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Sharp Stability Results for Almost 
Conformal Maps in Even Dimensions 

By Stefan Miiller, Vladimir Sverdk, and Baisheng Yan 

ABSTRACT. Let ~ C R n and n > 4 be even. We show that if  a sequence {uJ } in W l'n/2 (f2; R n) is almost 

conformal in the sense that dist (Vu j , R+ SO(n)  ) converges strongly to 0 in L n/2 and i f  u j converges weakly 

to u in W 1,n/2, then u is conformal and VuJ ~ Vu strongly in Lqoc for  all 1 < q < n/2. It is known that this 

conclusion fails i f  n~2 is replaced by any smaller exponent p. We also prove the existence of  a quasiconvex 

function f ( A ) that satisfies 0 < f ( A ) < C (1 + Iml n/2) and vanishes exactly on R + SO(n). The proof of  

these results involves the lwaniec-Martin characterization of  conforrnal maps, the weak continuity and biting 

convergence of  Jacobians, and the weak-L 1 estimates for  Hodge decompositions. 

1. Introduction 

Let n > 2 and ~2 be a domain in R n. We denote by WI'P(f2; R n) (p > 1) the usual space of  all 
Sobolev maps u: g2 ~ R n . A map u c WI'p(f2; R n) is called conformal if 

V u ( x ) ~ R  + S O ( n ) = { k Q ] L > 0 ,  Q c S O ( n ) }  a .e .x  ~ f 2 .  

Here, R + denotes all nonnegative real numbers, and SO(n) denotes the set of  all rotations with 
determinant equal to 1. A classical Liouville's theorem asserts that if n > 3 and p > n, then a 
conformal map in WI'p(f2; R n) must be a restriction onto ~2 of  a M6bius map (see [4] and [26]). 
A recent result of  Iwaniec and Martin [16] shows that in even dimensions Liouville's theorem is 
still true for conformal maps in W I'p if p > n/2. In odd dimensions, Liouville's theorem holds for 
conformal maps in W l'p if p is not too far below n; the minimal value of  all such pts is unknown 
(see [14] and [17]). Note that there are counterexamples in all dimensions showing that a conformal 
map in W I'p for p < n/2 may not be a restriction of  a M6bius map (see, e.g., [16]). 

In this paper, we are mainly interested in the stability of  conformal maps, i.e., the question 
whether the weak limit of  almost conformal maps is conformal. In the following, weak convergence 
is denoted by the half-arrow "--~" and strong convergence by the arrow "--+." Our main result is the 
following: 

Theorem 1.1. Suppose n _> 4 / s e v e n  and that {uJ} is a sequence in wl'n/2(~'2; R n) and satisfies 

u j - ~ u  in W l'n/2(f2;R n) ,  (1.1) 
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and 
dist (Vu j, R+SO(n))  -+ 0 in Ln/2(f2). (1.2) 

Then u is conforrnal (thus a MObius map) and V U  j --+ VU in Lqoc(fl) for all 1 < q < n/2. In fact, 
VuJ --~ Vu in the Marcinkiewicz space weak-Ln" / z~oc = LIo c �9 

Remarks. 1. If  (1.1) is replaced by 

U j _..x U in W 1'p (~"~, R n) for all 1 <_ p < n / 2 ,  (1.3) 

the conclusion fails (see Example 4.2 below). Also, if n/2 in both (1.1) and (1.2) is replaced by 
p > n/2, then VuJ --+ Vu in LPoc (f2); see the remark after the proof of  Theorem 1.1. 

2. Hypothesis (1.2) can be replaced by the following seemingly more general condition. Let 
f : M  n• --+ R, where M n• denotes the set of  all real n • n matrices, be a nonnegative n/2- 
homogeneous continuous function that vanishes exactly on R + S O (n) and we assume that 

f (VU j )  ~ 0 in L l ( f2 ) .  

This hypothesis is equivalent to the special case (1.2) under the condition (1.1) since, by homogeneity, 

0 < f ( A )  < ~ IAI ~/2 + G distn/2 (A, R+SO(n)) ,  VE > 0, VA E M n• . 

A particular choice f ( A )  = IlAlln/2(1 - r(A)), where IIAII is the operator norm and r(A) = 
det A/IIAII n, shows that in even dimensions the weak limit of  weakly Kj-quasiregular maps u j in 

w l ' n / 2 ( ~ ;  R n) with g j  --~ 1 is conformal and the convergence is in fact strong in W11J for all 
1 < q < n/2 (see [14], [16], and [26]). 

3. If  n is odd, the similar conclusion of the theorem still holds if in both (1.1) and (1.2) one 
replaces n/2 by a number p which is not too far below n (see [34], [37]). 

One key ingredient of  the proof of  the main theorem is the fact that in even dimensions confor- 
mality of  a matrix can be (almost) characterized by a condition that involves only minors of  order 
n/2 (see Lemma 2.1). This characterization, which may be viewed as a nonlinear version of the 
Cauchy-Riemann equations, is due to Donaldson and Sullivan [10] for n = 4 and to Iwaniec and 
Martin [16] for the general case n = 2l, l > 2. 

The stability result stated in Theorem 1.1 is closely related to the existence of a quasiconvex 
function f that vanishes exactly on the set R + S O (n) and satisfies the growth condition 0 < f (A) < 
C (1 + lAin/2). If  n/2 is replaced by p >_ n, then such functions exist, as is easily seen [3], 
[19] by considering the function f ( A )  = IAI n - nn/2detA, where IAI is the norm defined by 
IAI 2 = tr ( A  t A). 

Recall that a function f : M n xn ~ R is said to be quasiconvex if for a bounded smooth domain 
D c R  n, 

fD f ( A ) d x  < f D f ( A  + Vdp(x))dx' 'CA E M  n• Vdp E Cff z ( D ; R  n) . 

qc Furthermore, the quasiconvexifieation of f ,  denoted by f , is defined by 

fqc(A) = inf 1 fD r n) IDI f ( A  + V r  (1.4) 
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A simple covering argument shows that the definition of  both quasiconvexity and quasiconvexification 
is independent of  the domain D. Moreover, under suitable growth conditions, fqc  is the largest 
quasiconvex function on M n x n below f .  However, most quasiconvex functions that are explicitly 
known are polyconvex functions introduced by Ball [2], i.e., functions that can be expressed as a 
convex function of  all minors (subdeterminants) of  A. For further information about quasiconvexity, 
we refer to [1], [6], [8], [20], [22], and [28]. 

Theorem 1.2. Let  n >_ 2 be even. Then there exists a quasiconvex function f which satisfies 

0 < f ( A )  < C (1 + lAin~2), 'CA 6 M n• , 

f ( A )  = 0 if and only if A 6 R + S O ( n ) .  
(1.5) 

Furthermore, the function f may  be taken to be n /2-homogeneous. 

To put this result in perspective, we first remark that the result for n ---- 2 follows from the 
standard compensated compactness argument using the div-curl lemma (see [24], [30], [33], [36]). 
Second, as proved in [35], there are no polyconvex functions that satisfy condition (1.5), and also 
the growth condition 0 < f ( A )  < C (1 + IAI n/2) in (1.5) cannot be strengthened to 0 < f ( A )  < 
C (1 + distn/2(A, R + S O ( n ) ) )  or to 0 < f ( A )  < C (1 + IAI p) for some p < n/2.  Moreover, it 
follows from a result of  [39] that whether there exists a quasiconvex function which vanishes exactly 
on a compact subset KS of  M n x n does not depend on the growth condition of  the quasiconvex function 
(see also [36]). Finally, whether or not Theorem 1.2 holds in odd dimensions is open. 

The construction of suitable quasiconvex functions plays an important r61e in the calculus of  
variations and nonlinear partial differential equations; see [9], [11], and [32]. Applications to phase 
transformations in elastic crystals have recently attracted considerable attention and we refer to Ball 
and James [5], Chipot and Kinderlehrer [7], Fonseca [12], Kohn [21], MOiler and Sverfik [25], and 
Sverfik [29], [31 ] for further information. 

2. Notation and preliminaries 

We first recall some well-known results concerning multilinear algebra and differential forms. 
We follow the notation of  [14] and [16]. 

Let el, e2, �9 �9 ", en denote the standard basis of  R n. For k = 0, 1, . . . ,  n we denote by A k = 
A k ( R  n) the linear space of  all k-tensors spanned by {el = eil A ei2 A . . .  A eik } for all ordered k-tuples 
I = ( i l , i 2 , ' " , i k )  w i t h l  _< il < i2 < . ' -  < ik < n. Def ineA k = {0} i fk  < 0 0 r k  > n. The 
Grassmann algebra A ---- ~ A k is a graded algebra with respect to the exterior multiplication A. 

For ~ = Y-~I otter and t61 = Y] file1 in A the inner product is defined by 

(Or, 16) = y ]~  ~ I  i l l ,  
l 

where summation is taken over all k-tuples I = (il, i 2 , . . . ,  ik) and all integers k = 0, 1, . . . ,  n. The 
norm of ot 6 A is defined by {a[ 2 = (or, or). The Hodge star operator �9 : A ~ A is defined by 
requiring 

�9 1 = el  A e 2  A . . .  Aen 

and 
o~ A (,16) = r A ( * ~ )  = (~ , /3 )  (*1)  

for all or, 16 6 A. It is obvious that �9 maps A k into A n-k. 
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For a linear operator A: R n --+ R n, the kth exterior power AkA = A k of  A is defined as a map 
Ak: A k ~ A k by 

A k ( x l A x 2 A , . . A x k ) = A x l A A x 2 A . . . A A x k ,  x j  6 R  ~ .  

Note that if  A has the n x n matrix form in the standard basis {el, e2, . . . ,  en}, then A k has the 
n X n (k)  (k)  matrix fo rmin thebas i s  {e! = eil Aei2 A . .  "Aeik} for all ordered k-tuples I = ( i l ,  i2, " " ,  ik) 

with 1 < i l  < i2 < �9 " < ig < n and each element of  A k is a k x k minor of  A. 

For the purpose of  this paper, we shall assume n = 21 and consider only the / th  exterior power 
At# of  an n x n matrix A. In this case, the Hodge �9 operator induces a linear operator from A l onto 
itself. Define W : M  nxn ---+ R as follows: 

�9 ( a t ) l # - ( A t ) t #  �9 , (2.1) W ( A ) =  

where the norm II �9 I l is  taken to be the operator norm. Note that W ( A )  is polyconvex and hence 
quasiconvex. 

The following result is the Iwaniec-Mart in  characterization of  conformal matrices. 

L e m m a  2.1 [16].  Le t  W ( A )  be defined as above and Z ( W )  denote the zero set  o f  W.  Then 

W (A)  is po lyconvex  and 

Z ( W )  = Kn 0 { a  ~ M nxn ] r a n k a  < 1 - 1}  . 

P r o o f .  This follows from Lemmas 2.10 and 2.13 of  Iwaniec and Martin [ 16]. [ ]  

L e m m a  2.2.  Le t  I = (il ,  i2, . . . ,  il) with 1 < il < i2 < . . .  < it < n be given. For any 
A E M n x ~ with row vectors a j  being considered as in A 1. Define a matr/x PI (A)  ~ M l • ~ such that 

its k th  row is aik f o r k  = 1 . . . . .  I. Then i t  fo l lows  that 

IPI (A)  I l > I t/2 (at)t# (e~) , (2.2) 

and equali ty holds in (2.2) i f  and only  i f  there exists a X I > 0 such that 

aik " ais = ~.1 ~ks 

for  all 1 < k, s < l. Therefore, equality in (2.2) holds for  all indices I i f  and only  i f  A is a conformal  
or an anticonformal matrix, i.e., At  A = ;~ In for  some  X > O. 

P r o o f .  This is a special case of  the so-called Hadamards '  inequality in the theory of  matrices. See, 
for example,  [15, Lemma 2.1]. [ ]  

We now review the notation of  differential forms on g2. For each k = 0, 1, �9 . . ,  n, a differential 
form ot of  degree k defined on [2 (denoted by ot ~ Ak(g2)) 

Ot : y ~  Otl (x  ) d x  I : y ~  Olil i2...ik (X ) dXil A dxi2 A " " " A dXik 

can be identified with a function or: f2 --+ Ak(R  ~) with the same coefficients {c~/}. Consider the 
space 

7 ) ' ( a ;  A) = . k  T)' ( a ;  A k)  
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of  all differential forms whose coefficients are distributions on f2. Similarly, other spaces such 
as LP(~;  A), WI'p(f2; A) can be defined by requiring that all coefficients belong to the suitable 
function spaces. 

Recall that the exterior derivative d: D~(g2; A k) --+ Dr(S2; A k+l) for k = 0, 1 . . . . .  n is defined 
by 

dot = Z d o t l ( X )  A d x l  
l 

= ~n Y ~  Ootiliz"'ik(X)oxs dxs A dXil /% dxi2 /k �9 .. A dx& , 

s=l l<_il<i2<...<it<n 

and its formal adjoint operator d*: 79I(f2; A k+l) ---> DI(f2; A k) (the so-called Hodge codifferential) 
is given by d* = ( - 1 )  nk+l * d ,  on (k + 1)-forms. It follows directly from definition that the 
Laplace-Beltrami operator A = dd* + d*d defined on Dr(f2; A ~) operates only on the coefficients, 
i.e., 

0 2 
Aot(x) = y ~  Aot/(x) dxl ,  where A = - Y~i 0x~ " 

I 
illl,kp Let u: f2 ---> R ~, u = (Ul, u2, �9 . . ,  Un) be a map in ,, loc �9 Then u induces a homomorphism 

u*:C ec (R m, A k) ~ glPoc (~'2; A k) 

which is defined as follows. For each ot = Y~4 otl(X) dx l  6 COC(R m, Ak), let 

(u* ot) (x) = Z otl(U(X)) duff A dui2 A . .. A duik . 
I 

If  ot has constant coefficients, then (u* ot ) (x) t can be identified with the kth exterior power of  V u (x), 
where Vtu (x )  denotes the transpose of  Vu(x) ~ M nx~. Thus, in our notation 

(u*ot) (x) = (Vtu(x))k# ot. (2.3) 

We use the following weak-L l estimates for the Hodge decomposition. 

L e m m a 2 . 3 .  L e t D  be any smooth domain in R n. Supposeo) E LI (D;  A k) and a ~ L~oc(D; Ak). 
I f  the system 

d a = 0 ,  d * o t = d * c o  (2.4) 

holds in the sense o f  distributions on D, then there exists a harmonic form h on D such that the 
weak-L 1 estimate 

Hot - hll tx(o) <_ C(n) IIo)lltl(o) (2.5) 

holds, where IlYlILL(D> or in general IIYIIL~(D) denotes the pseudo-norm o f  a form y in the 

Marcinkiewicz space weak-L p ( D ) = L p ( D ) defined by: 

P t p {x e D I Iy(x)l > t} (2.6) II~,IIL~(D > = sop meas 
t>0 

P r o o f .  Let 7t = N (w) be the Newton potential of  o) on D (defined for each coefficient of  w) 

fD w(y) ~(X) = Cn [X ~- '~-2  dy , 
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and define 
a2~p 

~ij(og) -- - -  (i, j = 1, 2 , . . . ,  n ) .  (2.7) 
OXiOXj 

The operator T~ij: 09 "--> T~ij (09) is a singular integral operator of  Calderon-Zygmund type (see [ 13] 
and [27]). 

From (2.4) and the identity 

o9 = A ~ = d d * ~  + d*dap 

it follows that h = ot - dd*ap is a harmonic form on D and hence (2.5) follows directly from the 
weak-L 1 estimates for Newtonian potentials (see, e.g., [13, Ch. 9]). [ ]  

R e m a r k s .  1. I f  t9 belongs to LP(D; A k) for some 1 < p < oo, then (2.5) can be replaced by the 
strong L p estimate 

IIo~ - hllL,<O~ <_ C(n) IlogllL,<o~ �9 (2.8) 

2. If  there is a constant form t~ such that both o9 and ot - t~ are compactly supported in D, then 
h = & in both (2.5) and (2.8). 

3. Wl'P-stability of  almost conformal maps 

In this section, we prove our main result, Theorem 1.1, about the sharp stability for almost 
conformal maps in even dimensions. We will frequently use the following fact. 

Proposition 3.1, Let  f (~) and g(~) be two nonnegative continuous functions on R N that are 

k-homogeneous. I f  the zero set o f  g contains that o f  f ,  then for every ~ > 0 there exists a constant 

C~ < oo such that 
0 _< g(~) _< E I~1 k + c~ f(~) ,  u 6 R u . (3.1) 

P r o o f .  Let cE = i n f { f ( ~ ) l l ~ l  = 1, g(~) > E}. Then the infimum is attained and cE > 0 by 
assumption. The choice Ce ---= suPl~l= 1 g(~)/ce and homogeneity yield (3.1). [ ]  

Proof of  Theorem 1.1. It suffices to establish the conclusion of  Theorem 1.1 for smooth bounded 
subdomains of  g2 so we may assume that [2 itself is smooth and bounded. To simplify notation let 

l = n / 2 ,  d ( A ) = d i s t  ( A , R  + S O ( n ) )  , 

and let W(A)  be defined by (2.1). We proceed with the proof in several steps. 

Step 1. (Strong convergence o f  I x I minors). 

Since W vanishes on conformal matrices Lemma 2.1, thus, Proposition 3.1, the boundedness 
of  {VuJ} in Ln/2(g2), and (1.2) imply that 

W ( V u  j )  --'~0 in Ll(h'2). (3.2) 

Let I = {il, . . . ,  il}, 1 < il < " .. < il < n, be an arbitrary/-index and define 

( )* ( )* ogJ = *  u J ( d X l ) -  u J (*dx l )  �9 (3.3) 
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Since IwJ(x)l < W ( V u J ( x ) )  a.e. (3.2) implies O) j ~ 0 in Ll(f2; A l) as j ~ ~ .  Now by (3.3) 

[( )* [(/* d* u I ( * d x l  = - d * w  j ,  d u j ( *dx l  = 0 ,  (3.4) 

and by the weak-L 1 estimates for the Hodge decomposition Lemma 2.3 there exists a harmonic 
l-forlTl yJ in ~2 such that 

( )*  yJ Llw(f2) ~ u J ( * d x l )  - < C(n) L1(~) --+ 0 .  (3.5) 

In particular, { y J } is bounded in L 1 w ( 32 ) as u j is bounded in W 1,n/2 ( 32 ). Since y J is harmonic in f2, 
thus weak-L 1 estimates imply that {y J} is bounded in C~oc(~) for all k = 1, 2 . . . .  and hence 

yJ  ~ y in C~oc(f2) 

and y is also harmonic in ~2. From this and (3.5) we have for U C C f2 

( ")* Ll(u ) u J ( * d x l )  - y --+ 0 .  (3.6) 

On the other hand, by a result of  Zhang [38] there exist decreasing measurable sets Ek in f2 with 
I Ek I ~ 0 such that for all k = 1, 2, . . .  

u J ( * d x l )  ~ u* ( * d x l )  in L 1 (f2\E~) 

as j ~ ~ .  This and (3.6) imply y = u * ( * d x i )  almost everywhere and hence 

( ")* (*dxl) L~(U) u J (*dXl )  - u* ~ 0 (3.7) 

for all U C C  f2 and al l / - indices I .  Since the convergence in weak-L~o c implies the strong con- 
vergence in LlSoc for s < 1, we deduce the strong convergence of all I x l minors in L~oc(~2) for all 
0 < s < l .  

Step 2. (Strong convergence o f  {VuJ }). 

Let I ,  be the complementary index of I ,  i.e., �9 d x l  = dx t , .  Let 1 < q < l, then Lemma 2.2 
and Proposition 3.1, applied with g(A)  = [P I, (A)[q -- l q/2 ](At) / (el,)[q/l and f (A) = d q (A), yield 

el. vl~J q -  l (uJ)*(•dx,)  q/l-q - E Vlg j q -q- C~,qd q (Vu j )  . (3.8) 

We deduce from (1.2), (3.7), (3.8), and another application of Lemma 2.2 that 

l i m s u p f  PI, VU j q < _ f [PI, VU[ q . 
j--->~ JU JU 

Summation over al l / - indices I yields the same estimate for II VuJ q IlLq(v) and [[Vullqq(u). On the 

other hand, VuJ ~ Vu  in L q ( u ) ,  hence, 

Vu j --> Vu  strongly in L q ( u )  for all q < l and all U C C  f2.  (3.9) 

In particular, d ( V u  j )  ----> d(Vu)  strongly in L q ( u )  which yields Vu(x)  �9 R + S O ( n )  and u is 
confonnal,  hence, Iwaniec-Mart in 's  theorem shows that u is a restriction onto f2 of  a M6bius 
map [16]. 
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Step 3. (Convergence of {VuJ} in Ln/2). 

In order to establish (locally) strong convergence in weak-if ,  we observe that for q = l the 
above considerations yield 

( VU j l ) +  h j = - I V u l  I --+ 0 in L~(U), (3.10) 

where f +  denotes the positive part of a function f .  Let 

)~J (t) meas { x c U  VuJ (x ) -Vu (x )  > t ]  . 

We have to estimate the weak-L t pseudo-norm 

)1/1 
Vu j - Vu : s u p  t I ~.J(t) 

Llw(U) t>_O 

Note that, by (3.9), for all s > 0 

limsup sup tl~.J (t) <_ s l-q l imsup suptqLJ (t) = 0. 
j--+oo t<s j--+oe t>O 

On the other hand, 

~.J (t) 

thus 

< m e a s ( { V u J - V u  > t ] A { l V u l < t / 3 } ) + m e a s { l V u l > t / 3 }  

< meas [h j > (t/3) l] +meas{IVul  > t/3}, 

t t )~J(t) < C h j + C f IVul z 
LI(u) I 

JIV ul>t/3 

Combining this inequality with (3.10) and (3.12) we obtain, for every s > 0 

limsup V/~ j - -  V u  l = l imsup s u p  tl3.J(t) < C f V  IVulZ 
j--+oo Llw(U) j--+~ t>s ul>s/3 " 

Letting s ~ oo, we obtain 

limsup Vu j -  Vu l =0  
j--+O Ll(U) ' 

hence Step 3 is proved. The proof of Theorem 1.1 is now complete. 

(3.11) 

(3.12) 

[ ]  

R e m a r k .  If we a s s u m e  u j ~ It in W I'p and d(Vu j) ~ 0 in L p for some p > n/2, then by 
Remark (1) following Lemma 2.3 one has (u J)* dxi --+ u* dXl in L p/l and then easily deduces LlPoc 
convergence of {VuJ }. 

4. Quasiconvex functions that vanish exactly on R + SO (n) 

As before, let d(A) be the distance function dist (A, R + SO(n)) and W(A) as defined by (2.1). 
Define 

F(A) = W(A) + dn/2(A), I(u) = I F(Vu(x)) dx (4.1) 
J a  

q 
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Theorem 4.1. Let n >_ 4 be even. Then F qc is nonnegative quasiconvex, n / 2-homogeneous and 
vanishes exactly on R + SO(n).  More precisely, for each A E M ~x" and each {q~J} C C~(~2; Rn), 
i f  I ( A x  + (aJ(x)) --+ 0 then A ~ R + SO(n) and [[v~J[[L~/2(~ ) -+ 0. I f  A = O, then one has the 

estimate 
n/2 (4.2) I(~b) > c IIV4~ L~/2(a) 

for all dp E C~(12; Rn), where c > 0 is a constant independent of  dp. 

R e m a r k s .  1. In (4.2) the weak-L n/2 pseudo-norm cannot be replaced by the L n/2 norm (see 
Example 4.2 below). 

2. If  G(A) = (IAI ~ - n ~/a det A) U2, it is easily seen that W(A) < C G(A) for all A ~ M nxn. 
Hence, the similar proof given below also shows that the zero set Z (G qc) = R + S O (n) if n is even, 
thus GqC(A) gives another quasiconvex function which satisfies the conditions of  Theorem 1.2. 
However, all such quasiconvex functions cannot be polyconvex if n > 4 [35]. 

Proof of Theorem 4.1, Suppose that for some A 6 M n • n and some s e q u e n c e  {~b j } Q C ~  z (Q ;  R") 

we have I ( A x + c~J (x ) ) --+ O. We will show 

A E R + SO(n),  V(b j L~/2(a ) --> 0 

and that if A = 0 (4.2) holds. To this end, let uJ(x) = A x  + ~J(x). Then I(U j) ----> O, hence, 
W(A) = 0 as q~J 6 C ~ ( ~ ;  R n) and W is quasiconvex. Define O) j as  in Step 1 of  the proof of  

Theorem 1.1 by (3.3). Then O) j is compactly supported in ~ since W(A) = 0. Arguing as in Step 1 
of  the proof  of  Theorem 1.1 and taking into account Remark (2) after Lemma 2.3 we deduce that 
(with I = n/2  as before) 

()* Ul (*dxl) --) (At)l# (*el) i n  L / ( f 2 ) .  (4.3) 

Similarly, (3.8) in Step 2 of  the proof  of  Theorem 1.1 also holds. Summation over all /- indices I 
in (3.8) for q = l and a sufficiently small choice of  E > 0 show that {VuJ} is bounded in Ltw(~2). 
As before one deduces from (3.8) and (4.3) 

l i m  s u p  f Vu j q  _< s IAI q, Vq < l .  
j---~ o~ d ~  

Since A = IWI ff2 VuJ(x) dx, the last inequality and strict convexity of the map A --+ ]A[ q imply 

VuJ --+ A strongly in Lq(~) for all 1 < q < 1 hence A ~ R + SO(n). Finally, (3.8) with q = l 
yields 

( V u J t - l A l l ) + - - + O  in L ~ .  

For A = 0 this last inequality and homogeneity give (4.2). For A # 0, one can argue as in Step 3 
of  the proof  of  Theorem 1.1 or directly exploit the convexity of  the map A ~ [AI l to deduce 
[[Vu j - AIIL~ ~ O. The proof is complete. [ ]  

The following example will show that the coercivity in Theorem 4.1 cannot be improved from 

Ln/e(f2) to L"/2(f2). 
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E x a m p l e  4.2.  
with det A ---- - 1. For any cr > 1, define 

u O ( x ) =  { (i-~1) l+~- ax 
( 2 - I x l ) A x  

One easily sees that uo (x) = 0 on Ix l = 2 and 
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Let Br be the open ball in R n with radius r > 0 and A be an anticonformal matrix 

0 < Ix l < 1 (4.4) 

1_<lxl  < 2 .  

1 1 

A \lxI] I S Ft | ~ ' 0 < Ixl < 1 
Vu ~ (x) = ( x x) A (2-1xl)I-Ixli~il |  ~ , l _ < l x l < 2 .  

W ) , n / 2 ,  B By virtue ~ aneasyca lcu lat i~176176176  s t~  0 t 2;Rn)and{Vu~'} isuniformly 
�9 n/2 bounded m Lw (B2). Note that 

~ (W(Vu~ f o r a l l l < ~ _ < 2 ,  
2 

however, 
lim IIv:II a___~ 1 + Ln/2(BI) �9 

This shows the weak-L n/2 pseudo-norm cannot be replaced by L n/2 n o r m  in the previous theorem. 
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