our main
theorem, Theorem 1.7.
To prove Theorem 4.3, we define the following bounded sek’ifi” for any > 0.

By ={l§] <A},

U*={lg|" < Ldett <1"},
P* ={|&|" = Ldets <"},
0;. = {I&]" = | dets| < A"}

Lemma 4.4. £L(U*) = U*, P* is a rank-one boundary set @f*, and U* is reducible
toK;.

Proof. It is easy to see thag(U*) = U* and henceL1(U%) = U*; this shows that
L(U*) = U*. We next show thaP”* is a rank-one boundary set 6f*. To this end, let
£ € U*; that is, |&|" < Ldett < A". By matrix polar decompositions, we find rotations
R, O € SQ(n) such that

&n 0

En—1 -
§=R . Q=RE0,

0 &1
where O< g1 < e2 < -+ < -1 < &, Satisfye? < Lerea---g, < M. Letn(t) =& + 17,
wheren = e1 ® ez is the rank-one matrix with the only nonzero elementlaR)-position.
Then it is easy to show (cf., [15]) that there exists a unigue O such that

n(tro) =& £1ofje P4,  n@)=E&+tijeU* Vte(—tgtg).
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Now letn = RijQ andr® = +19. Then we haverank=1, & ++*5 € P* andé +tn e U*
forall t € (1=, t*). This proves thaP”* is a rank-one boundary set of*. Finally, using
Theorem 3.3 witd = U* andB = P*, sinceU” is open, and henck = (ANJA)UB =
P*, we haveU* = £(U*) is reducible toK = P*. SinceP” C K, we have thus proved
thatU* is reducible tok;. O

Lemmad4.b. By, = L(Q,) and, forl< p < L”—jl 0, C Bp(K1), moreover, for al € Q;,
there exists: = ug € Séf’x(B; K1) such that/g | Dug |? dx < C1|§|”|B|, whereB is the unit
ballin R" andCy = C1(n, p, L) > 1is a constant. In particular, fol < p < L”—il By is
wlP-reducible tok; with constant(p, B;, K1) = C1A”.

Proof. B, = L£(Q,) follows from direct calculation (cf., [13,14]). For any € Q;,

considers = ug = £x/|x|". One can seleoct so that, for 1< p < L”—Jfl ug € Sg’x(B; Kr)
and fB |Dug|? dx < C1]€|7|B| for a constaniCy = C1(n, p, L) > 1 (cf., [14]). Finally,

Theorem 3.6 implies;, is WL-7-reducible tok ; with constant(p, By, K1) = C1AP. O

Proof of Theorem 4.3. (i) For any& € Uy, let A = (2L)Y"|&| > 0 andUs = U* defined
above. Thert € Ugs. By Lemma 4.4,Us = U* is reducible tok; and is thusw™.»-
reducible toK; with constant

c(p.Us, Kr) =sup{|n|” | n € Ug} < AP = (2L)P/"||P.

Therefore, by Definition 1.6/, is uniformly locally W1-?-reducible tok ;. forall p > 1.
(if) For any& e M™", let A = |£] + 1> 0 andUg = B, as above. Theg € U;. Let
1< p < #4. Then, by Lemma 4.5/; = B, is Wh7-reducible tok;, with constant

c(p,Us, Kp) = C1AP = C1(|E] + 1)” < C(I€17 + 1),

which proves the uniform loca¥*-7-reduction oM™*" to K for 1< p < 4. O
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