
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 12, Pages 4755–4765
S 0002-9947(03)03101-5
Article electronically published on July 24, 2003

A BAIRE’S CATEGORY METHOD FOR THE DIRICHLET
PROBLEM OF QUASIREGULAR MAPPINGS

BAISHENG YAN

Abstract. We adopt the idea of Baire’s category method as presented in a
series of papers by Dacorogna and Marcellini to study the boundary value
problem for quasiregular mappings in space. Our main result is to prove that
for any ε > 0 and any piece-wise affine map ϕ ∈ W 1,n(Ω; Rn) with |Dϕ(x)|n ≤
L detDϕ(x) for almost every x ∈ Ω there exists a map u ∈ W 1,n(Ω; Rn) such
that {

|Du(x)|n = L detDu(x) a.e. x ∈ Ω,

u|∂Ω = ϕ, ‖u− ϕ‖Ln(Ω) < ε.

The theorems of Dacorogna and Marcellini do not directly apply to our result
since the involved sets are unbounded. Our proof is elementary and does not
require any notion of polyconvexity, quasiconvexity or rank-one convexity in
the vectorial calculus of variations, as required in the papers by the quoted
authors.

1. Introduction

Given L ≥ 1, we consider the following Dirichlet problem of first-order partial
differential equations:

(1.1)

{
|Du(x)|n = L detDu(x), x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω,

where Ω is a bounded open set in Rn with boundary ∂Ω, u : Ω→ Rn, Du(x) is the
Jacobi matrix of u and |Du(x)| uses the matrix operator norm (see (1.6) below).
Here ϕ is a given map.

In this paper, we study solutions of (1.1) that only have certain weak derivatives.
Throughout the paper, we assume solutions u to be in some Sobolev space, that
is, u ∈W 1,p(Ω; Rn), and thus the equation in (1.1) is required to be satisfied only
for almost every x ∈ Ω and the boundary condition is understood in the sense of
Sobolev functions.

Following Iwaniec [6], the weakly L-quasiregular mappings are defined to be
mappings u ∈ W 1,p

loc (Ω; Rn), with some p ≥ 1, that satisfy

|Du(x)|n ≤ L detDu(x), a.e. x ∈ Ω.

Therefore (1.1) can be considered as a Dirichlet problem for a special class of weakly
quasiregular mappings. If p ≥ n, the weakly quasiregular mappings in W 1,p(Ω; Rn)
are the usual quasiregular mappings, which are also called mappings of bounded
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distortion [9]. A classical Liouville’s theorem asserts that any usual 1-quasiregular
mapping is a restriction of Möbius transformation on Ω; thus there are not too many
of them. So, in this paper we restrict ourselves to the L-quasiregular mappings with
L > 1.

In Yan [10, 11, 12], we studied the boundary value problem for weakly L-
quasiregular mappings in W 1,p(Ω; Rn) with 1 ≤ p < nL

L+1 . In particular, the
following result has been proved in [12] (see also [11]).

Theorem 1.1 ([12, Theorem 3.2]). Let 1 ≤ p < nL
L+1 . Then, for any ε > 0 and any

piece-wise affine map ϕ ∈W 1,p(Ω; Rn), there exists a solution u ∈W 1,p(Ω; Rn) of
(1.1) satisfying ‖u− ϕ‖Lp(Ω) < ε.

Here, and throughout the present paper, a map ϕ : Ω → Rn is said to be piece-
wise affine if there exists a countable family of disjoint open sets Ωj ⊂ Ω such that

(1.2) ϕ|Ωj = ξjx+ bj ,

∣∣∣∣Ω∖ ∞⋃
j=1

Ωj

∣∣∣∣ = 0.

This theorem asserts that the boundary map ϕ of very weakly quasiregular maps
can be any affine map ϕ = ξx+ b. However, this cannot be the case if we study the
usual quasiregular maps in W 1,n(Ω; Rn).

We have the following

Theorem 1.2. Given any affine map ξx+ b, the Dirichlet problem{
|Du(x)|n = L detDu(x), a.e. x ∈ Ω,
u|∂Ω = ξx+ b

is solvable in W 1,n(Ω; Rn) if and only if |ξ|n ≤ L det ξ.

The necessary part of this result follows easily from integrating the equation and
using the boundary condition and property of determinants; see also [11, Theorem
1.1] for a stronger result in W 1,p(Ω; Rn) with p ≥ n− ε.

The sufficient part of the theorem will be a special case of the main result of our
present paper. (See Theorem 1.4 below.)

In order to state our main theorem, we introduce some notation. Given L ≥ 1,
consider the sets

Z = ZL = {ξ ∈ Mn×n | |ξ|n = L det ξ},(1.3)

U = UL = {ξ ∈ Mn×n | |ξ|n < L det ξ},(1.4)

K = KL = {ξ ∈ Mn×n | |ξ|n ≤ L det ξ},(1.5)

where Mn×n denotes the space of n× n matrices with operator norm

(1.6) |ξ| = max{|ξh| | h ∈ Rn, |h| = 1}.

When L = 1, it is easily seen that U1 = ∅ and K1 = Z1 coincide with the set of
conformal matrices, that is,

K1 = Z1 = {λR | λ ≥ 0, R ∈ SO(n)}.

In the following, we shall always assume L > 1, thus U = UL 6= ∅.
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Definition 1.1. Let ψ ∈ W 1,p(Ω; Rn). Define A1,p
ψ (Ω;U) to be the closure in

the Lp-norm of the set of piece-wise affine maps u ∈ ψ +W 1,p
0 (Ω; Rn) that satisfy

Du(x) ∈ U for almost every x ∈ Ω.

Remarks. 1) Since we use the Lp-closure, unlike the space used in [4], our set
A1,p
ψ (Ω;U) is only a closed subspace of Lp(Ω; Rn) and it may be empty, for example,

if p ≥ n and ψ = ξx with ξ 6∈ K.
2) Clearly, we have ψ ∈ A1,p

ψ (Ω;U) 6= ∅ if ψ is itself a piece-wise affine map in
W 1,p(Ω; Rn) satisfying Dψ(x) ∈ U for almost every x ∈ Ω.

3) We shall prove later that, for p ≥ n, the set A1,p
ψ (Ω;U) is actually a subset

of ψ + W 1,n
0 (Ω; Rn) with bounded W 1,n-norm. (See Proposition 2.3 and estimate

(2.9) in §2.) �
The main result of this paper is the following

Theorem 1.3. Let L > 1 and ψ ∈ W 1,n(Ω; Rn). Assume A1,n
ψ (Ω;U) 6= ∅. Then,

for any ε > 0 and any ϕ ∈ A1,n
ψ (Ω;U), there exists a map u ∈ A1,n

ψ (Ω;U) satisfying

‖u− ϕ‖Ln(Ω) < ε, |Du(x)|n = L detDu(x) a.e. x ∈ Ω.

Our next result, which follows readily from Theorem 1.3, generalizes the sufficient
part of Theorem 1.2 (compare also with Theorem 1.1).

Theorem 1.4. For any ε > 0 and any piece-wise affine map ϕ ∈W 1,n(Ω; Rn) sat-
isfying |Dϕ(x)|n ≤ L detDϕ(x) a.e. in Ω, there exists a solution u ∈ W 1,n(Ω; Rn)
of (1.1) satisfying ‖u− ϕ‖Ln(Ω) < ε.

In Yan [12], the proof of Theorem 1.1 has relied on an important technique
developed in Yan [10, 11] using the idea of convex integration motivated by the
work of Müller & Šverák [7] (see also Müller & Sychev [8]).

In this paper, we shall exploit the idea of Baire’s category method as explored in
the papers of Dacorogna & Marcellini [3, 4] to prove the main result Theorem 1.3.

However, since the sets K = KL and Z = ZL are unbounded, none of the results
in papers [3, 4, 7, 8] mentioned above will work directly for our theorems and, as
we shall see later, constructions leading to the Baire’s category method in our proof
are quite different from those given in [3, 4].

The proof we present here is elementary and does not require any notion of
polyconvexity, quasiconvexity or rank-one convexity in the vectorial calculus of
variations, as required in [3, 4]. However, to avoid using quasiconvexity and the
related powerful lower semicontinuity theorems as given in Acerbi & Fusco [1], in
some part of the proof, we will need to rely on some higher regularity result for
quasiregular mappings [5] and weak convergence result for the determinant [2, 9].

Finally, to motivate how the Baire’s category method comes into play in solving
our problem, let us define the solution set in Theorem 1.3 to be the set

(1.7) S1,n
ψ (Ω;Z) = {u ∈ A1,n

ψ (Ω;U) | Du(x) ∈ Z a.e. x ∈ Ω}.
Then Theorem 1.3 is equivalent to the following

Theorem 1.5. S1,n
ψ (Ω;Z) is dense in A1,n

ψ (Ω;U) in the Ln-metric.

We set up the problem in the frame-work of Baire’s category method in §2. A
critical requirement in using the Baire’s category theorem, that is, the density of
certain open sets, is fulfilled in §3. Finally, our main results are proved in the last
section, §4.
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2. The setting of Baire’s category method

We shall use the following version of Baire’s category theorem, the proof of which,
given below, is elementary and included here for the convenience of the reader.

Theorem 2.1. Let (X, ρ) be a nonempty complete metric space. Suppose {Vk} is
a family of open and dense sets in (X, ρ). Then the intersection set S =

⋂∞
k=1 Vk

is also dense in (X, ρ) and thus is nonempty.

Proof. Suppose not. Then the set G = X\S 6= ∅ is an open subset of (X, ρ). We
use the notation:

B(a, r) = {x ∈ X | ρ(x, a) < r},(2.1)

B[a, r] = {x ∈ X | ρ(x, a) ≤ r}.(2.2)

Then B(a, r) is an open set in (X, ρ) and its closure B(a, r) is contained in the
closed ball B[a, r].

Since G 6= ∅ is open, we assume B(a0, r0) ⊂ G for some a0 and r0. Since V1 is
dense and open, it follows that the open set V1 ∩B(a0, r0) is nonempty; therefore,
there exist a1 ∈ V1∩B(a0, r0) and r1 ∈ (0, r0/2) such that B[a1, r1] ⊂ V1∩B(a0, r0).
Inductively, we have ak+1 ∈ Vk+1 ∩B(ak, rk) and rk+1 ∈ (0, rk/2) such that

(2.3) B[ak+1, rk+1] ⊂ Vk+1 ∩B(ak, rk), k = 0, 1, 2, . . . .

This implies the sequence {ak} is a Cauchy sequence in (X, ρ) as one has, by (2.3),

ρ(ak+1, ak) < rk <
r0

2k
, ∀k = 0, 1, 2, . . . .

Since (X, ρ) is a complete metric space, we have ak → a as k → ∞ for some
a ∈ X . But, since ak ∈ B(aj , rj) for all 1 ≤ j ≤ k, one has a ∈ B[aj , rj ] for
all j = 1, 2, . . . ; therefore, by (2.3) again, a ∈

⋂∞
k=1 Vk = S. However, since

a ∈ B[a1, r1] ⊂ V1 ∩ B(a0, r0), one has a ∈ G, which is a contradiction with
a ∈ S ⊂ X\G. The proof is finished. �

We now set up the frame-work of using this Baire’s category theorem to prove
our main result as formulated in the form of Theorem 1.5.

Let ψ ∈ W 1,n(Ω; Rn) be a given map such that

(2.4) X = A1,n
ψ (Ω;U) 6= ∅.

Since X is an Ln-closure, we easily have the following

Lemma 2.2. (X,Ln) is a complete metric space.

It appears that X is only a closed subspace of Ln(Ω; Rn). However, the following
result asserts that X is actually more “regular” than it appears.

Proposition 2.3. X ⊂ {ϕ ∈ ψ +W 1,n
0 (Ω; Rn) | Dϕ(x) ∈ K}.

Proof. Let ϕ ∈ A1,n
ψ (Ω;U). Then, by definition, there exists a sequence {uj} of

piece-wise affine maps in ψ +W 1,n
0 (Ω; Rn) satisfying

|Duj(x)|n < L detDuj(x),(2.5)

lim
j→∞

‖uj − ϕ‖Ln(Ω) = 0.(2.6)
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Since uj |∂Ω = ψ, integration of (2.5) over Ω implies∫
Ω

|Duj(x)|ndx ≤ L
∫

Ω

detDψ(x)dx ≡Mψ <∞.

Therefore, {uj} has a subsequence (labelled the same) that converges weakly to
some ϕ in ψ + W 1,n

0 (Ω; Rn) and hence converges to ϕ in the Ln-norm. On the
other hand, uj → ϕ in the Ln-norm, thus ϕ = ϕ. This shows ϕ ∈ ψ+W 1,n

0 (Ω; Rn)
and hence A1,n

ψ (Ω;U) ⊂ ψ +W 1,n
0 (Ω; Rn).

Finally, we prove Dϕ(x) ∈ K a.e. in Ω by using some regularity result for
quasiregular mappings and weak convergence of the determinant; we could also
prove this using a lower semicontinuity theorem in Acerbi & Fusco [1], but we
choose not to use that theorem here as we try to avoid the quasiconvexity condition
required in the paper [1].

To prove Dϕ(x) ∈ K a.e. in Ω, we note that, by the well-known theorem of
Gehring [5], maps satisfying (2.5) belong to W 1,n+ε

loc (Ω; Rn) for some ε > 0; in fact,
one has

sup
j=1,2,...

∫
Ω′
|Duj(x)|n+εdx ≤ C(Ω′) <∞, ∀Ω′ ⊂⊂ Om.

Since the determinant is weakly continuous in space W 1,n+ε(Ω′; Rn) (see [2, 9]), it
therefore follows that∫

Ω′
|Dϕ|ndx ≤ lim inf

j→∞

∫
Ω′
|Duj |ndx(2.7)

≤ L lim inf
j→∞

∫
Ω′

detDujdx = L

∫
Ω′

detDϕdx(2.8)

for all Ω′ ⊂⊂ Ω. Hence, |Dϕ(x)|n ≤ L detDϕ(x), that is, Dϕ(x) ∈ K, for almost
every x ∈ Ω.

The proof is now completed. �

From the proof above, we have also proved that

(2.9)
∫

Ω

|Dϕ(x)|ndx ≤Mψ <∞, ∀ϕ ∈ A1,n
ψ (Ω;U).

Let

(2.10) F (ξ) = |ξ|n − L det ξ.

Then the sets defined by (1.3)–(1.5) are given by

Z = {ξ ∈Mn×n | F (ξ) = 0},(2.11)

U = {ξ ∈Mn×n | F (ξ) < 0},(2.12)

K = {ξ ∈Mn×n | F (ξ) ≤ 0}.(2.13)

Since X ⊂ ψ + W 1,n
0 (Ω; Rn), we can thus define the following sets, for k =

1, 2, . . . :

(2.14) Vk =
{
v ∈ X |

∫
Ω

F (Dv(x))dx > −1/k
}
.

Lemma 2.4. Vk is open in (X,Ln).
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Proof. It suffices to prove the complement set C = X\Vk is closed. Therefore,
suppose vj ∈ C and vj → v in Ln(Ω; Rn). We need to show v ∈ C. By definition,
v ∈ X . Since vj ∈ X\Vk, it follows that

(2.15)
∫

Ω

F (Dvj(x))dx ≤ −1/k, ∀j = 1, 2, . . . .

Also, by (2.9), there exists a subsequence of {vj} (also labelled the same) weakly
convergent to v in W 1,n(Ω; Rn); this implies v = v ∈ ψ +W 1,n

0 (Ω; Rn). Therefore,
by the lower semicontinuity of the Ln-norm,∫

Ω

F (Dv(x))dx =
∫

Ω

|Dv(x)|ndx− L
∫

Ω

detDv(x)dx

≤ lim inf
j→∞

∫
Ω

|Dvj |ndx− L
∫

Ω

detDψdx

= lim inf
j→∞

∫
Ω

[F (Dvj) + L detDvj ]dx− L
∫

Ω

detDψdx

≤ lim inf
j→∞

∫
Ω

F (Dvj)dx+ L lim sup
j→∞

∫
Ω

detDvjdx− L
∫

Ω

detDψdx

= lim inf
j→∞

∫
Ω

F (Dvj(x))dx ≤ −1/k by (2.15).

This shows v 6∈ Vk, thus v ∈ C, proving C = X\Vk is closed, and hence Vk is open
in (X,Ln). �

The heart of the matter of using the Baire’s category method is to establish the
density of the sets Vk, which we shall do in the next section.

3. The density of Vk in (X,Ln)

Let X and Vk be defined as above. This section is devoted to the proof of the
following crucial result for the Baire’s category method.

Theorem 3.1. Vk is dense in (X,Ln).

Proof. Assume k ∈ N. Let v ∈ X and ε > 0 be given. We need to show there exists
u = uε ∈ Vk such that ‖u− v‖Ln(Ω) < ε. This amounts to finding uε ∈ X satisfying∫

Ω

F (Duε(x))dx > −1/k,(3.1)

‖uε − v‖Ln(Ω) < ε.(3.2)

Since v ∈ X , we can select a piece-wise affine map v1 ∈ ψ + W 1,n
0 (Ω; Rn)

satisfying

(3.3) ‖v − v1‖Ln(Ω) < ε/2, v1 =
∞∑
j=1

(ξjx+ bj)χΩj ,

with χS denoting the characteristic function of set S, where Ωj are disjoint open
sets in Ω and ξj ∈ U such that

(3.4)
∣∣∣∣Ω∖ ∞⋃

j=1

Ωj

∣∣∣∣ = 0,
∞∑
j=1

|ξj |n|Ωj | = ‖Dv1‖nLn(Ω) <∞.
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Before continuing the proof, we prove the following useful result.

Proposition 3.2. Let Σ ⊂ Rn be a bounded open set. Assume

|ξ0|n < L det ξ0 < λ.

Then, for any b0 ∈ Rn and any δ > 0, there exists a piece-wise affine map w =
wδ ∈ (ξ0x+ b0) +W 1,∞

0 (Σ; Rn) such that

(3.5)


|Dw(x)|n < L detDw(x) < λ a.e. x ∈ Σ,
‖w − (ξ0x+ b0)‖L∞(Σ) < δ,∫

Σ distn(Dw(x);Z)dx < δ.

Proof. Step 1. We find R, Q ∈ SO(n) such that

ξ0 = R


εn 0

εn−1

. . .
0 ε1

Q ≡ Rξ̃0Q,

where 0 < ε1 ≤ ε2 ≤ · · · ≤ εn−1 ≤ εn satisfy

(3.6) εnn < Lε1ε2 · · · εn < λ.

Let Σ̃ = QΣ and b̃0 = RT b0.
Step 2. We claim there exists a piece-wise affine map w̃(y) ∈ (ξ̃0y + b̃0) +

W 1,∞
0 (Σ̃; Rn) such that

(3.7)


|Dw̃(y)|n < L detDw̃(y) < λ a.e. y ∈ Σ̃,
‖w̃ − (ξ̃0y + b̃0)‖L∞(Σ̃) < δ,∫

Σ̃
distn(Dw̃(y);Z)dy < δ.

Assuming this claim, we define w(x) = Rw̃(Qx) for x ∈ Σ. It can be easily shown
that the map w = w(x) satisfies all requirements of the proposition and the proof
is completed.

Step 3. We now prove the claim of Step 2. We start with the matrix

η = η(t) =


εn t 0
0 εn−1 0

. . .
0 0 ε1

 , t ∈ R.

It can be easily seen that det η(t) = ε1ε2 · · · εn for all t ∈ R and

f(t) = |η(t)|n =

 ε2n + ε2n−1 + t2 +
√

(ε2n + ε2n−1 + t2)2 − 4ε2nε2n−1

2


n
2

.

Note that f(0) = εnn < Lε1 · · · εn < λ and f(t) → ∞ as |t| → ∞. Therefore, there
exists a (unique) t0 > 0 such that

f(t) < f(±t0) = Lε1 · · · εn, ∀t ∈ (−t0, t0).

This implies

(3.8) η± = η(±t0) ∈ Z, η(t) ∈ Uλ, ∀t ∈ (−t0, t0),
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where

Uλ = {ξ ∈Mn×n | |ξ|n < L det ξ < λ} ⊂ U
is a bounded open set in Mn×n.

Let 0 < γ < min{δ, t0} be any given number. Let η1 = η(−t0 + γ) and η2 =
η(t0 − γ). Then, since η± ∈ Z, it follows that

(3.9) ηk ∈ Uλ, dist(ηk;Z) ≤ |η1 − η−| = |η2 − η+| = γ (k = 1, 2)

and

ξ̃0 = 1
2 (η1 + η2) ∈ Uλ.

We are now in a position to use the following result.

Lemma 3.3. Let G be an open set in Mm×n and let η ∈ G and η = tη1 + (1− t)η2

with t ∈ (0, 1) and rank(η1 − η2) = 1. Then, for any b ∈ Rm and any γ > 0, there
exists a piece-wise affine map u ∈ (ηx+ b) +W 1,∞

0 (Ω; Rm) such that

(3.10)


Du(x) ∈ {η1, η2, η3, . . . , ηs} a.e. x ∈ Ω,
{η3, . . . , ηs} ⊂ G,
‖u− (ηx + b)‖L∞(Ω) < γ,

|{x ∈ Ω | Du(x) 6∈ {η1, η2}}| < γ.

Proof. Except for the requirement ‖u − (ηx + b)‖L∞(Ω) < γ, the result is exactly
the same as [11, Lemma 3.4]; however, the requirement ‖u − (ηx + b)‖L∞(Ω) < γ
follows from [11, Lemma 3.1] of that paper. �

Using this lemma, with η = ξ̃0, G = Uλ and Ω = Σ̃, we find a piece-wise affine
map w̃ = w̃γ(y) ∈ (ξ̃0y + b̃0) +W 1,∞

0 (Σ̃; Rn) satisfying

(3.11)


Dw̃(y) ∈ Uλ a.e. y ∈ Σ̃,
‖w̃ − (ξ̃0y + b̃0)‖L∞(Σ̃) < γ,

|{y ∈ Σ̃ | Dw̃(y) 6∈ {η1, η2}}| < γ.

Hence, we have the estimate∫
Σ̃

distn(Dw̃(y);Z)dy

=
∫
Dw̃(y)∈{η1,η2}

distn(Dw̃;Z)dy +
∫
Dw̃(y) 6∈{η1,η2}

distn(Dw̃;Z)dy

≤ γn|Σ̃|+ γλ < δ

if γ is sufficiently small, where we have used (3.9) and the fact that distn(η;Z) ≤
|η|n < λ for all η ∈ Uλ.

Consequently, this w̃(y) satisfies the claim in Step 2. This completes Step 3 and
the proof of Proposition 3.2. �

We now continue the proof of Theorem 3.1. For each given ξj ,Ωj as given in
(3.3)–(3.4), we apply Proposition 3.2 with ξ0 = ξj , b0 = bj, λ = 2L|ξj |n, Σ = Ωj
and δ = ρ/2j, 0 < ρ < ε being a number to be selected later, to obtain a piece-wise
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affine map uρj ∈ (ξjx+ bj) +W 1,∞
0 (Ωj ; Rn) satisfying

(3.12)


|Duρj (x)|n < L detDuρj (x) < 2L|ξj|n a.e. x ∈ Σ,
‖uρj − (ξjx+ bj)‖L∞(Ωj) < ρ/2j < ρ,∫

Ωj
distn(Duρj (x);Z)dx < ρ/2j.

Let

vρ =
∞∑
j=1

uρjχΩj .

Then vρ is a piece-wise affine map in ψ +W 1,n
0 (Ω; Rn) (see, e.g., [11, Lemma 1.6])

and satisfies Dvρ(x) ∈ U for almost every x ∈ Ω. Therefore, vρ ∈ X . We also have

‖vρ − v1‖Ln(Ω) ≤ ρ|Ω|1/n,(3.13) ∫
Ω

distn(Dvρ;Z)dx ≤
∞∑
j=1

ρ

2j
= ρ,(3.14)

∫
Ω

|Dvρ(x)|ndx =
∞∑
j=1

∫
Ωj

|Duρj (x)|ndx(3.15)

≤
∞∑
j=1

2L|ξj |n|Ωj | = 2L‖Dv1‖nLn(Ω).(3.16)

The following useful result is elementary.

Lemma 3.4. For each τ > 0 there exists a constant Cτ > 0 such that

F (ξ) > −τ |ξ|n − Cτ distn(ξ;Z), ∀ξ ∈ Mn×n.

Proof. Since both F (ξ) and distn(ξ;Z) are homogeneous of degree n, one has only
to prove the stated inequality for all ξ with |ξ| = 1. We use the contradiction
method. Suppose, for the contrary, the inequality does not hold for |ξ| = 1. Then,
for some τ0 > 0 and all integers j = 1, 2, . . . , there exists ξj ∈ Mn×n with |ξj | = 1
such that

(3.17) F (ξj) ≤ −τ0 − j distn(ξj ;Z), ∀j = 1, 2, . . . .

Without loss of generality, assume ξj → ξ for some ξ with |ξ| = 1 as j →∞. Since
F (ξj) → F (ξ) and distn(ξj ;Z) → distn(ξ;Z) as j → ∞, it follows from (3.17)
that distn(ξ;Z) ≤ 0, thus, ξ ∈ Z and F (ξ) = 0. However, (3.17) also implies
F (ξj) ≤ −τ0 for all j so that F (ξ) ≤ −τ0, which contradicts F (ξ) = 0. The lemma
is proved. �

Using this lemma, we have by (3.14), (3.15), (3.16) that∫
Ω

F (Dvρ(x))dx ≥ −τ
∫

Ω

|Dvρ(x)|ndx(3.18)

− Cτ
∫

Ω

distn(Dvρ(x);Z)dx(3.19)

≥ −2Lτ‖Dv1‖nLn(Ω) − Cτρ.(3.20)

To complete the proof, we select τ > 0 such that

2Lτ‖Dv1‖nLn(Ω) <
1
2k
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and, for this τ > 0, select ρ > 0 such that

Cτρ <
1
2k
, ρ|Ω|1/n < ε/2.

Let uε = vρ. Then, from (3.20), we easily see∫
Ω

F (Duε(x))dx > −1/k

(hence uε ∈ Vk) and, by (3.3), (3.13),

‖uε − v‖Ln(Ω) ≤ ‖vρ − v1‖Ln(Ω) + ‖v1 − v‖Ln(Ω)(3.21)

< ε/2 + ε/2 = ε.(3.22)

Theorem 3.1 is finally proved. �

4. Proof of the main theorems

In this final section, we present the proof of our main theorems. We use the
same notation as above.

Proposition 4.1. Let S1,n
ψ (Ω;Z) be defined by (1.7). Then

S1,n
ψ (Ω;Z) =

∞⋂
k=1

Vk.

Proof. From definition (1.7), S1,n
ψ (Ω;Z) = {v ∈ X | F (Dv(x)) = 0}. Therefore,

S1,n
ψ (Ω;Z) ⊂ Vk

for all k = 1, 2, . . . , and hence S1,n
ψ (Ω;Z) ⊂

⋂∞
k=1 Vk.

On the other hand, suppose v ∈
⋂∞
k=1 Vk. Then∫

Ω

F (Dv(x))dx > −1/k, ∀k = 1, 2, . . . ,

and hence
∫

Ω F (Dv(x))dx ≥ 0. By Proposition 2.3, one also has Dv(x) ∈ K,
i.e., F (Dv(x)) ≤ 0 a.e. in Ω. Therefore, F (Dv(x)) = 0 and Dv(x) ∈ Z for a.e.
x ∈ Ω, and hence v ∈ S1,n

ψ (Ω;Z). This proves
⋂∞
k=1 Vk ⊂ S

1,n
ψ (Ω;Z). The result is

proved. �

Proof of Theorems 1.3 and 1.5. Theorem 1.5 and hence Theorem 1.3 follow from
the Baire’s category theorem (Theorem 2.1), using Lemmas 2.2–2.4, Theorem 3.1
and Proposition 4.1. �

Proof of Theorem 1.4. There are two disjoint open subsets Ω0 and Ω1 of Ω such
that |Ω\(Ω0 ∪ Ω1)| = 0 satisfying

Dϕ(x) ∈ Z, a.e. x ∈ Ω0; Dϕ(x) ∈ U, a.e. x ∈ Ω1.

We use the existence result Theorem 1.3 for the boundary value ϕ ∈ A1,p
ϕ (Ω1;U)

on Ω1 to obtain a solution u1 ∈ ϕ+W 1,n
0 (Ω1; Rn) satisfying

‖u1 − ϕ‖Ln(Ω1) < ε, Du1(x) ∈ Z a.e. x ∈ Ω1.

Then, it is easy to see that u = u1χΩ1 +ϕχΩ0 is a solution required in the theorem.
�
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