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Chapter 1

Preliminaries

1.1. Banach Spaces

1.1.1. Vector Spaces. A (real) vector space is a set X, whose elements are called
vectors, and in which two operations, addition and scalar multiplication, are defined
as follows:

(a) To every pair of vectors x and y corresponds a vector x + y in such a way that
r+y=y+z and r+(y+2)=(x+y) +=z

X contains a unique vector 0 (the zero vector or origin of X) such that z+0 = =
for every x € X, and to each x € X corresponds a unique vector —z such that

z+ (—x)=0.
(b) To every pair («,z), with @ € R and x € X, corresponds a vector ax in such a
way that

lz =z, a(fzx) = (af)z

and such that the two distributive laws
alr +vy) = ax + ay, (a+ B)xr = ax + Bz
hold.

A nonempty subset M of a vector space X is called a subspace of X if ax + Sy € M
for all z,y € M and all o, 8 € R. A subset M of a vector space X is said to be convex if
tr + (1 —t)y € M whenever t € (0,1), x,y € M. (Clearly, every subspace of X is convex.)

Let x1,...,x, be elements of a vector space X. The set of all ayz1 + - - + apxy,, with
a; € R, is called the span of z1,...,z, and is denoted by span{xy,...,z,}. The elements
r1,...,Ty, are said to be linearly independent if oy z1+- - -+ a2, = 0 implies that o; = 0
for each 4. If, on the other hand, ayxy + - -+ + anx, = 0 does not imply «; = 0 for each
i, the elements x1,...,x, are said to be linearly dependent . An arbitrary collection of
vectors is said to be linearly independent if every finite subset of distinct elements is linearly
independent.

The dimension of a vector space X, denoted by dim X, is either 0, a positive integer
or co. If X = {0} then dim X = 0; if there exist linearly independent {us,...,u,} such

1



2 1. Preliminaries

that each = € X has a (unique) representation of the form
T =o1ul + -+ apuy with a; €ER

then dim X = n and {uq,...,u,} is a basis for X; in all other cases dim X = oc.

1.1.2. Normed Spaces. A (real) vector space X is said to be a normed space if to
every x € X there is associated a nonnegative real number ||z||, called the norm of z, in
such a way that

(@) |lz+yl <|z| + |yl forall z and y in X (Triangle inequality)
(b) [Jax| = |a|||z|| for all z € X and all @ € R
() ||lz|| >0 if x # 0.
Note that (b) and (c) imply that ||z| = 0 iff z = 0. Moreover, it easily follows from (a) that
izl = llylll < [lz =yl forall zyeX.

1.1.3. Completeness and Banach Spaces. A sequence {x,} in a normed space X is
called a Cauchy sequence if, for each € > 0, there exists an integer N such that ||z,, —
Zn|| < € for all m,n > N. We say x,, — x in X if lim,,_, ||z, — z|| = 0 and, in this case,
is called the limit of {z,}. X is called complete if every Cauchy sequence in X converges
to a limit in X.

A complete (real) normed space is called a (real) Banach space. A Banach space
is separable if it contains a countable dense set. It can be shown that a subspace of a
separable Banach space is itself separable.

EXAMPLE 1.1. Let  be an open subset of R”, n > 1. The set C(Q2) of (real-valued)
continuous functions defined on €2 is an infinite dimensional vector space with the usual
definitions of addition and scalar multiplication:

(f+9)(x) = f(z) +g(x) for f,geC(Q), zeQ
(af)(z) =af(x) for aeR, feC(), ze.
C() consists of those functions which are uniformly continuous on 2. Each such function
has a continuous extension to Q. Cy(2) consists of those functions which are continuous
in  and have compact support in 2. (The support of a function f defined on € is the

closure of the set {x € Q: f(x) # 0} and is denoted by supp(f).) The latter two spaces are
clearly subspaces of C'(2).

For each n-tuple o = (a1, ..., a,) of nonnegative integers, we denote by D the partial

derivative
D?l---Dg", Dlza/axz
of order |a| = aj + -+ + ay,. If |a] = 0, then D® = I(identity).

For integers m > 0, let C™(2) be the collection of all f € C(§2) such that D*f € C(Q)
for all @ with |a|] < m. We write f € C®(Q) iff f € C™(Q) for all m > 0. For
m > 0, define CJ*(2) = Cp(2) N C™(N2) and let C§°(2) = Cu(2) N C°(2). The spaces
C™(2),C™(Q),CFH (), C3° () are all subspaces of the vector space C(2). Similar defini-

tions can be given for C™(2) etc.
For m > 0, define X to be the set of all f € C™ () for which

I llm,c0 = Z sup | D% f(z)] < oco.

|laj<m



1.1. Banach Spaces 3

Then X is a Banach space with norm || - |[;,00. To prove, for example, the completeness
when m = 0, we let {f,} be a Cauchy sequence in X, i.e., assume for any € > 0 there is a
number N(g) such that for all x € Q

sup | fn(x) — fm(z)| <e if m,n > N(e).
z€Q

But this means that {f,(x)} is a uniformly Cauchy sequence of bounded continuous func-
tions, and thus converges uniformly to a bounded continuous function f(x). Letting m — oo
in the above inequality shows that || fn, — fl|m.co = 0.

Note that the same proof is valid for the set of bounded continuous scalar-valued func-
tions defined on a nonempty subset of a normed space X.

EXAMPLE 1.2. Let Q be a nonempty Lebesgue measurable set in R". For p € [1,00), we
denote by LP(2) the set of equivalence classes of Lebesgue measurable functions on 2 for

which
1l = ( / |f(x)|pdx)p ‘.

(Two functions belong to the same equivalence class, i.e., are equivalent, if they differ
only on a set of measure 0.) Let L*°() denote the set of equivalence classes of Lebesgue
measurable functions on €2 for which

[flloo = ess-sup,eq|f ()] < oco.

Then LP(Q2),1 < p < oo, are Banach spaces with norms || - ||,. For p € [1,00] we write
fell (Q)iff f e LP(K) for each compact set K C (.

loc
For the sake of convenience, we will also consider LP(2) as a set of functions. With this
convention in mind, we can assert that Cy(2) C LP(Q). In fact, if p € [1, 00), then as we shall
show later, Cy(2) is dense in LP(Q2). The space LP({2) is also separable if p € [1,00). This
follows easily, when € is compact, from the last remark and the Weierstrass approximation
theorem.

Finally we recall that if p,q,r € [1,00] with p~ + ¢=1 = =, then Hélder’s inequality

implies that if f € LP(Q2) and g € L4(R2), then fg € L"(Q2) and

1£gllr < 11fllpllgllq-

ExaMPLE 1.3. The Cartesian product X x Y, of two vector spaces X and Y, is itself a
vector space under the following operations of addition and scalar multiplication:

[z1,y1] + [72, 2] = [21 + 72,91 + v2

alz,y] = [az, ay].

If in addition, X and Y are normed spaces with norms ||-||x, || - ||y respectively, then X xY
becomes a normed space under the norm

s ylll = Ml x + [lylly-

Moreover, under this norm, X X Y becomes a Banach space provided X and Y are Banach
spaces.
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1.1.4. Hilbert Spaces. Let H be a real vector space. H is said to be an inner product
space if to every pair of vectors z and y in H there corresponds a real-valued function
(z,y), called the inner product of x and y, such that

(a) (z,y) = (y,z) for all x,y € H

(b) (x+y,z) = (x,2)+ (y, 2) for all x,y,z € H

(¢) Az,y) = A(z,y) for all z,y € H, A€ R

(d) (z,z) >0 for all z € H, and (z,x) = 0 if and only if z = 0.
For z
(L.1) Izl = (2, 2)"/2.

€ H we set

Theorem 1.4. If H is an inner product space, then for all x and y in H, it follows that
(a) [(z,y)] <zl lyl (Cauchy-Schwarz inequality);
(b) llz+yll <[zl +lyll (Triangle inequality);
(©) 1+l + llz — ylI = 2(a)? + [yll?) (Parallelogram law).

Proof. (a) is obvious if # = 0, and otherwise it follows by taking § = —(z,)/||z||? in
0 < (|62 +y* = [6]*|l[|* + 28 (x, y) + |yl
This identity, with § = 1, and (a) imply (b). (c) follows easily by using (1.1). O

Furthermore, by (d), equation (1.1) defines a norm on an inner product space H. If H
is complete under this norm, then H is said to be a Hilbert space.

EXAMPLE 1.5. The space L?(f2) is a Hilbert space with inner product

/ f(x)g(z)dx forall f,ge L*(Q).

Theorem 1.6. Every nonempty closed convex subset S of a Hilbert space H contains a
unique element of minimal norm.

Proof. Choose z,, € S so that ||z,| — d = inf{||z| : z € S}. Since (1/2)(zy, + z) € S,
we have ||z, + o,||?> > 4d?. Using the parallelogram law, we see that

(1.2) ln = 2ml® < 2(|zal® = &) + 2(|zm* — d*)

and therefore {z,} is a Cauchy sequence in H. Since S is closed, {z,} converges to some
x €S and ||z| =d. If y € S and ||y|| = d, then the parallelogram law implies, as in (1.2),
that z = y. O

If (x,y) = 0, then x and y are said to be orthogonal, written sometimes as L y. For
M C H, the orthogonal complement of M, denoted by M, is defined to be the set of
all z € H such that (z,y) = 0 for all y € M. Tt is easily seen that M~ is a closed subspace
of H. Moreover, if M is a dense subset of H and if z € M~, then in fact, z € H+ which
implies z = 0.

Theorem 1.7. (Projection) Suppose M is a closed subspace of a Hilbert space H. Then
for each = € H there exist unique y € M, z € M+ such that x =y + z. The element y is
called the projection of x onto M.
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Proof. Let S = {z—y:y € M}. It is easy to see that S is convex and closed. Theorem 1.6
implies that there exists a y € M such that ||z —y| < ||z —w|| for all w € M. Let z = z —y.
For an arbitrary w € M, w # 0, let a = (2, w)/|w||? and note that

1212 < Iz = awl® = JJ2]* = |(z, w)/w]”

which implies (z,w) = 0. Therefore z € M*. If x = y/ + 2/ for some ¢/ € M, 2’ € M+, then
Y —y=2—2 € Mn M=+ = {0}, which implies uniqueness. O

Remark. In particular, if M is a proper closed subspace of H, then there is a nonzero
element in M*. Indeed, for z € H\M, let y be the projection of z on M. Then z =z — y
is a nonzero element of M.

1.2. Bounded Linear Operators

1.2.1. Operators on a Banach Space. Let X,Y be real vector spaces. A mapT: X —
Y is said to be a linear operator from X to Y if
T(azx + By) = aTz + BTy

for all z,y € D(T') and all o, 8 € R.
Let X,Y be normed spaces. A linear operator 7' from X to Y is said to be bounded if
there exists a constant m > 0 such that

(1.3) |Tz|| < ml|z|] foral zeX.

We define the operator norm ||T'|| of T by

(1.4) 1Tl = sup |Ta|= sup Tl
zeX, [lzf=1 zeX, [lz]<1

The collection of all bounded linear operators 7' : X — Y will be denoted by B(X,Y’). We
shall also set B(X) = B(X, X) when X =Y. Observe that

TS| < ITIISI if S eB(X,Y), T eB(Y,Z).

Theorem 1.8. If X and Y are normed spaces, then B(X,Y) is a normed space with norm
defined by equation (1.4). If Y is a Banach space, then B(X,Y) is also a Banach space.

Proof. It is easy to see that B(X,Y) is a normed space. To prove completeness, assume
that {7} is a Cauchy sequence in B(X,Y’). Since

(1.5) [Thz — Tzl < |Tn — Tl ll]|
we see that, for fixed z € X, {T,z} is a Cauchy sequence in Y and therefore we can define

a linear operator T' by
Tx= lim T,z forall xe€ X.

n—oo
If € > 0, then the right side of (1.5) is smaller than ¢||z|| provided that m and n are large
enough. Thus, (letting n — o)

|Tx — Tzl <ellz|| for all large enough m.
Hence, ||Tx| < (||[Tn]| + €)||z||, which shows that T' € B(X,Y’). Moreover, |T — Tp,| < ¢

for all large enough m. Hence, lim,, oo T, = T. O

The following theorems are important in linear functional analysis; see, e.g., [?].

Theorem 1.9. (Banach-Steinhaus) Let X be a Banach space and 'Y a normed space. If
A C B(X,Y) is such that suppe 4 [|Tz|| < oo for each fized x € X, then suppcy || T < oo.
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Theorem 1.10. (Bounded Inverse) If X and Y are Banach spaces and if T € B(X,Y)
is one-to-one and onto, then T~ € B(Y, X).

1.2.2. Dual Spaces and Reflexivity. When X is a (real) normed space, the Banach
space B(X,R) will be called the (normed) dual space of X and will be denoted by X*. El-
ements of X* are called bounded linear functionals or continuous linear functionals
on X. Frequently, we shall use the notation (f,z) to denote the value of f € X* at x € X.
Using this notation we note that |[(f,z)| < ||f]| ||z]| for all f € X* = € X.

EXAMPLE 1.11. Suppose 1 < p,q < oo satisfy 1/p + 1/¢ = 1 and let Q be a nonempty
Lebesgue measurable set in R™. Then LP(Q)* = L2(Q2). The case of p = oo is different. The
dual of L* is much larger then L.

The following results can be found in [?].

Theorem 1.12. (Hahn-Banach) Let X be a normed space and 'Y a subspace of X. As-
sume f € Y*. Then there exists a bounded linear functional f € X* such that
(Fyy=(fy) YyeY, |flx-=If]

Corollary 1.13. Let X be a normed space and o # 0 in X. Then there exists f € X*
such that

Y*-

Il =1, (f,z0) = llzol|.

The dual space X** of X* is called the second dual space of X and is again a Banach
space. Note that to each z € X we can associate a unique F, € X** by F,(f) = (f,x) for
all f € X*. From Corollary 1.13, one can also show that ||F,|| = ||=||. Thus, the (canonical)
mapping J : X — X** given by Jr = F,, is a linear isometry of X onto the subspace
J(X) of X**. Since J is one-to-one, we can identify X with J(X).

A Banach space X is called reflexive if its canonical map J is onto X**. For example,
all LP spaces with 1 < p < oo are reflexive.

We shall need the following properties of reflexive spaces.
Theorem 1.14. Let X and Y be Banach spaces.
(a) X is reflexive iff X* is reflexive.
(b) If X is reflexive, then a closed subspace of X is reflexive.

(c) Let T : X — Y be a linear bijective isometry. If Y is reflexive, then X is
reflexive.

1.2.3. Bounded Linear Functionals on a Hilbert Space.

Theorem 1.15. (Riesz Representation) If H is a Hilbert space and f € H*, then there
exists a unique y € H such that

f(x)=(f,z) = (z,y) forall x€ H.
Moreover, | f| = |lyl|-

Proof. If f(z) = 0 for all z, take y = 0. Otherwise, there is an element z € N (f)" such
that ||z]] = 1. (Note that the linearity and continuity of f implies that N (f) is a closed
subspace of H.) Put u = f(x)z— f(z)z. Since f(u) = 0, we have u € N(f). Thus (u, z) = 0,
which implies

f(@) = f(2)(z,2) = f(2) (2, 2) = (2, [(2)2) = (2, ),
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where y = f(z)z. To prove uniqueness, suppose (x,y) = (x,y') for all z € H. Then in
particular, (y — ',y —y') = 0, which implies y = 3. From the Cauchy-Schwarz inequality
we get |f(z)] < ||z||||y|l, which yields || f|| < |ly||. The reverse inequality follows by choosing
x =y in the representation. O

Corollary 1.16. H is reflexive.

Let T : H — H be an operator on the Hilbert space H. We define the Hilbert space
adjoint T* : H — H as follows:

(Tz,y) = (x, T*y) forall =z, ye H.
The adjoint operator is easily seen to be linear.

Theorem 1.17. Let H be a Hilbert space. If T € B(H), then T* € B(H) and ||T|| = [|T*||.

Proof. For any y € H and all x € H, set f(z) = (Tx,y). Then it is easily seen that
f € H*. Hence by the Riesz representation theorem, there exists a unique z € H such that
(Tx,y) = (x,2) for all x € H, i.e., D(T*) = H. Moreover, ||[T*y| = ||z]| = || f]| < Tyl
ie, T* € B(H) and ||[T*|| < ||T|l. The reverse inequality follows easily from ||Tx|? =
(Tz,Tx) = (x, T"Tx) < ||T||[|T|[|]. O

1.3. Weak Convergence and Compact Operators

1.3.1. Weak Convergence. Let X be a normed space. A sequence z,, € X is said to
be weakly convergent to an element x € X, written x,, — z, if (f,z,) — (f,z) for all
feX
Theorem 1.18. Let {x,} be a sequence in X.

(a) Weak limits are unique.

(b) If x,, — x, then x, — x.

(¢) If xyp, — x, then {z,} is bounded and ||z| < liminf ||z,
Proof. To prove (a), suppose that x and y are both weak limits of the sequence {x,} and
set z=x—y. Then (f, z) =0 for every f € X* and by Corollary 1.13, z = 0. To prove (b),
let f € X* and note that x,, — x implies (f, z,,) — (f,x) since f is continuous. To prove (c),
assume x, — z and consider the sequence {Jz,} of elements of X** where J : X — X**
is the bounded operator defined above. For each f € X*, sup |Jz,(f)| = sup|{f, zn)| < 00

(since (f,zy) converges). By the Banach-Steinhaus Theorem, there exists a constant ¢ such
that ||y, || = || Jxn|| < ¢ which implies {z,,} is bounded. Finally, for f € X*

[(fs @) = i [(f, )| < liminf || f[[[Jzn]| = [|f[|iminf [[z,]]
which implies the desired inequality since ||z|| = supy s = [(f, z)|- O

We note that in a Hilbert space H, the Riesz representation theorem implies that z,, — x
means (z,,y) — (z,y) for all y € H. Moreover, we have

($n,yn) — (x,y) it x, — TyYn — Y.
This follows from the estimate

[(@,y) = (@n, yn)| = (2 = 20, y) = (@0, Y0 — )| < 1@ = 20, 9)| + [|2znlllly — nl
and the fact that ||z, is bounded.
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The main result of this section is given by:

Theorem 1.19. If X is a reflexive Banach space, then the closed unit ball is weakly
compact, i.e., the sequence {x,}, with ||z,|| <1 has a subsequence which converges weakly
to an x with ||z|| < 1.

1.3.2. Compact Operators. Let X and Y be normed spaces. An operator T : X — Y is
said to be compact if it maps bounded sets in X into relatively compact sets in Y, i.e., if
for every bounded sequence {z,} in X, {Tx,} has a subsequence which converges to some
element of Y.

Since relatively compact sets are bounded, it follows that a compact operator is bounded.
On the other hand, since bounded sets in finite-dimensional spaces are relatively compact, it
follows that a bounded operator with finite dimensional range is compact. It can be shown
that the identity map I : X — X (||Iz] = ||z||) is compact iff X is finite-dimensional.
Finally we note that the operator ST is compact if (a) T : X — Y iscompact and S : Y — Z
is continuous or (b) 7" is bounded and S is compact.

One of the main methods of proving the compactness of certain operators is based upon
the Ascoli theorem.

Let 2 be a subset of the normed space X. A set S C C(f2) is said to be equicontinuous
if for each ¢ > 0 there exists a § > 0 such that |f(z) — f(y)| < € for all z,y € Q with
|lx —y|| < d and for all f € S.

Theorem 1.20. (Ascoli) Let Q be a relatively compact subset of a normed space X and
let S C C(). Then S is relatively compact if it is bounded and equicontinuous.

Remark. In other words, every bounded equicontinuous sequence of functions has a uni-
formly convergent subsequence.

Theorem 1.21. Let X and Y be Banach spaces. If T,, : X — Y are linear and compact
forn > 1 and if im, o ||T, — T|| = 0, then T is compact. Thus, compact operators form
a closed, but not a dense, subspace of B(X,Y).

Proof. Let {z,} be a sequence in X with M = sup,, ||z,| < oco. Let A; denote an infinite
set of integers such the sequence {712y }nea, converges. For k > 2 let Ay C Aj_; denote
an infinite set of integers such that the sequence {Tj;zy,}neca, converges. Choose n; € Ay
and ny € Ag, ngp > ni_1 for k > 2. Choose ¢ > 0. Let k be such that | T — Tx||M < /4
and note that

1Ty = T || < T = Ti) @, — 2y )| + [ Tion, — T, | < £/2 + [T, — Tion ||
Since {Tjxn, }22, converges, {Tx,, }3°, is a Cauchy sequence. O
Theorem 1.22. Let X and Y be normed spaces.
(a) If T € B(X,Y), then T is weakly continuous, i.e.,
T, —x implies Tx, — Tzx.

(b) If T: X =Y is weakly continuous and X is a reflexive Banach space, then T
s bounded.

(c) If T € B(X,Y) is compact, then T is strongly continuous, i.e.,

T, —x implies Tx, — Tzx.
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(d) If T: X =Y is strongly continuous and X is a reflexive Banach space, then T
18 compact.

Proof. (a) Let x,, = x. Then for every g € Y*
(9, Txn) = (T"g,xp) — (T%g,x) = (g, Tx).

(b) If not, there is a bounded sequence {z} such that | Tz, || — co. Since X is reflexive,
{z,} has a weakly convergent subsequence, {z,/}, and so {Tz,/} also converges weakly. But
then {T'z,} is bounded, which is a contradiction.

(c) Let x,, = x. Since T is compact and {z,} is bounded, there is a subsequence {x,}
such that Tz,, — z, and thus Tz,, — z. By (a), Tx, — Tz, and so Tz,, — Tx. Now
it is easily seen that every subsequence of {z,} has a subsequence, say {z,}, such that
Tz, — Tx. But this implies the whole sequence Tx,, — Tx (See the appendix).

(d) Let {x,,} be a bounded sequence. Since X is reflexive, there is a subsequence {z,}
such that z,, — z. Hence T'z,, — Tz, which implies T" is compact. O

Theorem 1.23. Let H be a Hilbert space. If T : H — H is linear and compact, then T* is
compact.

Proof. Let {x,} be asequence in H satisfying ||z,|| < m. The sequence {T*z,,} is therefore
bounded, since T is bounded. Since T is compact, by passing to a subsequence if necessary,
we may assume that the sequence {TT*x,} converges. But then

IT*(2n = zm)? = (20 = @m, TT* (2 — 2m))

2m||TT*(xy — )| — 0 as m,n — oo.

IN

Since H is complete, the sequence {T*x,,} is convergent and hence T* is compact. O

1.4. Spectral Theory for Compact Linear Operators

1.4.1. Fredholm Alternative.

Theorem 1.24. (Fredholm Alternative) Let T': H — H be a compact linear operator
on the Hilbert space H. Then equations (I —T)x =0, (I —T*)x* = 0 have the same finite
number of linearly independent solutions. Moreover,

(a) Fory € H, the equation (I —T)x =y has a solution iff (y,x*) = 0 for every
solution x* of (I —T*)z* = 0.

(b) For z € H, the equation (I —T*)x* = z has a solution iff (z,x) = 0 for every
solution x of (I —T)z = 0.

(c) The inverse operator (I —T)~' € B(H) whenever it exists.

1.4.2. Spectrum of Compact Operators. A subset S of a Hilbert space H is said to be
an orthonormal set if each element of S has norm 1 and if every pair of distinct elements
in S is orthogonal. It easily follows that an orthonormal set is linearly independent. An
orthonormal set S is said to be complete if z = 3, 5(2, ¢)¢ for all z € H. It can be shown
that (x,¢) # 0 for at most countably many ¢ € S. This series is called the Fourier series
for « with respect to the orthonormal set {¢}. Let {¢;}7°, be a countable orthonormal set
in H. Upon expanding ||z — 22[:1(3:, bn)0nl|?, we arrive at Bessel’s inequality:

D @, ¢a)l* < .
n=1
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Let T : D(T) C H — H be a linear operator on the real Hilbert space H. The set p(T)
of all scalars A € R for which (T'— A\I)~! € B(H) is called the resolvent set of T. The
operator R(A\) = (T — AI)~! is known as the resolvent of T. o(T) = R\ p(T) is called the
spectrum of 7. It can be shown that p(T") is an open set and o(T') is a closed set. The
set of A € R for which there exists a nonzero z € N (T — \I) is called the point spectrum
of T" and is denoted by 0,(T"). The elements of 0,(T") are called the eigenvalues of T" and
the nonzero members of N'(T' — AI) are called the eigenvectors (or eigenfunctions if X
is a function space) of T

If T is compact and A # 0, then by the Fredholm alternative, either A € o,(T) or
A € p(T). Moreover, if H is infinite-dimensional, then 0 & p(T); otherwise, T~! € B(H)
and T7!T = I is compact. As a consequence, o(T') consists of the nonzero eigenvalues of T
together with the point 0. The next result shows that o, (T) is either finite or a countably
infinite sequence tending to zero.

Theorem 1.25. Let T : X — X be a compact linear operator on the normed space X.
Then for each r > 0 there exist at most finitely many X € o,(T) for which [A| > r.

1.4.3. Symmetric Compact Operators. The next result implies that a symmetric com-
pact operator on a Hilbert space has at least one eigenvalue. On the other hand, an arbi-

trary bounded, linear, symmetric operator need not have any eigenvalues. As an example,
let T': L?(0,1) — L?(0,1) be defined by Tu(z) = zu(x).

Theorem 1.26. Suppose T' € B(H) is symmetric, i.e., (Tx,y) = (x,Ty) for all x,y € H.
Then

Moreover, if H # {0}, then there exists a real number A\ € o(T) such that |\| = ||T|. If
X € 0p(T), then in absolute value X is the largest eigenvalue of T.

Proof. Clearly m = supj,=1 [(T%,2)| < ||T]|. To show [|T'[| < m, observe that for all
r,y e H

< mllz +yl? + [z~ yl?)
2m(|l[|* + [ly[I*)

where the last step follows from the paralleogram law. Hence, if Tx # 0 and y =
([l /T =[[)T, then

2|z T2l = (Tz,y) + (y, ) < m([l]|* + [yll*) = 2m||=]*

which implies | Tz| < m]|z||. Since this is also valid when Tx = 0, we have ||| < m. To
prove the ‘moreover’ part, choose z, € H such that ||z, || = 1 and ||T|| = limy,—e0 |(TZn, xn)|-
By renaming a subsequence of {z,}, we may assume that (T'z,,z,) converge to some real
number A with |[A| = ||T"||. Observe that

(T = Naal® = [ Tzal? = 2X(Txn, 20) + X2
< 2X2 = 2A(Tzp, ) — 0.

We now claim that A\ € (7). Otherwise, we arrive at the contradiction

1= Jlzall = (T = N)7HT = Naa| < T =TT = Nza| - 0.
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Finally, we note that if T¢ = u¢, with ||¢|| = 1, then |u| = [(T'¢, )| < ||T|| which implies
the last assertion of the theorem. O

Finally we have the following result.

Theorem 1.27. Let H be a separable Hilbert space and suppose T : H — H is linear,
symmetric and compact. Then there exists a countable complete orthonormal set in H
consisting of eigenvectors of T.

1.5. Nonlinear Functional Analysis

In this final preliminary section, we list some useful results in nonlinear functional anal-
ysis. Lots of the proof and other results can be found in the volumes of Zeidler’s book

[7].
1.5.1. Contraction Mapping Theorem. Let X be a normed space. Amap T : X = X
is called a contraction if there exists a number k < 1 such that

(1.6) [Tz —Ty|| < kllz —y|| forall z,ye€X.

Theorem 1.28. (Contraction Mapping) Let T : S C X — S be a contraction on the
closed nonempty subset S of the Banach space X. Then T has a unique fixed point, i.e.,
there exists a unique solution x € S of the equation Tx = x. Moreover, x = lim, o T™xg
for any choice of xg € S.

Proof. To prove uniqueness, suppose Tz = x, Ty = y. Since k < 1, we get z = y from
o —yll = T2 — Ty|l < kllz - y]l.
To show that T" has a fixed point we set up an iteration procedure. For any xg € S set
Tpt1 =Ty, n=0,1,..

Note that z,41 € S and 2,11 = T" 'zg. We now claim that {z,} is a Cauchy sequence.
Indeed, for any integers n, p

n+p—1
|Znsp —2nll = TP =T ol < Y (1T g — TIao|
j=n
n+p—1 n
< Y KT —mol| < T %1720 — ol

j=n
Hence as n — 00, ||Zn4p — 2| — 0 independently of p, so that {x,} is a Cauchy sequence

with limit z € S. Since T is continuous, we have

Tx = lim Tz, = lim xp41 =2
n—oo n—oo

and thus z is the unique fixed point. Note that the fixed point z is independent of zg since
x is a fixed point and fixed points are unique. O

Our main existence result will be based upon the following so-called method of con-
tinuity or continuation method.
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Theorem 1.29. Let Ty, 11 € B(X,Y), where X is a Banach space and Y is a normed
space. For each t € [0,1] set

T, =(1—-t)Ty+tTh
and suppose there exists a constant ¢ > 0 such that for allt € [0,1] and z € X
(1.7) zllx < e Teally
Then R(Th) =Y if R(Ty) =Y.
Proof. Set S = {t € [0,1] : R(T;) = Y}. By hypothesis, 0 € S. We need to show that
1 € S. In this direction we will show that if 7 > 0 and 7¢(||Ty| + || Tb||) < 1, then
(1.8) [0,s] S implies [0,s+ 7] C S.

(Note that any smaller 7 works.) Since 7 can be chosen independently of s, (1.8) applied
finitely many times gets us from 0 € S to 1 € S.

Let s € S. For t = s+ 7, Tix = f is equivalent to the equation
(1.9) Tsx = f+1Tox — Tz,
By (1.7), T;' 1 Y — X exists and || T; || < c. Hence (1.9) is equivalent to

(1.10) v =T, f +1Tox — TTha) = Az
and for A: X — X we have for all z,y € X
[Az — Ay[| < 7e(|Ta]| + [[TolDllz — yl-
By the contraction mapping theorem, (1.10) has a solution and this completes the proof. [
1.5.2. Nemytskii Operators. Let 2 be a nonempty measurable set in R™ and let f :
Q2 xR — R be a given function. Assume
(i) for every £ € R, f(x,€) (as a function of z) is measurable on
(ii) for almost all z € 2, f(x,&) (as a function of ) is continuous on R
(iii) for all (z,£) € 2 xR
()] < alx) + bl

where b is a fixed nonnegative number, a € L4(£2) is nonnegative and 1 < p,q < oo, 1/p+
1/q = 1. Note that p/¢ = p — 1. Then the Nemytskii operator N is defined by

Nu(z) = f(z,u(z)), x € Q.
We have the following result needed later.

Lemma 1.30. N : LP(Q) — L4(Q) is continuous and bounded with

(1.11) | Nullq < const (||allq + Hqu/q) for all we LP(Q)

and

(1.12) (Nu,v) = / flx,u(x))v(z)dx for all wu,v € LP(Q).
Q

Here (-,-) denotes the duality pairing between LP(QQ) and L9(S2).
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Proof. Since u € LP(Q2), the function u(z) is measurable on € and thus, by (i) and (ii), the
function f(z,u(z)) is also measurable on Q. From the inequality (3 ;&) < > i &
and (iii) we get
|f (@, u(@))|* < const(la(@)|* + [u(x)[").

Integrating over 2 and applying the above inequality once more yields (1.11), which shows
that N is bounded.

To show that N is continuous, let u, — u in LP(€2). Then there is a subsequence {u,,}
and a function v € LP(Q) such that u,/ (z) — u(z) a.e. and |u (x)] < v(x) a.e. for all n.
Hence

|Nug — Null§ = Aﬂfwnm4@>—fnuuu»de
< constj/<\f<x,un«a»>w-+rf<m,u<x>ﬂq>dx
Q

< const/g(|a(x)|q + [v(@) P + |u(x)[P)d.

By (ii), f(z,un(z)) — f(z,u(x)) — 0 as n — oo for almost all x € Q. The dominating
convergence theorem implies that || Nu,, — Nul||; — 0. By repeating this procedure for any
subsequence of w,, it follows that || Nu, — Nu|; — 0 which implies that N is continuous.
Since Nu € (LP(2))*, the integral representation (1.12) is clear. O

Remarks. (a) The following remarkable statement can be proved: If f satisfies (i) and (ii)
above and if the corresponding Nemytskii operator is such that N : LP(Q2) — L7(Q), then
N is continuous, bounded and (iii) holds.

(b) If (iii) is replaced by
(iii)" for all (x,8) € 2 xR

£ (z,6)] < a(x) + bleP/™

where b is a fixed nonnegative number, a € L"(2) is nonnegative and 1 < p,r < oo, then
the above results are valid with ¢ replaced by r. (i.e., N : LP(Q2) — L"(£2).)

(c) We say that f satisfies the Caratheodory property, written f € Car, if (i) and
(ii) above are met. If in addition (iii) is met, then we write f € Car(p).

1.5.3. Differentiability. Let .S be an open subset of the Banach space X. The functional
f:8 C X — Ris said to be Gateaux differentiable (G-diff) at a point u € S if there
exists a functional g € X* (often denoted by f’(u)) such that

iﬂwm%ﬂ=gJW+@ f(w)
The functional f’(u) is called the Gateaux derivative of f at the point v € S. If f is
G-diff at each point of S, the map ' : S C X — X* is called the Gateaux derivative of
f on S. In addition, if f’ is continuous at u (in the operator norm), then we say that f
is C! at u. Note that in the case of a real-valued function of several real variables, the
Gateaux derivative is nothing more than the directional derivative of the function at u in
the direction v.

=[f'(w)]v forall veX.

Let X,Y be Banach spaces and let A : S C X — Y be an arbitrary operator. A is
said to be Frechet differentiable (F-diff) at the point u € S if there exists an operator
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B € B(X,Y) such that
lim [|A(u+v) — Au— Bvl|/||v] = 0.

llv]|—0

The operator B, often denoted by A’(u), is called the Frechet derivative of A at u. Note
that if A is Frechet differentiable on S, then A’ : S — B(X,Y). In addition, if A’ is
continuous at u (in the operator norm), we say that A is C! at u.

Remark. If the functional f is F-diff at uw € S, then it is also G-diff at u, and the two
derivatives are equal. This follows easily from the definition of the Frechet derivative. The
converse is not always true as may be easily verified by simple examples from several variable
calculus. However, if the Gateaux derivative exists in a neighborhood of u and if f € C' at
u, then the Frechet derivative exists at u, and the two derivatives are equal.

ExXAMPLE 1.31. (a) Let f(£) € C(R). Then for k > 0, the corresponding Nemytskii operator
N : Ck(Q) — C(Q) is bounded and continuous. If in addition f(¢) € C*(R), then N € C*
and the Frechet derivative N'(u) is given by

[N'(u)v](2) = f'(u(z))v().

Note that for u,v € C*(Q), |N'(u)v|g < |f'(u)|o|v]r and so N'(u) € li(Ck(Q),C’(Q)) with
|N'(w)]| < |f'(u)]o. Clearly N’(u) is continuous at each point u € C*(2). Moreover,

Ld
IN(u+v) = Nu—N'(uwolp = Slip\/o [ (u(@) + to(@) = f'(u(@))o(w)]di]

IN

1
[vlo Slip/o | (u(z) + to(x)) — f(u(z))|dt.

The last integral tends to zero since f’ is uniformly continuous on compact subsets of R.
More generally, let f(£) € C*(R). Then the corresponding Nemytskii operator N :
C*(Q) — C*(Q) is bounded and continuous. If in addition f(¢) € C**(R), then N € C*
with Frechet derivative given by [N'(u)v](z) = f'(u(z))v(z). Note that [uv[x < |u[g|v]y for
u,v € C¥(Q), and since C*(Q) c C(Q), the Frechet derivative must be of the stated form.

(b) Let f(¢) € CFY(R), where k > n/2. Then we claim that the corresponding Ne-
mytskii operator N : H¥(Q) — H¥(Q) is of class C! with Frechet derivative given by
[N (wv)(z) = f(u(x))v(z).

First, suppose v € C*(Q). Then N(u) € C*(Q) by the usual chain rule. If u € H*(),
let u, € C*(Q) with |lum, — ullg2 — 0. Since the imbedding H*(Q) C C(Q) is continuous,
Um — u uniformly, and thus f(u;,) — f(u) and f'(um,) — f'(u) uniformly and hence in L2.
Furthermore, D;f(um) = f'(tm)Ditm — f'(u)Dsu in L. Consequently, by Theorem 2.11,
we have

In a similar fashion we find
Dijf(u) = f"(u)DiuDju + f'(u)Diju
with corresponding formulas for higher derivatives.

1.5.4. Implicit Function Theorem. The following lemmas are needed in the proof of
the implicit function theorem.
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Lemma 1.32. Let S be a closed nonempty subset of the Banach space X and let M be a
metric space. Suppose A(x,\) : S x M — S is continuous and there is a constant k < 1
such that, uniformly for all A € M
|A(z, \) — Ay, N)|| < k||lx —y|| forall z,ye€S.
Then for each X\ € M, A(x,\) has a unique fized point x(\) € S and moreover, x(\)
depends continuously on .
Proof. The existence and uniqueness of the fixed point () is of course a consequence of
the contraction mapping theorem. To prove continuity, suppose A, — A. Then
[2(An) =z (M = [[A(z(An), An) — A(z(A), M|
<A@ (A), An) = A(z(A), M)l + [[A(Z(A), An) — A(z(A), A
< Eflz(An) —z(M] + [|A(z(A), An) — A(z(A), M)

Therefore )
l2(An) = 2(WII = 7= [14@(A), An) = Al2(A), A)]I-

By the assumed continuity of A, the right side tends to zero as n — oo, and therefore
x(An) = z(N). O

Lemma 1.33. Suppose X,Y are Banach spaces. Let S C X be convex and assume A :
S — Y is Frechet differentiable at every point of S. Then

[ Au = Av|| < lu— || sup [[A"(w)].
weS
In other words, A satisfies a Lipschitz condition with constant ¢ = sup,,cg ||A'(w)].

Proof. For fixed u,v € S, set g(t) = A(u + t(v — u)), where ¢t € [0,1]. Using the definition
of Frechet derivative, we have

, L Alu+ (t+h)(v—u)) — A(u+ t(v — u))
gt = %5%( h )
— im (hA’(u+t(v—u))(v—u)+||h(v—u)\|E>

h—0 h
= Au+tlv—u))(v—u).

Hence

19(0) — g(1)]| = [[Au — Av[| < sup [lg'(t)]]
te(0,1]

which implies the desired result. O

Lemma 1.34. Let X be a Banach space. Suppose A : B(ug,r) C X — X is a contraction,
with Lipschitz constant ¢ < 1, where

> (1—q) | Aug — uol.

Then A has a unique fixed point u € B(ug,T).

Proof. For u € B(ug,)
| A — woll < || Au — Augl| + || Ao — | < gllu — woll + (1 — g)r-

Since ||u — uo|| < 7, A maps the ball B(up,r) into itself, and the result follows from the
contraction mapping theorem. O
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We now consider operator equations of the form A(u,v) = 0, where A maps a subset
of X x Y into Z. For a given [up,vo] € X x Y we denote the Frechet derivative of A (at
[uo, vo]) with respect to the first (second) argument by A, (ug,vo) (Ay(ug,vo)).

Theorem 1.35. (Implicit Function) Let X,Y, Z be Banach spaces. For a given [ug, vg] €
X xY and a,b > 0, let S = {[u,v] : |[u —uo|| < a, ||v—wvol <b}. Suppose A:S — Z
satisfies the following:

(i) A is continuous.

(ii) Ay(+,-) exists and is continuous in S (in the operator norm,)

(iii) A(UO, U()) =0.
(iv) [Ay(uo,v0)] ™t exists and belongs to B(Z,Y).

Then there are neighborhoods U of ug and V' of vy such that the equation A(u,v) = 0 has
exactly one solution v € V' for every uw € U. The solution v depends continuously on u.

Proof. If in S we define
B(u,v) =v — [Av(u(),vo)]flA(u, v)

it is clear that the solutions of A(u,v) = 0 and v = B(u,v) are identical. The theorem will
be proved by applying the contraction mapping theorem to B. Since

By (u,v) = I — [Ay(ug, v9)] ™ Ay (1, v)

By(+,-) is continuous in the operator norm. Now B, (ug,v9) = 0, so for some 6 > 0 there is
a q < 1 such that
1Bu(u, v)|| < ¢
for ||lu — up|| <6, ||lv—wo|| < 4. By virtue of Lemma 1.33, B(u,-) is a contraction. Since
A is continuous, B is also continuous. Therefore, since B(ug,vg) = vg, there is an e with
0 < & <6 such that
[1B(u,v0) = voll < (1 —¢)d

for ||u — up|| < e. The existence of a unique fixed point in the closed ball B(vg,d) follows
from Lemma 1.34 and the continuity from Lemma 1.32. g

EXAMPLE 1.36. Let f(£) € CH*(R), f(0) = f/(0) = 0, g(z) € C*(Q) and consider the
boundary value problem

(1.13) Au+ f(u) =g(z) in Q, wulgpg =0.
Set X =7 =C%0N), Y ={uec C?*(Q) : ulpq = 0} and
Alg,u) =Au+ N(u) —g

where N is the Nemytskii operator corresponding to f. The operator A maps X x Y into
the space Z. Clearly A(0,0) =0 (A is C! by earlier examples) and

A, (0,0)v =Av, veY.

It is easily checked that all the conditions of the implicit function theorem are met. In
particular, condition (iv) is a consequence of the bounded inverse theorem. Thus, for a
function g € C*(Q2) of sufficiently small norm (in the space C%(Q)) there exists a unique
solution of (1.13) which lies near the zero function. There may, of course, be other solutions
which are not close to the zero function. (Note that the condition f’(0) = 0 rules out linear

functions.)
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Remark. Note that the choice of X = Z = C(Q), Y = {u € C?(Q) : ulspq = 0} would fail
above since the corresponding linear problem is not onto. An alternate approach would be
to use Sobolev spaces. In fact, if we take X = Z = Wk=2(Q), Y = Wk(Q) N H}(Q) with &k
sufficiently large, and if f(¢) € CK¥*1(R), then as above, we can conclude the existence of a
unique solution u € W*(Q) provided | g||x_2.2 is sufficiently small. Hence, we get existence
for more general functions g; however, the solution u € W¥(2) is not a classical (i.e., C?)
solution in general.

1.5.5. Generalized Weierstrass Theorem. In its simplest form, the classical Weier-
strass theorem can be stated as follows: Every continuous function defined on a closed ball
in R™ is bounded and attains both its maximum and minimum on this ball. The proof
makes essential use of the fact that the closed ball is compact.

The first difficulty in trying to extend this result to an arbitrary Banach space X is
that the closed ball in X is not compact if X is infinite dimensional. However, as we shall
show, a generalized Weierstrass theorem is possible if we require a stronger property for the
functional.

A set S C X is said to be weakly closed if {u,} C S, wu, — u implies u € 5, i.e.,
S contains all its weak limits. A weakly closed set is clearly closed, but not conversely.
Indeed, the set {sin nz}$° in L?(0,7) has no limit point (because it cannot be Cauchy) so
it is closed, but zero is a weak limit that does not belong to the set. It can be shown that
every convex, closed set in a Banach space is weakly closed.

A functional f : S C X — R is weakly continuous at ug € S if for every sequence
{un} C S with u, — ug it follows that f(u,) — f(ug). Clearly, every functional f € X*
is weakly continuous. A functional f : S C X — R is weakly lower semicontinu-
ous(w.l.s.c.) at up € S if for every sequence {u,} C S for which u,, — wg it follows that
f(up) < liminf, ,o f(up). According to Theorem 1.18, the norm on a Banach space is
w.ls.c.. A functional f: S C X — R is weakly coercive on S if f(u) — oo as |lu]| = oo
on S.

Theorem 1.37. Let X be a reflexive Banach space and f : C C X — R be w.l.s.c. and
assume

(i) C is a nonempty bounded weakly closed set in X or
(ii) C is a nonempty weakly closed set in X and f is weakly coercive on C.
Then
(a) infyec f(u) > —o0;

(b) there is at least one ug € C such that f(ug) = infyec f(u).
Moreover, if uy is an interior point of C' and f is G-diff at ug, then f'(up) = 0.

Proof. Assume (i) and let {u,} C C be a minimizing sequence, i.e., lim, o [f(u,) =
inf,ec f(u). The existence of such a sequence follows from the definition of inf. Since X is
reflexive and C' is bounded and weakly closed, there is a subsequence {u,/} and a uy € C
such that w, — wp. But f is w.ls.c. and so f(up) < liminf, oo f(uy) = infuec f(u),
which proves (a). Since by definition, f(ugp) > inf,cc f(u), we get (b).

Assume (ii) and fix up € C. Since f is weakly coercive, there is a closed ball B(0, R) C X
such that up € BNC and f(u) > f(ug) outside BNC. Since BN C satisfies the conditions
of (i), there is a u; € BN C such that f(u) > f(up) for all w € BN C and in particular for
ug. Thus, f(u) > f(u1) on all of C.
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To prove the last statement we set ¢, (t) = f(uo + tv). For fixed v € X, ¢,(t) has a
local minimum at ¢ = 0, and therefore (f’(up),v) =0 for all v € X. O

The point ug € X is called a critical point of the functional f defined on X if f/(ug)v =
0 for every v € X.

Remark. Even though weakly continuous functionals on closed balls attain both their inf
and sup (which follows from the above theorem), the usual functionals that we encounter
are not weakly continuous, but are w.l.s.c.. Hence this explains why we seek the inf and
not the sup in variational problems.

1.5.5.1. Convez sets. A set C in the real normed space X is called convex if (1—t)u+tv € C
for all t € [0,1], u, v € C. The following result is needed later (see, e.g., [?]).

Theorem 1.38. A closed convex set in a Banach space is weakly closed.

1.5.6. Monotone Operators and Convex Functionals. Let A : X — X* be an oper-
ator on the real Banach space X.

A is monotone if

(Au— Av,u—v) >0 forall w,ve X.

A is strongly monotone if
(Au— Av,u—v) > cllu—v|f5 forall w,veX

where ¢ > 0 and p > 1.

A is coercive if
(Au,u)

1m
ul|—soo ||u]

= +00.

Remark. A strongly monotone operator is coercive. This follows immediately from (Au, u) =
(Au — A0, u) + (A0,u) > cllully — [|AO|[|u]x-

Let C be a convex set in the real normed space X. A functional f : C C X — R is said
to be convex if
(I =tu+tv) < (1 —t)f(u)+tf(v) forall tel0,1], u,veC.
In the following we set
o(t) = f((1 =tu+tv) = f(u+t(v—u))
for fixed u and v.

Lemma 1.39. Let C C X be a convez set in a real normed space X. Then the following
statements are equivalent:

(a) The real function ¢ : [0,1] — R is convex for all u,v € C.

(b) The functional f: C C X — R is convex.

(c¢) f':CC X — X* (assuming f is G-diff on C) is monotone.
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Proof. Assume ¢ is convex. Then

p(t) =o((L—=1)-041-1) < (1 =1)p(0) + tp(1)

for all ¢ € [0, 1], which implies (b).

Similarly, if f is convex, then for t = (1 — a)s1 + asg, with «, s1, s2 € [0, 1], we have

o) = fluttv—u)) <(I—a)f(ut+si(v—u))+af(utsz(v—u))

for all u,v € C, which implies (a).

Fix u,v € C. Then ¢'(t) = (f'(u+ t(v —u)),v —u). If f is convex, then ¢ is convex
and therefore ¢’ is monotone. From ¢'(1) > ¢'(0) we obtain

(f'(v) = f'(w),v—u) >0 forall u,veC

which implies (c).

Finally, assume f’ is monotone. Then for s < ¢t we have

1
P(t) = ¢'(s) = T (flut (o —u)) = f'(u+s(v =), (t = s)(v —u)) 2 0.

Thus ¢’ is monotone, which implies ¢, and thus f is convex. (|

Theorem 1.40. Consider the functional f: C C X — R, where X s a real Banach space.
Then f is w.l.s.c. if any one of the following conditions holds:

(a) C is closed and convez; f is conver and continuous.
(b) C is convex; [ is G-diff on C and f' is monotone on C.

Proof. Set

Cr={ueC: f(u) <r}.
It follows from (a) that C, is closed and convex for all r, and thus is weakly closed (cf.
Theorem 1.38). If f is not w.l.s.c., then there is a sequence {u,} C C with u,, — u and
f(u) > liminf f(u,). Hence, there is an r and a subsequence {u,,} such that f(u) > r and
flup) <r (ie., uy € C,) for all n’ large enough. Since C, is weakly closed, u € C,., which
is a contradiction.

Assume (b) holds and set ¢(t) = f(u + t(v — u)). Then by Lemma 1.39, ¢ : [0,1] = R
is convex and ¢’ is monotone. By the classical mean value theorem,
e(1) —¢(0) =¢'(0) = ¥'(0), 0<O<1
i.e.,
f() > f(u)+ (f'(u),v —u) forall wu,vecC.
If w, — u, then (f'(u),u, —u) — 0 as n — oo. Hence, f is w.l.s.c. O

1.5.7. Lagrange Multipliers. Let f,g: X — R be two functionals defined on the Banach
space X and let

M. ={ue X :g(u) =c}
for a given constant c. A point uy € M, is called an extreme of f with respect to M, if
there exists a neighborhood of ug, U(up) C X, such that

f(u) < f(ug) forall we U(ug)N M,

or
f(u) > f(ug) for all we U(up) N M.
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In the first case we say that f is (local) maximal at ug with respect to M., while in the
second case f is (local) minimal at uy with respect to M.. A point ug € M, is called an
ordinary point of the manifold M, if its F-derivative ¢'(ug) # 0.

Let ug be an ordinary point of M.. Then ug is called a critical point of f with respect
to M, if there exists a real number )\, called a Lagrange multiplier, such that

f'(uo) = Ag'(uo).

As we shall see, if ug is an extremum of f with respect to M., and if ug is an ordinary point,
then wug is a critical point of f with respect to M,.. Note that if ug is an extremum of f with
respect to X, then we can choose A = 0, which implies the usual result.

Lemma 1.41. Let X be a Banach space. Suppose the following hold:

(i) f,g: X — R are of class C*
(ii) Forug € X, we can find v,w € X such that

(1.14) f'(uo)v - g'(uo)w # f'(uo)w - g'(uo)v.
Then f cannot have a local extremum with respect to the level set M. at ug.

Proof. Fix v,w € X, and for s,t € R consider the real-valued functions

F(s,t) = f(up + sv +tw), G(s,t) = g(up+ sv+tw) —c.

Then oF OF
55 (0:0) = f'uo)v, —-(0,0) = f'(uo)w
0G , oG /
g(ov()) =g (UO)U, E(Ovo) =g (UO)w

so that condition (1.14) is simply that the Jacobian |0(F,G)/d(s,t)| is nonvanishing at
(s,t) = (0,0). Since F,G € C! on R?, we may apply the implicit function theorem to
conclude that a local extremum cannot occur at ug. More precisely, assume w.l.o.g. that
G4(0,0) # 0. Since G(0,0) = 0, the implicit function theorem implies the existence of a C!
function ¢ such that ¢(0) = 0 and G(s, ¢(s)) = 0 for sufficiently small s. Moreover,

iy~ Gs(0,0)

Set z(s) = F(s,¢(s)) = f(uo + sv + ¢(s)w) and note that g(ug + sv + ¢(s)w) = c. Hence,
if to the contrary f has an extremum at wug, then z(s) has a local extremum at s = 0. But,
an easy computation shows that G¢(0,0)2'(0) = f'(ug)v - ¢’ (ug)w — f'(ug)w - ¢'(up)v # 0,
which is a contradiction. U

Theorem 1.42. (Lagrange) Let X be a Banach space. Suppose the following hold:
(i) f,g: X — R are of class C*
(i) g(uo) = c.
(iii) wo is a local extremum of f with respect to the constraint M,
Then either
(a) ¢'(up)v =0 for allv e X, or
(b) There exists A € R such that f'(ug)v = Ag'(ugp)v for all v € X.
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Proof. If (a) does not hold, then fix w € X with ¢'(ug)w # 0. By hypothesis and the above
lemma, we must have

I (uo)v - g'(up)w = f'(uo)w - ¢'(up)v  for all v e X.
If we define A\ = (f'(uo)w)/(g'(ug)w), then we obtain (b). O

More generally, one can prove the following:

Theorem 1.43. (Ljusternik) Let X be a Banach space. Suppose the following hold:
(i) go: X — R is of class C*
(i) gi: X > R are of class C', i=1,....,n
(iii) ug s an extremum of gy with respect to the constraint C':
C={u:gu=c¢@i=1...,n}
where the ¢; are constants.

Then there are numbers \; (not all zero) such that
(1.15) > Xigi(uo) = 0.
i=0

As an application of Ljusternik’s theorem we have

Theorem 1.44. Let f,g : X — R be C' functionals on the reflexive Banach space X .
Suppose

(i) f is w.l.s.c. and weakly coercive on X N{g(u) < c}
(ii) g is weakly continuous

(iii) g(0) =0, ¢'(u) =0 only at u=0.

Then the equation f'(u) = Ag'(u) has a one parameter family of nontrivial solutions (ur, ARr)
for all R # 0 in the range of g(u) and g(ur) = R. Moreover, ur can be characterized as
the function which minimizes f(u) over the set g(u) = R.

Proof. Since g(u) is weakly continuous, it follows that Mpr = {u : g(u) = R} is weakly
closed. If Mp is not empty, i.e., if R belongs to the range of g, then by Theorem 1.37,
there is a up € Mp such that f(ugr) = inf f(u) over u € Mp. If R # 0 then it cannot
be that ¢’(ur) = 0. Otherwise by (iii), ug = 0 and hence R = g(ur) = 0, which is a
contradiction. Thus, by Ljusternik’s theorem, there exist constants A1, Aa, A3+ A3 # 0 such
that A1 f'(ur) + A2g’(ur) = 0. Since ug is an ordinary point, it follows that \; # 0, and
therefore A\p = —Aa/ 1. O

Remark. In applying this theorem one should be careful and not choose g(u) = ||lu||, since
this ¢ is not weakly continuous.

The following interpolation inequality, which is frequently referred to as Ehrling’s
inequality, will be needed in the next result.

Theorem 1.45. Let X,Y, Z be three Banach spaces such that
XCcYcZ
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Assume that the imbedding X CY is compact and that the imbedding Y C Z is continuous.
Then for each € > 0, there is a constant c(€) such that

(1.16) llully <ellullx +cle)||ullz  for all we X.

Proof. If for a fixed ¢ > 0 the inequality is false, then there exists a sequence {u,} such
that

(1.17) lunlly > €llunllx + n|lun|lz for all n.

Without loss of generality we can assume ||u,||x = 1. Since the imbedding X C Y is
compact, there is a subsequence, again denoted by {u,}, with u, — w in Y. This implies
Up, = win Z. By (1.17), |lun|ly > € and so u # 0. Again by (1.17), up, — 0in Z, i.e., u =0,
which is a contradiction. g



Chapter 2

Sobolev Spaces

This chapter is devoted to the study of the necessary Sobolev function spaces which permit
a modern approach to partial differential equations.

2.1. Weak Derivatives and Sobolev Spaces

2.1.1. Weak Derivatives. Let € be a nonempty open set in R"™. Suppose u € C™(Q2) and
¢ € C§*(Q2). Then by integration by parts

(2.1) /uDO‘(pd:r: (—1)|a|/vgodac, lal <m
Q Q

where v = D%. Motivated by (2.1), we now enlarge the class of functions for which the
notion of derivative can introduced.

Let u € Li,.(Q). A function v € L} () is called the o' weak derivative of u if it
satisfies

(2.2) /uDO‘(pda: = (—1)l / vpdx for all ¢ € C(gal(Q).

Q Q
It can be easily shown that the weak derivative is unique. Thus we write v = D®u to indicate
that v is the o' weak derivative of u. If a function u has an ordinary o'’ derivative lying
in L},.(Q), then it is clearly the ath weak derivative.

In contrast to the corresponding classical derivative, the weak derivative D%u is defined
globally on all of Q by (2.2). However, in every subregion ' C Q the function D%u will
also be the weak derivative of u. It suffices to note that (2.2) holds for every function
p € C(l)a‘(Q’ ), and extended outside Q' by assigning to it the value zero. In particular, the
weak derivative (if it exists) of a function u having compact support in 2 has itself compact
support in € and thus belongs to L'(€2).

We also note that in contrast to the classical derivative, the weak derivative D%u is
defined at once for order |a| without assuming the existence of corresponding derivatives
of lower orders. In fact, the derivatives of lower orders may not exist as we will see in a
forthcoming exercise. However, it can be shown that if all weak derivatives exist of a certain
order, then all lower order weak derivatives exist.
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EXAMPLE 2.1. (a) The function u(x) = |z1| has in the ball Q = B(0,1) weak derivatives
Uy, = SN X1,Uy; = 0,4 = 2,...,n. In fact, we apply formula (2.2) as follows: For any

p € Cy(Q)
/ |x1|pz, do = / 1Pz, dx —/ T1pg, dx
Q o+ -

where QT = QN (21 > 0), @~ = QN (z1 <0). Since 19 = 0 on 9N and also for z1 = 0,
an application of the divergence theorem yields

/]xl\gpmldw: —/ Lpdx+/ odx = —/(sgn x1)pdr.
Q Qt - Q

Hence |z1|z, = sgn 1. Similarly, since for ¢ > 2

/’xl“Pmdw:/(‘xl’SO)midw:—/ngdx
Q Q 0

|z1|lz; = 0 for i = 2,...,n. Note that the function |z;| has no classical derivative with
respect to x1 in €.

(b) By the above computation, the function u(z) = |z| has a weak derivative u/(x) =
sgn z on the interval Q = (—1,1). On the other hand, sgn x does not have a weak derivative
on €2 due to the discontinuity at x = 0.

(c) Let Q = B(0,1/2) C R? and define u(z) = In(In(2/r)), = € Q, where r = |z| =
(z3 4+ 22)'/2. Then u ¢ L>®(Q) because of the singularity at the origin. However, we will
show that u has weak first partial derivatives.

First of all u € L?(), for

o= [ [ riaseniara

and a simple application of L’hopitals rule shows that the integrand is bounded and thus
the integral is finite. Similarly, it is easy to check that the classical partial derivative

—cosf

W, where r1 = 7 cos 0

Ugy =

also belongs to L?(£2). Now we show that the defining equation for the weak derivative is
met.

Let Q. = {z : ¢ < r < 1/2} and choose ¢ € C}(2). Then by the divergence theorem
and the absolute continuity of integrals

/ugowldac: lim/ UPy, dr = lim [—/ umlgpd:njt/ ugonlds}
Q e—0 Qe e—0 Q. r=e

where n = (n1,n2) is the unit outward normal to Q. on r = ¢. But (ds = edf)

2w
]/ upnyds| < / lul |pledf < 2mecIn(In(2/e)) — 0
r=e 0

/ucpxldm:—/umcpdx.
Q Q

The same analysis applies to us,. Thus v has weak first partial derivatives given by the
classical derivatives which are defined on Q\{0}.

as € — 0. Thus
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2.1.2. Sobolev Spaces. For p > 1 and k£ a nonnegative integer, we let
Wk’p(Q) ={u:ueLP(Q), Du e LP(Q), 0 < |of <k}

where D®u denotes the o weak derivative. When k = 0, W*P(Q) will mean LP(f2). It is
clear that W*P(Q) is a vector space. A norm on W*P(Q) is introduced by defining

([, 1<k | DYulPdz) /P if 1 < p < oo,
08 by = lullyan = | S0t e
2 laj<k D%l Lo () if p = oo.
The space Wk’p(Q) is known as a Sobolev space of order k£ and power p.
We define the space W(;C P(2) to be the closure of the space C¥(Q) with respect to the
norm || - || . As we shall see shortly, W"P(Q) # Wéc’p(Q) for £ > 1. (Unless Q = R™.)

Remark 2.1. The spaces W#2(Q) and I/Vég 2(Q)) are special since they become a Hilbert
space under the inner product

(U, V)2 = (U, V) we2(0) 2/ Z D*uD*vdz.
o)<k

Since we shall be dealing mostly with these spaces in the sequel, we introduce the special
notation:

HH(Q) = WHA(Q), HE(9Q) = Wy*().
Theorem 2.2. W*?(Q) is a Banach space under the norm (2.3). If 1 < p < oo, it is

reflexive, and if 1 < p < 0o, it is separable.

Proof. 1. We first prove that W*P(Q) is complete with respect to the norm (2.3). We
prove this for 1 < p < oo; the case p = oo is similar. Let {u,} be a Cauchy sequence of
elements in WP (), i.e.,

llun — umH%p = E / | D%y, — D% |Pdx — 0 as m,n — oo.
Q
|o|<k

Then for any «, |a| <k, when m,n — oo
/ | DYy, — D%y |Pdz — 0
Q
and, in particular, when |a| =0

/ |ty — U [Pdx — 0.
Q

Since LP(Q) is complete, it follows that there are functions u® € LP(Q2), |a| < k such that
D%u,, — u® (in LP(Q)). Since each u,(x) has weak derivatives (up to order k) belonging
to LP(1), a simple limit argument shows that u® is the o' weak derivative of u. In fact,

/uDawdxe/unDacpdx: (—1)“'/ @Daundx%(—l)al/uagodx.
Q Q Q Q

Hence u® € W*P(Q) and |ju,, — u®||x, — 0 as n — oco. This proves the completeness of
WHP(Q); hence it is a Banach space.

2. Consider the map T : WHP(Q) — (LP(2))" ! defined by
Tu = (u, Dyu,...,Dyu).
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If we endow the latter space with the norm

n+1

loll = (3 lloill)*?
=1

for v = (v1,...,v041) € (LP(Q))"*, then T is a (linear) isometry. Now (LP(Q))"*! is
reflexive for 1 < p < oo and separable for 1 < p < co. Since WP(Q) is complete, its image
under the isometry T is a closed subspace of (LP(£2))"*! which inherits the corresponding
properties as does W1P(Q) (see Theorem 1.14). Similarly, we can handle the case k > 2. [

The following result is of independent importance. We omit the proof.
Theorem 2.3. u,, — u in W*P(Q) if and only if D%u,, — D% in LP(Q) for all |a| < k.

EXAMPLE 2.4. Let ) be a bounded open connected set in R™. Divide €2 into N open disjoint
subsets 21,9, ..., Q. Suppose the function u : £ — R has the following properties:

(i) u is continuous on €.
(ii) For some i, Dju is continuous on (1, {ly, ..., 2y, and can be extended contin-
uously to 21,9, ..., Qn, respectively.

(iii) The surfaces of discontinuity are such that the divergence theorem applies.

Define w;(r) = Dyu(x) if z € UY | Q;. Otherwise, w; can be arbitrary. We now claim that
w; € LP(2) is a weak partial derivative of u on Q. Indeed, for all p € C}(£2), the divergence
theorem yields

/uDigod:c = Z/ uD;pdx
Q = Jo,

= Z / ucpnidS—/ wD;udx
99 Q;

J

= —/ pDjudx.
Q

Note that the boundary terms either vanish, since ¢ has compact support, or cancel out
along the common boundaries, since u is continuous and the outer normals have opposite
directions. Similarly, if u € C*(Q) and has piecewise continuous derivatives in 2 of order
k + 1, then u € WkLP(Q).

Remark 2.2. More generally, by using a partition of unity argument, we can show the
following: If O is a collection of nonempty open sets whose union is 2 and if u € L} ()
is such that for some multi-index «, the o weak derivative of u exists on each member of

O, then the o weak derivative of u exists on €.

Exercise 2.3. (a) Consider the function u(x) = sgnz; + sgnzs in the ball B(0,1) C R2.
Show that the weak derivative u;, does not exist, yet the weak derivative uz, ., does exist.

(b) Let © be the hemisphere of radius R < 1 in R™:

n
TQEfogRZ, zn >0 (n>3).
i=1

Show that u = (r*/2~D1inr)~t € HY(Q).
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(c) Let B = B(0,1) be the open unit ball in R™, and let
u(z) = |z|7%, x € B.

For what values of a, n,p does u belong to W'P(B)?

2.2. Approximations and Extensions

2.2.1. Mollifiers. Let x € R™ and let B(z, h
radius h. For each h > 0, let wy(x) € C*(R™)
)

wp(z) > 0; wi(x) =0 for |z| >h

) denote the open ball with center at x and
satisfy

/ wp(z)dr = / wp(z)de = 1.
n B(0,h)

Such functions are called mollifiers. For example, let
ey = JEe (e =171, el <1,
0, lz| > 1,

where k > 0 is chosen so that [, w(z)dz = 1. Then, a family of mollifiers can be taken as
wp(x) = h~"w(x/h) for h > 0.

Let Q be a nonempty open set in R” and let u € L'(2). We set u = 0 outside Q. Define
for each h > 0 the mollified function

w(@) = [ anle = puto)dy
where wy, is a mollifier.

Remark 2.4. There are two other forms in which u; can be represented, namely
(24) wiw) = [ vy = [ ey

the latter equality being valid since wy, vanishes outside the (open) ball B(x,h). Thus
the values of uy(z) depend only on the values of u on the ball B(z,h). In particular, if
dist(x, supp(u)) > h, then uy(x) = 0.

Theorem 2.5. Let 2 be a nonempty open set in R™. Then
(a) up € C°(R").

(b) If supp(u) is a compact subset of Q, then u, € C§°(R2) for all h sufficiently
small.

Proof. Since u is integrable and wy, € C*°, the Lebesgue theorem on differentiating integrals
implies that for |a| < co

Dun(e) = [ alw)Dwn(z - )dy
Q
ie., up € C*°(R™). Statement (b) follows from the remark preceding the theorem. O

With respect to a bounded set  we construct another set Q" as follows: with each
point € Q as center, draw a ball of radius h; the union of these balls is then Q). Clearly
Q") 5 Q. Moreover, uy, can be different from zero only in Q).
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Corollary 2.6. Let Q2 be a nonempty bounded open set in R™ and let h > 0 be any number.
Then there exists a function n € C*°(R™) such that

0<n(z)<1; nx)=1, z€QW; nz)=0, 2 (QBM)e

Such a function is called a cut-off function for ).

Proof. Let x(z) be the characteristic function of the set Q" : x(z) = 1 for z € Q@M y(z) =
0 for z & QM and set

) = o) = [ wnle =~ y)x(w)ds

Then
wo) = [ enla )y € O,
Q(Qh)
0<n@) < [ wnlo-yay=1.
and
fB wh(x_y)dy:]-v ngQ(h)’
x) = wp(z — dy = (@:h)
n(x) /B(x,h) (@ —y)x(y)dy {0, v e (O,

In particular, we note that if Q' CC Q, there is a function n € C§°(£2) such that n(z) =1
for z € V, and 0 < n(z) < 1in Q. O

Henceforth, the notation Q' CC 2 means that ', Q) are open sets, ' is bounded, and
that €/ C €.

We need the following well-known result.

Theorem 2.7. (Partition of Unity) Assume Q C R" is bounded and Q cC UY 9,
where each §; is open. Then there exist C* functions ;(xz) (i =1,...,N) such that

(a) 0 <9(z) <1
(b) v; has its support in €
(c) Zfil Yi(x) =1 for every x € Q.

2.2.2. Approximation Theorems.

Lemma 2.8. Let Q be a nonempty bounded open set in R™. Then every u € LP(Q) is
p-mean continuous, i.c.,

/|u(m+z)—u(m)\pdx—>0 as z — 0.
Q

Proof. Choose a > 0 large enough so that  is strictly contained in the ball B(0,a). Then
the function
Jou(z) ifzxeq,
Ulz) = { 0 ifze B(0,2a)\Q

belongs to LP(B(0,2a)). For € > 0, there is a function U € C(B(0,2a)) which satisfies the
inequality ||U — Ul|rr(B(0,24)) < €/3. By multiplying U by an appropriate cut-off function,
it can be assumed that U(z) = 0 for = € B(0,2a) \ B(0,a). Therefore for |z| < a,

)
|U(z+2) - Uz + 2 Lr(B(0,2q)) = U (7) — U(»”U)HLP(B(O,a)) <e/3.
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Since function U is uniformly continuous in B(0,2a), there is a 0 < § < a such that
1U(z + 2z) = U(x) ||l o(B0,20)) < €/3 whenever |z| < §. Hence for |z] < § we easily see that
|u(x + 2) —u(@)||pro) = IU(x + 2) = U(2)|| 1r(B(0,20)) < €- O

Theorem 2.9. Let Q be a nonempty open set in R™. Ifu € LP(Q) (1 <p < ), then

(@) [lunllp < llullp
(b) llup, —ul[p =0 as h—0.

Ifu € C*(Q) and Q is compact, then, for all ' CC Q,

() llun —uller@y =0 as h—0.

Proof. 1. If 1 < p < oo, let ¢ = p/(p —1). Then wy, = w,ll/pwill/q and Holder’s inequality

implies
/Qwh($ —y)lu(y)[Pdy (/Q wn( — y)dy>p/q

< /Q wn(w — y)|uy)Pdy

which obviously holds also for p = 1. An application of Fubini’s Theorem gives

[un@pas< [ ([ wne=nac) pay < [ o

which implies (a).
2. To prove (b), let w(x) = h"wp(hx). Then w(x) € C°(R™) and satisfies

w(xz)>0; w(x)=0 for |z|>1

/ () = /B oy @z =1

Using the change of variable z = (x — y)/h we have

wn(2) - u(x) = /B 1) @ entz )y

Jun () [”

IN

= / [u(x — hz) —u(x)|w(z)dz.
B(0,1)
Hence by Holder’s inequality
lup(x) —u(z)P <d |u(x — hz) —u(x)|Pdz
B(0,1)

and so by Fubini’s Theorem

/ lun(z) — @) Pdz <d [ / lulz — hz) — u(z)Pdz)dz.
Q Q

B(0,1)
The right-hand side goes to zero as h — 0 since every u € LP(2) is p-mean continuous.

3. We now prove (c) for k = 0. Let ', Q" be such that Q' cC Q" CcC Q. Let hg be the
shortest distance between 9 and 9Q". Take h < hg. Then

un(2) — u(z) = /B 1) = u@ene )y
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If 2 € €, then in the above integral y € Q”. Now wu is uniformly continuous in Q" and
wp, > 0, and therefore for an arbitrary ¢ > 0 we have

jun() — u(z)| < e /B R

provided h is sufficiently small. The case £k > 1 is handled similarly and is left as an
exercise. U

Remark 2.5. In (c) of the theorem above, we cannot replace ' by Q. Let uw =1 for x €
[0,1] and consider uy(z) = fol wp(z — y)dy, where wp(y) = wp(—y). Now ffh wr(y)dy =1
and so up(0) = 1/2 for all h < 1. Thus up(0) — 1/2 # 1 = u(0). Moreover, for z € (0,1)
and h sufficiently small, (x — h,z+ h) C (0,1) and so up(z) = f;j: wp(z —y)dy = 1 which
implies up(z) — 1 for all x € (0,1).

Corollary 2.10. Let € be a nonempty open set in R™. Then C§°(R2) is dense in LP(SY) for
all 1 < p < .

Proof. Suppose first that Q is bounded and let Q' CC Q. For a given u € LP(Q) set

| ou(z), zed
v(@) = { 0, xecO\.

/ |u—v|pdx:/ |u|Pdz.
Q o\

By the absolute continuity of integrals, we can choose ' so that the integral on the right
is arbitrarily small, i.e., |[u — v||, < €/2. Since supp(v) is a compact subset of {2, Theorems
2.5(b) and 2.9(b) imply that for h sufficiently small, v, (z) € C§°(Q) with ||v — v, < €/2,
and therefore ||u — vp||, < e. If Q is unbounded, choose a ball B large enough so that

/ |ulPdx < /2
o\o/

where Q' = QN B, and repeat the proof just given. O

Then

We now consider the following local approximation theorem.

Theorem 2.11. Let Q) be a nonempty open set in R™ and suppose u,v € L}OC(Q). Then v =
D%y, iff there exists a sequence of C1*(Q) functions {up} with ||Juy, —ulris) = 0, [[D%up —

vl[p1gy = 0 ash — 0, for all compact sets S C Q.

Proof. 1. (Necessity) Suppose v = D%u. Let S C 2, and choose d > 0 small enough so
that the sets Q' = S(@/2) Q" = §@ gatisfy O cc Q cc Q. For z € R” define
unle) = [ wnle = vty onle) = [ wnle - o)y

Clearly, up, vy, € C(R") for h > 0. Moreover, from Theorem 2.9 we have |lup — ul[11(g) <
|un —ul|L1(qry — 0. Now we note that if z € Q' and 0 < h < d/2, then wy(z—y) € C§(Q").
Thus by Theorem 2.5 and the definition of weak derivative,

Do) = [ upDnte— )y = (-0 | u(y)Dina ~ )y

= [ wnla =) vy = (o).
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Thus, |[D%up — v|| 15y — 0.

2. (Sufficiency) Choose ¢ € Céa‘(Q) and consider a compact set S D supp(y). Then as
h — oo

/uDO‘gpdx +— / up D% pdz = (—1)1° / eD%updz — (—1)l / vpdz
S S S S
which is the claim. (|

Theorem 2.12. Let Q be a domain in R™. If u € L} (Q) has a weak derivative D®u = 0
whenever |a| =1, then u =const. a.e. in €.

Proof. Let @ cC Q. Then for x € @ and with wu, as in Theorem 2.11, D%u(z) =
(DYu)p(z) = 0 for all h sufficiently small. Thus up = const = ¢(h) in ' for such h. Since
|un — ullprry = lle(h) = ull i@y — 0 as h — 0, it follows that
[e(h1) = c(h)ll 1oy = le(h1) — c(ha)|mes(Q') — 0 as hi, hy — 0.

Consequently, ¢(h) = uy, converges uniformly and thus in L'(Q) to some constant. Hence
u = const (a.e.) in " and therefore also in €, by virtue of it being connected. O

We now note some properties of W#P(Q) which follow easily from the results of this
and the previous section.

(a) If ' € Q and if u € WFP(Q), then u € WFP(Q).

(b) If w € WEP(Q) and |a(z)|k00 < 00, then au € WHP(Q). In this case any weak
derivative D*(au) is computed according to the usual rule of differentiating the
product of functions.

(c) If u € WFP(Q) and wuy is its mollified function, then for any compact set S C
Q, [lun, — ullywrp(sy — 0 as h — 0. If in addition, u has compact support in 2, then
llun — ul|kp — 0 as h — 0.

More generally, we have the following global approximation theorems. (See Meyers and
Serrin H = W. The proofs make use of a partition of unity argument.)

Theorem 2.13. Assume § is bounded and let u € W*P(Q), 1 < p < co. Then there exist
functions w,, € C®(Q) N W*P(Q) such that

U — u in WEP(Q).
In other words, C™(Q) N WH*P(Q) is dense in WFP(Q).
Theorem 2.14. Assume § is bounded and 0Q € C*. Let u € W*P(Q), 1 < p < co. Then

there exist functions u,, € C*() such that
U — u in WEP(Q).
In other words, C>(Q) is dense in W*P().
Exercise 2.6. Prove the product rule for weak derivatives:
D;(uv) = (D;u)v 4+ u(D;v)
where u, D;u are locally LP(2), v, D;v are locally LY(Q) (p > 1,1/p+1/q=1).
Exercise 2.7. (a) If u € Wg’p(Q) and v € C*(Q), prove that uv € Wég’p(Q).
(b) If u € W*P(Q) and v € C¥(Q), prove that uv € Wéc’p(Q).
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2.2.3. Chain Rules.

Theorem 2.15. Let 2 be an open set in R™. Let f € CL(R), |f'(s)] < M for all s € R
and suppose u has a weak derivative D*u for |a| = 1. Then the composite function f owu
has a weak derivative D(f ou) = f'(u)D%u. Moreover, if f(0) = 0 and if u € WIP(Q),
then fou € WhHP(Q).

Proof. 1. According to Theorem 2.11, there exists a sequence {u;} C C1(Q2) such that
|un — ullpry = 0, [|[D%up — D%l 1oy — 0 as b — 0, where Q' CC Q. Thus

1 (un) = Flw)ldz < sup | / lup — uldz — 0 as h — 0
Qf Q
15D~ £ pealde < sup || [ 1D, - D*ulds
Ql Q/

+ 17/ = P07 ulda.

Since |lup — ul|p1y — 0, there exists a subsequence of {uy}, which we call {u;} again,
which converges a.e. in ' to u. Moreover, since f” is continuous, {f’(up)} converges to f/(u)
a.e. in . Hence the last integral tends to zero by the dominated convergence theorem.
Consequently, the sequences {f(un)}, {f (up)D%up} tend to f(u), f'(u)D%u respectively,
and the first conclusion follows by an application of Theorem 2.11 again.

2. If f(0) = 0, the mean value theorem implies |f(s)| < M]|s| for all s € R. Thus,
|f(u(z))| < Mlu(z)| for all x € Q and so fowu € LP(Q) if w € LP(Q). Similarly,
f'(u(x)) D% € LP() if u € WHP(Q), which shows that f ou € WLHP(Q). O
Corollary 2.16. Let Q be a bounded open set in R™. If u has an o' weak derivative
D%u, |a| =1, then so does |u| and

D if u>0
D%u| = 0 if u=0
—D% if u<O
i.e., D¥u| = (sgn w)D%u for u # 0. In particular, if u € WIP(Q), then |u| € WHP().

Proof. The positive and negative parts of u are defined by
ut = max{u,0}, v~ = min{u,0}.
If we can show that D*u™ exists and that
D% if u>0
a, + _
Drut = { 0 if u<0

then the result for |u| follows easily from the relations |u| = vt —u™ and v~ = —(—u)*.
Thus, for A > 0 define

1
_f @+hzi—h if u>0
Jn(w) { 0 if u<0.
Clearly f;, € C'(R) and f} is bounded on R. By Theorem 2.15, f;(u) has a weak derivative,
and for any ¢ € C}(Q)

uD%u

/th(U)Daapdx = —/S]Da(fh(u))godx = —/J>0 gomdx.
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Upon letting h — 0, it follows that f;(u) — w™, and so by the dominating convergence

theorem
/u*Do‘godx = —/ eDYudr = —/ vodx
Q u>0 Q
where
| D% if u>0
YTl o0 i w<o0
which establishes the desired result for u™. O

The next result extends the result on |u|,u™ and u™.

Theorem 2.17. Let f : R — R be Lipschitz continuous with f(0) = 0. Then if Q is a
bounded open set in R", 1 < p < oo and u € Wol’p(Q), we have fou € Wol’p(Q).

Proof. Given u € Wol’p(Q), let u, € C}(Q) with |u, — ul|1, — 0 and define v, = f o uy,.
Since u,, has compact support and f(0) = 0, v,, has compact support. Also v,, is Lipschitz
continuous, for

[on(2) —vn(y)l = [f(un(2)) = f(un(y))]

< clun(@) = un(y)| < enlz —yl.

Hence v, € LP(Q). Since v, is absolutely continuous on any line segment in 2, its par-
tial derivatives (which exist almost everywhere) coincide almost everywhere with the weak
derivatives. Moreover, we see from above that |0v,/0x;| < ¢, for 1 < i < n, and as Q is
bounded, dv,/dz; € LP(). Thus v, € WP(Q) and has compact support, which implies
v, € Wy P(Q). From the relation

|on(2) = f(u(2))] < clun(z) - u(z)]

it follows that ||v, — f o u|l, — 0. Furthermore, if e; is the standard ith basis vector in R",
we have

|on (z + he;) — v ()] < [un (x + he;) — up(x)]

<c
A Al
and so
ovy, Ouy,
lim su < climsu .

But, {Ouy,/0x;} is a convergent sequence in LP(2) and therefore {Ov,/0x;} is bounded in
LP(Q2) for each 1 < i < n. Since ||v,||1, is bounded and VVO1 P(Q) is reflexive, a subsequence
of {v,} converges weakly in W1P(Q), and thus weakly in LP(£2) to some element of W(} P(Q).
Thus, fou e W,?(Q). O

Corollary 2.18. Let u € Wy*(Q). Then |u|, u™, u= € W, P(Q).

Proof. We apply the preceding theorem with f(¢) = [¢f|. Thus |u| € WyP(Q). Now
ut = (Ju| +u)/2 and = = (u — |u])/2. Thus ut, u= € W, P(Q). O
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2.2.4. Extensions. If Q C (¥, then any function u(z) € C§(2) has an obvious extension
U(x) € CF(€Y). From the definition of Wg’p(ﬂ) it follows that the function u(z) € Wg’p(Q)
and extended as being equal to zero in '\ belongs to I/V(/;€ P(). In general, a function
u € WFP(Q) and extended by zero to ' will not belong to WP (€). (Consider the function
u(z) = 1in Q.) However, if u € WP (Q) has compact support in ©, then u € Wéf’p(Q) and
thus the obvious extension belongs to W(;C P,

We now consider a more general extension result.

Theorem 2.19. Let Q be a bounded open set in R™ with Q@ cC ' and assume k > 1.
(a) If 0Q € CF, then any function u(x) € WFP(Q) has an extension U(x) €
WHEP(Q) into Q' with compact support. Moreover,
1T lwrpory < cllullwes )
where the constant ¢ > 0 does not depend on u.

(b) If 9Q € C*, then any function u(z) € C*(Q) has an estension U(x) € CE(Q)
into Q' with compact support. Moreover,

1Ullerry < elluller@ys 1Uwrr@y < cllullwrr )
where the constant ¢ > 0 does not depend on u.

(c) If 92 € C*, then any function u(z) € C*(9Q) has an extension U(z) into
which belongs to C*(Q). Moreover

1Uller@y < cllulleron)

where the constant ¢ > 0 does not depend on u.

Proof. 1. Suppose first that u € C*(Q). Let y = 1(z) define a C* diffeomorphism that

straightens the boundary near z° = (29,...,2%) € 9. In particular, we assume there is a
ball B = B(2°,r) such that (BN Q) C R (ie., y, > 0), (BN L) C IR". (e.g., we
could choose y; = z; — x? fori=1,...,n— 1 and y, = T, — ©(T1,. .., Tp_1), Where @ is of

class C*. Moreover, without loss of generality, we can assume g, > 0 if € BN Q.)
2. Let G and G = G NR" be respectively, a ball and half-ball in the image of 1 such

that ¢ (z") € G. Setting u(y) =uov " (y) and y = (Y1, -, Yn—1,Yn) = (¥, yn), we define
an extension U(y) of u(y) into y, < 0 by

k+1
y yn Zcz —yn/% yn<0

where the ¢; are constants determined by the system of equations
k+1

(2.5) D a(-1/i)" =1, m=0,1,...,k

i=1
Note that the determinant of the system (2.5) is nonzero since it is the Vandemonde deter-

minant. One verifies readily that the extended function U is continuous with all derivatives
up to order k in G. For example,

k+1
hm Uly) = Zc, a(y’,0) = a(y’,0)
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by virtue of (2.5) with m = 0. A similar computation shows that

lim Uy, (y) =y, (y,0), i=1,...,n— 1.

y—=(v',0)
Finally
k+1
lim U = ci(—=1/D)a,, (v,0) =1a, (v,0
y—(y',0) n (9) ; (=1/0)ity, (¢, 0) = Ty, (4, 0)

by virtue of (2.5) with m = 1. Similarly we can handle the higher derivatives. Thus
w= U o1 € CF(B) for some ball B’ = B'(2°) and w = u in B'NQ, (If z € B' N, then
Y(x) € GT and w(z) = UY(z)) = a(v(z)) = w(yp~ (x)) = u(z)) so that w provides a C*
extension of u into Q U B’. Moreover,

sup |a(y)| = sup [u(¥™(y))] < sup |u(2)]
G+ G+ Q

and since x € B’ implies ¢(z) € G
sup |U (¢ (2))| < esup|a(y)] < esup |u(z)].
B’ G+ Q

Since a similar computation for the derivatives holds, it follows that there is a constant
¢ > 0, independent of u, such that

lwller@uny < cllullor@)-

3. Now consider a finite covering of 02 by balls B;, i = 1,..., N, such as B in the
preceding, and let {w;} be the corresponding C* extensions. We may assume the balls B;
are so small that their union with € is contained in €. Let Q¢ CC Q be such that Qg and
the balls B; provide a finite open covering of Q. Let {n;}, i = 1,..., N, be a partition of
unity subordinate to this covering and set

w=uno+ Y win

with the understanding that w;n; = 0 if 7; = 0. Then w is an extension of u into ' and
has the required properties. Thus (b) is established.

4. We now prove (a). If u € WHP(Q), then by Theorem 2.14, there exist functions
U € C®(Q) such that u,, — u in WHP(Q). Let Q c Q" C &, and let U, be the
extension of u,, to Q” as given in (b). Then

U — Ulllwrrry < cllum — wllwes o)

which implies that {U,,} is a Cauchy sequence and so converges to a U € Wéc P(Q), since
Un € CE(Q"). Now extend U, U by 0 to Q. It is easy to see that U is the desired
extension.

5. We now prove (c). At any point 2 € 9 let the mapping 1/ and the ball G' be defined
as in (b). By definition, u € C*(9<2) implies that & = uo ¢t € C¥(G N OR™). We define
d(y,yn) = a(y') in G and set ®(z) = ® o y)(z) for x € Y~ 1(G). Clearly, ® € C*(B) for
some ball B = B(z?) and ® = u on BN JQ. Now let {B;} be a finite covering of 9 by
balls such as B and let ®; be the corresponding C* functions defined on B;. For each i, we
define the function U;(x) as follows: in the ball B; take it equal to ®;, outside B; take it
equal to zero if x ¢ 02 and equal to u(z) if € 9. The proof can now be completed as in
(b) by use of an appropriate partition of unity. O
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2.2.5. Trace Theorem. Unless otherwise stated, 2 will denote a bounded open connected
set in R™, i.e., a bounded domain. Let I" be a surface which lies in €2 and has the represen-
tation

=), 2= (z1,...,20-1)
where ((2') is Lipschitz continuous in U. Here U is the projection of I' onto the coordinate
plane x, = 0. Let p > 1. A function u defined on I' is said to belong to LP(I") if

ey = ([ lu(@)Pas)* < o0
where
n—1
PdS = u(z', (")) P 9 2 N213 da’
Jturas = [ e ot npis+ S e as

Thus LP(T') reduces to a space of the type LP(U) where U is a domain in R?~!.

For every function u € C(f), its values you = u|r on I' are uniquely given. The function
~vou will be called the trace of the function u on I'. Note that u € LP(T") since yyu € C(I').

On the other hand, if we consider a function u defined a.e. in Q (i.e., functions are
considered equal if they coincide a.e.), then the values of v on I' are not uniquely determined
since meas(I') = 0. In particular, since 92 has measure 0, there exist infinitely many
extensions of u to §) that are equal a.e. We shall therefore introduce the concept of trace for
functions in W1P(Q) so that if in addition, u € C(Q2), the new definition of trace reduces
to the definition given above.

Lemma 2.20. Let 9Q € C%!. Then for u € C1(Q),

(2.6) [voullra0) < cllullip

where the constant ¢ > 0 does not depend on u.

Proof. For simplicity, let n = 2. The more general case is handled similarly. In a neigh-
borhood of a boundary point z € 92, we choose a local (§, n)-coordinate system, where the
boundary has the local representation

n=¢(), —a<{<a
with the C%! function ¢. Then there exists a 8 > 0 such that all the points (£,7) with

—a<{<a, p(§)-B<n<p()
belong to . Let u € C*(Q). Then

w(§)
ulE, pl€)) = /t wn(E,m)dn + u(E. )

where ¢(§) — 8 <t < ¢(§). Applying the inequality (a + b)P < 2P~1(aP + bP) together with
Holder’s inequality we have

(&)
(€, ()P < 27 g / g (€, m)Pdy + 27 (€, D)P.

e(§)-8
An integration with respect to t yields

. (&)
Blu(E, o) < 27 / P&+ ulE Pl
o
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Finally, integration over the interval [—a, o] yields
(27) Blu(E e€)IPds <27 [ (Bl + fu)dedn

where S denotes a local boundary strip. Suppose ¢(-) is C!. Then the differential of arc
length is given by ds = (1 + ¢’?)'/2d¢. Addition of the local inequalities (2.7) yields the
assertion (2.6). Now if o(-) is merely Lipschitz continuous, then the derivative ¢’ exists a.e.
and is bounded. Thus we also obtain (2.6). U

Since C1(Q) = W1P(Q), the bounded linear operator 7o : C1(Q) C WHP(Q) — LP(9Q)
can be uniquely extended to a bounded linear operator v : WhP(Q) — LP(9€2) such that
(2.6) remains true for all u € WHP(Q2). More precisely, we obtain you in the following
way: Let u € WHP(Q). We choose a sequence {u,} C C*(Q) with ||u, — ull1,, — 0. Then
[votn — YoullLr(a) — 0.

The function you (as an element of LP(99)) will be called the trace of the function
u € W'P(Q) on the boundary 0. (|[oullzr(a0) will be denoted by [[ul|1»(a0).) Thus the

trace of a function is defined for any element u € WP ().

The above discussion partly proves the following:

Theorem 2.21. (Trace) Suppose OQ € C*. Then there is a unique bounded linear operator
vo : WEP(Q) — LP(0Q) such that you = ulsq for u € C(Q)NWLP(Q), and vo(au) = yoa-you
for a(z) € CY(Q), u € WHP(Q). Moreover, N (v) = Wol’p(Q) and R(yo) = LP(99).

Proof. 1. Suppose u € C(2) N WLP(Q). Then by Theorem 2.19, u can be extended into
Q(Q cc ) such that its extension U € C(Q) N WHP(QY). Let Uy(z) be the mollified
function for U. Since Uy, — U as h — 0 in both the norms |[-[|¢(q), |- [lw1.r(q), We find that
as h — 0, Uplaq — ulgo uniformly and Up|ag — you in LP(02). Consequently, you = u|sq.-

2. Now au € WHP(Q) if a € CH(Q), u € WIP(Q) and consequently, yo(au) is defined.
Let {u,} C C1(Q) with |Jup, —ull1, — 0. Then

Yo(aun) = Yoa - Youn
and the desired product formula follows by virtue of the continuity of .

3. Ifu e W&’p(Q), then there is a sequence {u,} C C}(Q) with [ju, — ull1, — O.
But uplgo = 0 and as n — 00, uplan — You in LP(0Q) which implies you = 0. Hence
W,P(2) € N(70). Now suppose u € N (o). If u € WHP(Q) has compact support in €,
then by an earlier remark, u € I/VO1 P(Q). If u does not have compact support in €2, then it
can be shown that there exists a sequence of cut-off functions . such that nyu € WHP(Q)
has compact support in 2, and moreover, |nyu — ull1, — 0. By using the corresponding

mollified functions, it follows that u € Wy (Q2) and N (y0) € Wy (). Details can be found
in Evans’s book.

4. To see that R(vyp) = LP(99), let f € LP(9R) and let € > 0 be given. Then there is a
u € C'(09Q) such that |lu— flrr@a0) < e. If we let U € C(Q) be the extension of u into €,
then clearly ||yoU — f||1r(90) < €, which is the desired result since U € W'?(Q). O

Remark 2.8. We note that the function u = 1 belongs to W1P(2) N C(Q) and its trace
on 0f) is 1. Hence this function does not belong to WO1 P(Q), which establishes the earlier
assertion that Wy (Q) # WhP(Q).
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Let u € W*P(Q), k > 1. Since any weak derivative D%u of order |a| < k belongs to
WLP(Q), this derivative has a trace voD%u belonging to LP(92). Moreover
[1D%ullLro0) < cllD%ullip < cllullkyp
for constant ¢ > 0 independent of wu.

Assuming the boundary 02 € C*, the unit outward normal vector n to 9 exists and
is bounded. Thus, the concept of traces makes it possible to introduce, for k > 2, du/0On
for u € W*P(Q). More precisely, for k > 2, there exist traces of the functions u, D;u so
that, if n; are the direction cosines of the normal, we may define

n

nu = Z(’YO(DW))W, uweWhr(Q), k> 2.
i=1
The trace operator vy : W*P(Q) — LP(0S) is continuous and yiu = (Ou/0n)|sq for u €
CHQ) N WHP(Q).
For a function u € C*(Q) we define the various traces of normal derivatives given by
M _
Vjuzwlam 0<j<k-1.

Each v; can be extended by continuity to all of W*P(Q) and we obtain the following:

Theorem 2.22. (Higher-order traces) Suppose 90 € C*. Then there is a unique con-
tinuous linear operator v = (Y0,71, -+ Vh—1) : WEP(Q) — H?;Ol Wk=1=32(9Q) such that
for u € C*(Q)
u _
You = ulaq, YVju = %’89; Jj=1.. k-1

Moreover, N (v) = Wg’p(Q) and R(v) = H?;é WH=1=32(9Q).
The Sobolev spaces W ~173P(9Q), which are defined over 99, can be defined locally.

2.2.6. Green’s Identities. In this section we assume that p = 2 and we continue to
assume {2 is a bounded domain.

Theorem 2.23. (Integration by Parts) Let u,v € HY(Q) and let 9Q € C'. Then for
anyt=1,...,n

(2.8) /quiudx:/ ('ygu-’ygv)nidS—/uDivda:.
Q o0 Q

(D;ju, D;v are weak derivatives.)

Proof. Let {u,} and {v,} be sequences of functions in C'(Q) with [lup, — ullgr ) —
0, |, — v[[g1(q) — 0 as n — oo. Formula (2.8) holds for up, v,

/vnDiund:c:/ unvnnidS—/unDivndm’
Q 0N Q

and upon letting n — oo relation (2.8) follows. O

Corollary 2.24. Let 0Q € C*.
(a) Ifve HY(Q) and u € H*(Q) then

/ vAudx :/ You - y1udS — / (Vu - Vv)dr (Green’s 1st identity).
Q 19) Q
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(b) If u,v € H*(Q) then
/(vAu — ulAv)dz = / (v - 11w — you - y1v)dS (Green’s 2nd identity).
Q oN

In these formulas Vu = (Dyu, ..., Dyu) is the gradient vector and Au = E?:l D;;u is the
Laplace operator.

Proof. If in (2.8) we replace u by D;u and sum from 1 to n, then Green’s 1st identity is
obtained. Interchanging the roles of u,v in Green’s 1st identity and subtracting the two
identities yields Green’s 2nd identity. g

Exercise 2.9. Establish the following one-dimensional version of the trace theorem: If
u € WHP(Q), where Q = (a, b), then

lull ooy = (Ju(@)l? + [u(®)[?)/? < const [[ullwiro

where the constant is independent of w.

2.3. Sobolev embedding Theorems

We consider the following question: If a function u belongs to W*P(Q), does u automatically
belong to certain other spaces? The answer will be yes, but which other spaces depend upon
whether 1 < kp <n, kp =n, n < kp < oo.

The general embedding theorem can be stated as follows.

Theorem 2.25. (Sobolev Inequalities) Let Q@ C R™ be bounded and open with 92 € C*.
Assume 1 < p < 0o and k is a positive integer.

(a) If kp <n and 1 < q<np/(n— kp), then
WkP(Q) c LI(Q)
1 a continuous embedding; that is,
(2.9) ullrage) < Cllullwrr o)
where the constant C depends only on k,p,n and €.
(b) If kp=n and 1 <r < oo, then
WhP(Q) c L"(Q)
and
(2.10) [ullr@) < Cllullwrr )
where the constant depends only on k,p,n and 2.
(c) Ifkp>n and 0 < a < k—m —n/p, then
WkP(Q) c 0™(Q)
1 a continuous embedding; that is,
(211) Jullomeg) < Cllullwes(a)
where the constant C depends only on k,p,n,a and €.
(d) Let 0<j <k, 1<p,g<oo. Setd=1/p— (k—7j)/n. Then
WkP(Q) ¢ Wi(Q)

is a continuous embedding for d < 1/q.
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The above results are valid for Wg’p(Q) spaces on arbitrary bounded domains €.

A series of special results will be needed to prove the above theorem. Only selected
proofs will be given to illustrate some of the important techniques.

2.3.1. Gagliardo-Nirenberg-Sobolev Inequality. Suppose 1 < p < n. Do there exist
constants C' > 0 and 1 < ¢ < oo such that

(2.12) [ull Lany < ClIVul Loy

for all w € C§°(R™)? The point is that the constants C' and ¢ should not depend on u.

We shall show that if such an inequality holds, then ¢ must have a specific form. For
this, choose any u € C§°(R"), u # 0, and define for A > 0

ux(z) =u(Az) (x €R").

Now )
[ uafrde = [ uOwirde = 5 [ Juto) iy
and >
/R [Vl = ¥ /R [Vuln) P = /R Vuly)lPdy.

Inserting these inequalities into (2.12) we find

1 A
WHUHL‘I(R”) < CWHVUHLP(R“)
and so
(2.13) |ull La(rny < C)\l_n/p+n/q||vu||LP(Rn)~

But then if 1 —n/p+n/q > 0 (or < 0), we can upon sending A to 0 (or co) in (2.13) obtain
a contradiction (u = 0). Thus we must have 1 — n/p 4+ n/q = 0; that is, ¢ = p*, where

np
2.14 e ——
(214) —
is called the Sobolev conjugate of p. Note that then
1 1 1 .
(2.15) —=-———, p >p
p p n

Next we prove that the inequality (2.12) is in fact correct.

Lemma 2.26. (Gagliardo-Nirenberg-Sobolev Inequality) Assume 1 < p < mn. Then
there is a constant C, depending only on p and n, such that

(2.16) [ull o* mny < ClIVul[Logny
for all uw € C{(R™).
Proof. First assume p = 1. Since u has compact support, for each i = 1,...,n we have
x;
u(x) = / U, (T1y e oy Tim 1y Yiy Tit 1y - -+, T )AY;

—00

and so -
|u(z)| g/ IVu(z1, .. Yiy o osxn)|dy; (i=1,...,n).

— 00
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Consequently

(2.17) u()] 77 < H (/

—0o0

e}

1
n—1
\Vu(xl,...,yi,...,xn)|dyi> :

Integrate this inequality with respect to x;:

1
00 n oo 1 00 o
[ e < [T )" dn
—o0 —00 ;4 —o0
o) % o N ) %
= </ |Vu|dy1> / H(/ |Vu|dy7;> dxy

1

=2
[ %1 n 00 e n—1
(/ rwdyl) (H I rwdxldyi)
—00 j—o/—00 J—00

the last inequality resulting from the extended Holder inequality in the appendix.

A

IN

We continue by integrating with respect to xo, ..., x, and applying the extended Holder
inequality to eventually find (pull out an integral at each step)

n 1
" 00 0o o
/ |u(x)|»Tdx | | (/ / ]Vu\dxl...dyz-...d:rn>
" i=1 \W -

- (/ \Vu]da:)nl

which is estimate (2.16) for p = 1.

Consider now the case that 1 < p < n. We shall apply the last estimate to v = |u|?,
where v > 1 is to be selected. First note that
(yu' "1 D;u)? ifu>0

(Di‘up)z :{ (_,y(_u)yleiu)Q ifu<0 = (’Y‘UpilDiu)z.

IN

Thus v € C}(R™), and

</ ]u(m)]nwldac> o< / IV || de
n RTL

= ’y/ u[" | Vu|da
R

p(y=1) pr%l %
07 / |u| »=T dx / |VulPdz | .
R™ Rn

—1
,Y:p(n )

n—p

IA

We set

in which case
yno_ply=1) _ nmp
= = =p*.
n—1 p—1 n—mp

Thus, the above estimate becomes

1 1
(/ \uyp*dx>p gc(/ ]Vu\pda:)p.
n Rn
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O

Theorem 2.27. Let  C R™ be bounded and open, with 0Q € C'. Assume 1 < p < n, and
u € WHP(Q). Then u € LP" (Q) and

(2.18) [ull o= () < Cllullwreg)

where the constant C depends only on p,n and €2.

Proof. Since 99 € O, there exists an extension U € W1P(R") such that U = u in Q, U
has compact support and

(2.19) 1Ullwrr@ny < Cllullweq)-

Moreover, since U has compact support, there exist mollified functions u,, € C§°(R™) such
that u,, — U in WHP(R™). Now according to Lemma 2.26,

[t — will £ ®Rn) < ClVum — V|| o gn)
for all I,m > 1; whence u,, — U in LP"(R") as well. Since Lemma 2.26 also implies
||Um||LP*(]Rn) < CHvumHLP(Rn)

we get in the limit that
1Ul Le* mny < CIIVU|| o wny.-
This inequality and (2.19) complete the proof. O

Theorem 2.28. Let Q C R" be bounded and open. Assume 1 < p <mn, and u € Wol’p(Q).
Then uw € L1(Q) and

[ullae) < ClVullr(a)
for each q € [1,p*], the constant C depending only on p,q,n and Q.

Proof. Since u € Wol’p(ﬂ), there are functions u,, € C§°($2) such that u,;, — u in WhrP(Q).
We extend each function u,, to be 0 in R™\Q and apply Lemma 2.26 to discover (as above)
[ull Lo (@) < ClIVullLe(e)-

Since || < oo, we furthermore have

[ull Lage) < Cllull o+
for every g € [1,p*]. O
2.3.2. Morrey’s Inequality. We now turn to the case n < p < oo. The next result shows

that if u € W1P(Q), then u is in fact Holder continuous, after possibly being redefined on
a set of measure zero.

Theorem 2.29. (Morrey’s Inequality) Assumen < p < oo. Then there exists a constant
C, depending only on p and n, such that

(2.20) el -5 oy < Cllullwiogny, ¥ u € C'R).

Proof. We first prove the following inequality: for all z € R™, r > 0 and all u € C*(R"),

(2.21) /B ( )|u<y>_u(x>|dy§” /B AVul)l g,

n (z,r) |.’IJ - y|n—1 ‘
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To prove this, note that, for any w with |w| =1 and 0 < s < r,

/ —u(z + tw) dt‘

/0 Vu(z + tw) - wdt‘

u( + sw) - u(e)] =

S
< / |Vu(x + sw)| dt.
0
Now we integrate w over 0B(0,1) to obtain

/ lu(z + sw) — u(x)| dS
8B(0,1)

IN

/ / |Vu(z + sw)|dSdt
o JaB(o,1)
[ v,
B(z,s) |.I - y|n
< [,
B(z,r) ‘l’ - y‘n

Multiply both sides by s”~! and integrate over s € (0,7) and we obtain (2.21).
To establish the bound on [[u[|cogn), We observe that, by (2.21), for z € R",

1

1
u(x _ u(y) —u(z)|dy + —— u(y)| dy
p—1
L/p a—np 7
< C(/ IVu(y)!pdy) / ly — x| »=1 dy + Cllullze @)
R™ B(z,1)
< Cllullyraen)

To establish the bound on the semi-norm [u],, v =1 — %, take any two points z,y € R"™.
Let r = |x — y| and W = B(z,r) N B(y, ). Then

(222)  Julz) — uly)| < |W|/ lu(z \dz+|W’/ luly) — u(2)] d=.

Note that |[W| = gr", r = |x —y| and [, < mm{fB(x r),fB(y -} Hence, using (2.21), by
Hoélder’s inequality, we obtain

/ lu(z) —u(z)|dz < / lu(z) —u(z)]dz < T |Du(z)||x — z|1*" dz
w B(z,r) n B(z,r)
1/p =1
rn (1—n)p P
< — / |Vu(z)|P dz / |z — x| »=1 dz
n B(z,r) B(z,r)
E
n T (-mp n—1 P
< Cr ||VUHLP(Rn) </ s pl s d8>
0
< Cr"||Vaul| o gny,

where v =1 — %; similarly,
[ 1) = uz)l = < € |Vl

Hence, by (2.22),
u(@) —u(y)| < Clz —y["[Vull Lo rn)-
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This inequality and the bound on |lu||co above complete the proof. O

Theorem 2.30. (Estimates for WP, n < p < 00) Let Q C R" be bounded and open,
with 92 € C1. Assume n < p < oo, and u € WIP(Q). Then, after possibly redefining u on
a null set, u e C*' "2 (Q) and

HUHCOJ*%(Q) < CHUHWLP(Q)

where the constant C depends only on p,n and €.

Proof. Since 92 € C, there exists an extension U € WHP(R") such that U = u in Q, U
has compact support and

(2.23) 1Ullw1rgay < Cllullnreo)-

Moreover, since U has compact support, there exist mollified functions u,, € C§°(R™) such
that wu,, — U in WHP(R") (and hence on compact subsets). Now according to Morrey’s
inequality,

et — el o n/oggny < Cllttm — willyiogen)

for all [,m > 1; whence there is a function u* € C%'="/?(R") such that u,, — u* in
CO1=n/P(R™). Thus u* = u a.e. in Q. Since we also have

[umll coa—n/n@ny < Clltim |[wregn)
we get in the limit that
[l coa oy < CNTwsnge
This inequality and (2.23) complete the proof. O

2.3.3. General Cases. We can now concatenate the above estimates to obtain more com-
plicated inequalities.

Assume kp < n and u € WHP(Q). Since D € LP(Q) for all || < k, the Sobolev-
Nirenberg-Gagliardo inequality implies

IDPull gy < Cllullwsrg)

if 3] <k —1, and so u € WF1P"(Q). Moreover, ||[ullx_1, < ¢||ullkp. Similarly, we find
u € WF2P"(Q), where

Moreover, |[ullg—2p < c||ullg—1p+. Continuing, we find after k steps that u € W%4(Q) =
L9(Q) for

g p n

The stated estimate (2.9) follows from combining the relevant estimates at each stage of
the above argument. In a similar manner the other estimates can be established.
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2.4. Compactness

We now consider the compactness of the embeddings. Note that if X and Y are Banach
spaces with X C Y then we say that X is compactly embedded in Y, written X CC Y,
provided

(i) JJully < Cllullx (u € X) for some constant C; that is, the embedding is continuous;

(ii) each bounded sequence in X has a convergent subsequence in Y.

Before we present the next result we recall some facts that will be needed. A subset
S of a normed space is said to be totally bounded if for each € > 0 there is a finite set
of open balls of radius € which cover S. Clearly, a totally bounded set is bounded, i.e., it
is contained in a sufficiently large ball. It is not difficult to see that a relatively compact
subset of a normed space is totally bounded, with the converse being true if the normed
space is complete. Moreover, a totally bounded subset of a normed space is separable.

Theorem 2.31. (Rellich-Kondrachov) Let Q@ C R" be bounded and open. Then for
1<p<n:

a) The embedding WP (Q) € LY(Q) is compact for each 1 < g <np/(n —p).
0
ssuming € , the embedding ’ C 15 compact for each 1 <
b) A o0 € C, th bedding WP (Q) Li(Q2 f h
q <np/(n—p).
c) Assuming cC, v: ’ — 18 compact.
A o eCt WP (Q) — LP(9Q

If p > n, then

(d) Assuming 02 € C!, the embedding W'P(Q) C C%¥(Q) is compact for each
0<a<l1l-(n/p).

Proof. We shall just give the proof for p = ¢ = 2. The other cases are proved similarly. (a)
Since C3(Q2) is dense in HJ(Q), it suffices to show that the embedding C}(2) C L?(9) is
compact. Thus, let S = {u € C3(Q) : ||lull1.2 < 1}. We now show that S is totally bounded
in L?(Q).

For h > 0, let S, = {uy, : v € S}, where uy, is the mollified function for u. We claim
that Sy, is totally bounded in L?(€2). Indeed, for u € S, we have

lup ()] < /( )wh(z)lu(x — z)|dz < (supwp)||ull1 < c1(supwp)lulli2
B(0,h

and

|Diup(z)| < casup |Diwp|||ull12, i=1,...,n

so that S, is a bounded and equicontinuous subset of C' (_Q) Thus by the Ascoli Theorem,
S}, is relatively compact (and thus totally bounded) in C'(Q2) and consequently also in L?(£2).

Now, by earlier estimates, we easily obtain

o —ulf < [ e ([ e =2~ utePas )
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and

dx

/1 du(x — tz) 2
——=dt
. di

/Q\u(:zr—z)—u(x)|2daz _ /Q
_ /Q /01(—Vu(x—tz)~z)dt
Lk ([ ' Vule )Pt do < <Pl

Consequently, ||up, — u|l2 < h. Since we have shown above that Sy is totally bounded in
L?(Q) for all h > 0, it follows that S is also totally bounded in L?(Q2) and hence relatively
compact.

2
dx

IN

(b) Suppose now that S is a bounded set in H'(2). Each u € S has an extension
U € H} () where Q CC . Denote by S’ the set of all such extensions of the functions
u € S. Since ||U| 1) < cllull1,2, the set S” is bounded in Hg (). By (a) S is relatively
compact in L?(Q') and therefore S is relatively compact in L%(Q2).

(c) Let S be a bounded set in H(£2). For any u(z) € C'(Q), the inequality (2.7) with
p = 2 yields
c1

(2.24) HUHLZ 8Q) EH“Hz + cof3|ul|? 2

where the constants cq,cy do not depend on w or 3. By completion, this inequality is
valid for any v € H'(Q2). By (b), any infinite sequence of elements of the set S has a
subsequence {u,} which is Cauchy in L?(Q): given ¢ > 0, an N can be found such that for
all myn > N, ||[um — un|l2 < €. Now we choose = e. Applying the inequality (2.24) to
Um — Un, it follows that the sequence of traces {you,} converges in L?(98).

(d) By Morrey’s inequality, the embedding is continuous if « = 1 — (n/p). Now use the
fact that C%? is compact in C%% if o < . O

Remarks. (a) When p = n, we can easily show that the embedding in (a) is compact for
all 1 < g < oo. Hence, it follows that the embedding VVO1 P(Q) C LP(Q) is compact for all
p > 1. However, when p = n, we do not have embedding Wm(Q) C L>®(Q). For example,
w=Inln(1+ ) € WH(B(0,1)) but not to L>*(B(0,1)) if n > 2.

(b) The boundedness of {2 is essential in the above theorem. For example, let I = (0, 1)
and I; = (j,j +1). Let f € C}(I) and define f; to be the same function defined on I; by
translation. We can normalize f so that || f|[y1.r(;) = 1. The same is then true for each f;
and thus {f;} is a bounded sequence in W1P(R). Clearly f € LI(R) for every 1 < ¢ < oo.
Further, if

I fllzay = [l fllLany =a >0
then for any j # k we have

j+1 k+1
1= Sl = [ 150+ [ 1At =20
J

and so f; cannot have a convergent subsequence in L4(R). Thus none of the embeddings
WLP(R) C LY(R) can be compact. This example generalizes to n dimensional space and to
open sets like a half-space.
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2.5. Additional Topics

2.5.1. Equivalent Norms of WP(Q2). Two norms || - || and |- | on a vector space X are
equivalent if there exist constants c1,co € (0,00) such that

|lz|| < cil|z] < eal|z]] for allz € X.

Note that the property of a set to be open, closed, compact, or complete in a normed space
is not affected if the norm is replaced by an equivalent norm.

A seminorm ¢ on a vector space has all the properties of a norm except that g(u) =0
need not imply u = 0.

Theorem 2.32. Let 9Q € C and let 1 < p < co. Set

n 1/]3
Jull = ( /Q > D + <q<u>>p>

where q : WHP(Q) — R is a seminorm with the following two properties:

(i) There is a positive constant d such that for all u € WHP(Q)

a(w) < dlull1.

(ii) If u = constant, then q(u) = 0 implies u = 0.
Then || - || is an equivalent norm on W1P(Q).
Proof. First of all, it is easy to check that || - || defines a norm. Now by (i), it suffices to
prove that there is a positive constant ¢ such that
(2.25) |ullip < cllul| for all ue WhHP(Q).

Suppose (2.25) is false. Then there exist v,(x) € WHP(Q) such that |jv, |1, > nljva|l. Set
Un = Vn/||vn|l1p- So

(2.26) lunlip =1 and 1> nlugl.

According to Theorem 2.31, there is a subsequence, call it again {u, }, which converges to u
in LP(Q2). From (2.26) we have ||lu,| — 0 and therefore Vu,, — 0 in LP(Q) and ¢(u,) — 0.
From u,, — u, Vu, — 0 both in LP(Q2), we have Vu = 0 a.e. in £ and hence u = C, a
constant. This also implies u,, — C in WP(Q) and, by [Jun |1, = 1, C # 0. By continuity,
q(C) = 0, which implies C' = 0 by (ii). We thus derive a contradiction. O

EXAMPLE 2.33. Let 9Q € Cl. Assume a(z) € C(Q2),0(z) € C(09Q) with a > 0 (£ 0), o >
0 (2 0). Then the following norms are equivalent to || - |1, on W1P(Q):

221)  |u = (/Qi\Diu]pdx—i—‘/ﬂud:cp

P
) with g(u) = | [ udz| .

1/p

n p
(2.28) lul| = </ Z | Diu|Pdx + ‘/ ')/oudS’ ) with g(u) = | [,o y0udS| .
0= o0

1/p
(2.29) ull = (/ Z\D u]pdx—i—/ J]’you]pd5> with ¢(u (faﬂoh/ou\pdS)l/p.
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n 1/p
(2300 [uf = </ Z\Diupdw—i—/a]u\pdx) with q(u) = ([, alulrdz) /"
Q= Q

Clearly property (ii) of Theorem 2.32 is satisfied for these semi-norms ¢(u). In order to
verify condition (i), one uses the trace theorem in (2.28) and (2.29).

2.5.2. Poincaré’s Inequalities. Using u — (u)q, where (u)q =-f,udz, in the equivalent
norm (2.27) we obtain that

(2.31) /Q lu(z) — (u)olPdz < c /Q N IDufde, ue W(Q)
=1

where the constant ¢ > 0 is independent of u. This inequality is often referred to as
Poincaré’s inequality.
We also note that if u € VVO1 P(Q2) then the equivalent norm (2.28) implies

(2.32) /Q |u(z)Pdz < C/Q Z |DyulPdz, u e WyP(Q),

i=1
where the constant ¢ > 0 is independent of u. This is also called a Poincaré’s inequality.

Therefore
n 1/1’
1,p0 = (/ Z IDiulpdm>
Q=1

defines an equivalent norm on VVO1 P(Q).

[l

2.5.3. Difference Quotients. For later regularity theory, we will be forced to study the
difference quotient approximations to weak derivatives.

Assume u: Q — RY is locally integrable. Let {ey,--- ,e,} be the standard basis of R".
Define the ith-difference quotient of size h of u by

u(z + he;) — u(x)
h )

Then D!u is defined on Qp,; = {x € Q| + he; € Q}. Note that
Qp, = {z € Qf dist(z;090) > |h|} C Qp;.

Dhu(zx) = h # 0.

We have the following properties of Dzhu.
1) If u € WHP(Q;RY) then DIu € WP (Qy, ;; RY) and
D(D!u) = D! (Du) on Q.

2) If either u or v has compact support ' CC Q then the integration-by-parts
formula for difference quotient holds:

/u-D?vdx_—/u-D;hudx V|| < dist(Q'; 0Q).
Q Q

3) Df(gb u)(x) = ¢(x) Dlhu(x) + u(x + he;) D,f‘(b(x)

Theorem 2.34. (Difference quotient and weak derivatives) (a) Let u € WhP(Q).
Then Diu € LP(Q) for any Q' CC Q satisfying |h| < dist(€Y'; Q). Moreover, we have

1D} ull 1oy < I1Dsul| Lo (-



2.5. Additional Topics 49

(b) Letu € LP(Q), 1 < p < 00, and Q' CC Q. If there exists a constant K > 0 such that

lim inf D} ull oy < K,

then the weak derivative Diu exists and satisfies || Diul|prry < K.
Proof. (a) Let us suppose initially that u € C1(2) N W1?(Q). Then, for h > 0,

1 h

Dlu(z) = h/o Dyu(x + the;) dt,

so that by Holder’s inequality

1 [k

|Dhu(z)|P < h/ |Diju(x + the;)|P dt,
0

and hence

1 [h
/ | Du(z)|P dz < / / |DjulP dx dt < / |DjulP dz,
o h Jo JB,) Q

where By () = {z € Q| dist(z;') < h}. The extension of this inequality to arbitrary
functions in WHP(Q) follows by a straight-forward approximation argument.

(b) Since 1 < p < oo, there exists a sequence {h,,} tending to zero and a function
v € LP(QY) with |jv]|, < K such that D" u — v in LP(Q') as m — oo. This means for all
¢ e C§e(Y)

lim ¢Dz}.""udx—/ pvdz.
Q/

m—00 Q/

Now for |hy,| < dist(supp ¢; 9€), we have

/(f)D?mudx:—/ uD;h’"(bd:E—)— uD;¢dx.
/ Q/ Q/

Hence
pvdx = —/ uD;¢dr,
Q/ /
which shows v = Dyu € LP(Q') and || Djul|rony < K. O

Remark 2.10. Variants of Theorem 2.34 can be valid even if it is not the case ' cC Q.
For example if € is the open half-ball B(0,1) N {x, > 0}, &' = B(0,1/2) N {x, > 0}, and if
u € WHP(Q), then we have the bound
||Dzhu||Lp(Q') < [|Dsulr(q)
fori=1,2,---,n—1and 0 < |h| < dist(Q,09).
We will need this remark for boundary regularity later.

2.5.4. Fourier Transform Methods. For a function u € L*(R"), we define the Fourier
transform of u by

. 1 iz
a(y) = W/R” e ""Yu(z)dr, VyeR",
and the inverse Fourier transform by
1

a(y) = / eVu(z)dr, VyeR™

(2m)/2 Jr
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Theorem 2.35. (Plancherel’s Theorem) Assume u € L'(R™) N L?(R™). Then 4, @ €
L*(R™) and

il 2y = 1]l L2 ey = [lull L2mny-

Since L'(R™) N L?(R™) is dense in L?(R™), we can use this result to extend the Fourier
transforms on to L?(R™). We still use the same notations for them. Then we have

Theorem 2.36. (Property of Fourier Tranforms) Assume u,v € L>(R"). Then
(i) Jgnutvde = [g, 00 dy,
(ii) D/\O‘u(y) = (iy)*a(y) for each multiindex o such that D%u € L?(R™),
(ili) u = .
Next we use the Fourier transform to characterize the spaces H*(R").

Theorem 2.37. Let k be a nonnegative integer. Then, a function u € L*(R™) belongs to
HFE(R™) if and only if

(1+ [y*)aly) € LAR™).
In addition, there exists a constant C' such that
C™M lull grerny < 1A+ [y1*) @l 2 ey < C 1l ey
for all u € HF(R™).

Using the Fourier transform, we can also define fractional Sobolev spaces H*(R") for
any 0 < s < oo as follows

H*(R") = {u e L*R")| (1 + |y|*) @ € L*(R™)},
and define the norm by
[ull s @y = [+ [9l°) Gll L2 () -
From this we easily get the estimate
lull poo@ny < Nlall L1 mny
1L+ [y1*)a (L + [y]*) ™ o ey

< @+ fyl)all 2@ l(E+ 1y1°) 2172 gy
< Cllullsgny,

where C' = ||(1 + |y\s)_2HQL1(Rn) < oo if and only if s > . Therefore we have an easy

embedding, which is known valid for integers s by the previous Sobolev embedding theorem,

H*R™) Cc L>™(R") ifs> 3.

2.6. Spaces of Functions Involving Time

We study spaces of functions mapping time into Banach spaces. These will be essential for
the study of weak solutions to evolution equations later.
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2.6.1. Calculus of Abstract Functions. Let X be a real Banach space with norm || - ||
and let I be any interval of the real line R.
Definition 2.11. (i) A function u: I — X is called an abstract function.

(ii) An abstract function u : I — X is said to be continuous at a point ¢y € I if
li — =0.
Jim flu(t) — u(to)ll = 0

(If tp is an end point of I, the continuity at ¢y is defined through the one-sided limit.) If
u(t) is continuous at each point of I, then we write u € C(I; X).

(iii) Abstract function u : I — X is said to be differentiable at the point tg € I if
there exists an element [ = u/(typ) € X such that
lim ||[u(to + k) — u(to)]/h — /' (to)|| = 0.
h—0
We say u(t) is differentiable on I if it is differentiable at each point of I.
Remark 2.12. (i) If u : I — X is continuous at ¢y € I then real-valued function |lu(t)]| is
continuous at tg.

(ii) If I = [a,b] is a compact interval, then C([a,b]; X) becomes a Banach space with
norm

.x) = ).
o) = i (o)

Theorem 2.38. (Mean Value Theorem) Let u(t) € C([a,b]; X) and suppose u'(t) exists
for every t € (a,b). Then

lu(a) = u(®)| < (b—a) sup Il (®)]]-

Proof. We use a standard device which reduces the problem to the classical case. Namely,
consider the real-valued function ¢(t) = f(u(t)), where f € X*. Since f is continuous and

linear we have
o) = i 7 (M=) i,

Now apply the classical mean value theorem to ¢(-) to get

[u(b) —ula)l| = sup f(u(b) —u(a))

I fll=1

= sup (¢(b) — ¢(a))
I£ll=1

= sup (b—a)f(u/(to)) to€ (a,b)
I fll=1

< (b—a) sup [u'(@)].

a<t<b
]

Definition 2.13. Let u : [a,b] — X be an abstract function and define the partial sums

n
Sz = Zu(ﬂ)(tz —tio1), tio1 <t <ty
i=1
where Z is the partition a = tg < t; < --- < t, = b of [a,b] and AZ = max;(t; —t;—1) is the
mesh of the partition. We define the Riemann integral

b
/ U(t)dt = lim SZk

k—o0
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if such a common limit value exists for all sequences of partitions {Zy} for which AZ; — 0
as k — oo.

Theorem 2.39. If u(t) € C([a,b]; X), then the Riemann integral exists.

Proof. As in the classical proof, one uses the uniform continuity of u(t) together with the
completeness of X. We shall omit the details. O

Theorem 2.40. Let u(t) : [a,b] — X be continuous. Then the following hold:
(a)
b b
I [ utatl < [ Jueoar

f </abu(t)dt) = /abf(u(t))dt forall fe X*

(b)

()
d t
dt J,
(d) If u/(t) € C((a,b); X), then for any o, € (a,b)

u(s)ds =u(t) forall a<t<b

Proof. (a) and (b) follow by passing to the limit in the corresponding relations of Riemann
sums.

(c) Set v(t) = f(j u(s)ds. Since u(t) is uniformly continuous on [a, b], we have

t+h
I[o(t+R) —v(®)]/h—u@®)]| = o /t [u(s) — u(t)]ds||
< lsgfgh‘ lu(s) —u(®)|| =0 as h—0.

(d) Let ¢(t) = f(u(t)), where f € X*. Then by using (b), we obtain

f (u(ﬂ) — u(a) —/ﬂ z/(t)dt) —0 forall feX*.

[0}

The result now follows easily. O

2.6.2. Measurable Functions and Sobolev Spaces. We now extend the continuous
functions to measurable functions. In what follows, we assume [ is a bounded interval in R
and X is a Banach space.

Definition 2.14. (i) A function s: I — X is called simple if it has the form

s(t) =Y xm(tu (tel),
=1

where E; is a Lebesgue measurable subset of I and u; € X for¢=1,2,---,m. In this case,

we define
/s(t) dt =" |Elu; € X.
I i=1
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(ii) A function f: I — X is strongly measurable if there exist simple functions
si: I — X such that

sg(t) = f(t) Vae tel
(iii) A function f: I — X is weakly measurable if for each u* € X* the function
t — (u*, f(t)) is Lebesgue measurable on 1.

(iv) A function f: I — X is almost separably valued if there exists a subset N C I
with |N| = 0 such that the set {f(¢)| t € I\ N} is separable (that is, has a countable dense
subset).

(v) A strongly measurable function f: I — X is (Bochner) integrable if there exists
a sequence of simple functions si: I — X such that

i [ fsu(t) ~ S(0) e = 0.
k—o0 T
In this case, we define

/f(t)dt: lim [ si(t)dt € X.
1

k—o00 I

Theorem 2.41. (Bochner-Pettis Theorem) (i) A function f: I — X is strongly mea-
surable if and only if f is weakly measurable and almost separably valued.

(ii) A strongly measurable function f: I — X is Bochner integrable if and only if || f(t)||
1s Lebesgue integrable; that is,

1l ) :—/qu(t)u dt < oo,

Remark 2.15. (i) The space LP(I;X) consists of all strongly measurable functions
w: I — X with
1/p
[ullLr(rx) = (/I [[u(t)[|? dt> < 00

[[ull oo (r,x) 7= esssupe; [|[u(t)]| < oo
if p = o0o. As in the usual Lebesgue space cases, we identify functions that are almost
everywhere equal. Then LP(I; X') becomes a Banach space for all 1 < p < oo.

if 1 <p< oo and

(ii) If X is reflexive, then we have
(LP(I; X))* ~ LY X*) (1<p<oo, q= ﬁ).
However, usually, (L' (I; X))* % L>(I; X*). In fact, if X is a separable Banach space, then
(LN(L X)) ~ L (1 X7),
where LSP(I; X*) consists of functions ¢g: I — X* such that for each u € X the function
t — (g(t),u) is Lebesgue measurable and essentially bounded on I with the norm

gllw == sup [[{g(£),w} || Loe (1) < o0

I
ueX,|lu||<1

(iii) The space C(I; X) consists of all continuous functions u: I — X with

[ulle(rx) = max [u(®)]| < oc.
tel
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Definition 2.16. (i) Let u,v € L'(I; X). We say v is the weak derivative of u, written

u' = v, provided
[ o /¢

holds in X for all scalar test functions ¢ € C2°(I

(ii) The Sobolev space WP(I; X) consists of all functions u € LP(I; X) such that weak
derivative u’ exists and belongs to LP(I; X). The norm is defined by

1
T {Uuw DI + I () )dt) (1< p < oc),
Y esssuper(lu(ll + [/ ®)]) (= o).
We write H(I; X) = Wh2(I; X).
Theorem 2.42. (Calculus in WP(I; X)) Let u € WYP(I; X) for some 1 < p < co. Then
(i) uw € C(I; X) (after being redefined on a null set of time), with

lulledx) < Cllullwreax)
for a constant C depending on I.
(ii) u +ft "(7)dr for all s <t in I.

Proof. Extend u outside of I by 0 on t € R, and then set u® = w. x u, w. denoting the
usual mollifier on R. We have (u®) = we. xu’ on I, := (a +&,b—¢) if I = (a,b). Then the
proof can be completed by standard approximation method upon € — 0. ]

Theorem 2.43. (More calculus) Suppose u € L*(I; H}(Q)), with v’ € L*(I; H*(Q)).
Then
(i) w € C(I; L*(Q)) (after being redefined on a null set of time), with
lull o) < CUlullzermi@) + 14l z2rm-1@))
for a constant C' depending on 1.
(i) The mapping t — Hu(t)”%g(g) is absolutely continuous on I, with

@ u(t) 20y = 200 (0), u(t)

for a.e.t € I, where “(-)” is the pairing in H=1(Q) x H}(Q).
For use later in the regularity study, we will need an extension of Theorem 2.43.

Theorem 2.44. (Mapping into better spaces) Let Q be a bounded domain with smooth

OSY and m a nonnegative inleger. Suppose u € L2(I; H™2(Q)), with u' € L*(I; H™(R)).

Then u € C(I; H™(Q)) (after being redefined on a null set of time), with
lullo(zmrm+iq)) < Cllull2@mmez)) + 19 L2 (1mm 0))

for a constant C' depending on 1,2 and m.

Remark 2.17. In most of the study of evolution equations later, the interval I = (0,7).
In this case, we write LP(I; X) as LP(0,T; X); other spaces are to be denoted similarly.



Chapter 8

Second-Order Linear
Elliptic Equations

3.1. Differential Equations in Divergence Form

Henceforth, Q C R” denotes a bounded domain with boundary 9Q € C!.

3.1.1. Linear Elliptic Equations. We study the (Dirichlet) boundary value problem
(BVP)

(3.1) Lu=f in 2, u=0 on 0.
Here f is a given function in L?(Q) (or more generally, an element in the dual space of

H}(Q)) and L is a second-order differential operator having either the divergence
form

n
(3.2) Luz—ZDi(alj )Dju) +Zb )Diu + c(z)u
ij=1
or else
Luz—ZaU Dwu—FZb )Diu + c(z)u
i,7=1
with given real coefficients a;;(z), b;(z) and c(:c) We also assume

aij(z) = aj(xz) (i,j=1,...,n).

Definition 3.1. The partial differential operator L is said to be uniformly elliptic in
Q if there exists a number # > 0 such that for every x € Q and every real vector £ =

(&1,...,&,) €R?

(3.3) Z aij(z)&i&5 > 92 &l
ij=1 i=1
We will assume a;j, b;,c € L>(Q2). Define the bilinear form

Bilu,v] = /Q [ Z a;jDjuD;v + (Z b;D;u + cu)v] dz

i,j=1 i=1
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Definition 3.2. Let f € L?(2). A function u € H}(1) is called a weak solution of (3.1)
with L given by (3.2) if Bi[u,v] = (f,v)z2 for all v € H}(); that is, the following holds

(3.4) / [ Z a;;DjuD;v + (Z biDju + cu)v]de = / fodz Y wve Hi(Q).
2,7=1 =1

If f e H1(Q) = (H(Q))*, the dual space of H}(Q2), then weak solutions are defined by
replacing the right-hand side by (f,u), (,) being the dual pairing on H~1(Q) x H} ().

Exercise 3.3. Consider the following weak formulation: Given f € L?(2). Find u € H(Q)
satisfying

/Vu-Vvd:L‘:/fvdx for all v e HY(Q).
Q Q

Find the boundary value problem solved by u. What is the necessary condition for the
existence of such a u?

3.1.2. General Systems in Divergence Form. For N unknown functions, u!,--- ,u",

we can write u = (ul,--- ,u") and say u € X(Q;RY) if each ¥ € X(Q), where X is a
symbol of any function spaces we learned. If u € WHP(€; RY) then we use Du to denote
the N x n Jacobi matrix

Du = (3Uk/a$i)1gk§1v,1§ign-

The (Dirichlet) BVP for a most general system of second-order (quasilinear) par-
tial differential equations in divergence form can be written as follows:

(3.5) —div A(z,u, Du) + b(x,u, Du) = F in Q, wuw=0 on 09,

where A(z,5,€) = (A¥(r,u,6), 1< i <n 1<k <N, and b(a,s,6) = (BF(r,u,6),
1 < k < N, are given functions of (z,u,&) € Q x RY x MN*" and F = (f¥), 1 <k < N,
with each f* being a given functional in the dual space of VVO1 P(Q).

The coefficients A, b usually satisfy certain structural conditions that will generally
assure that both |A(z,u, Du)| and |b(z, u, Du)| belong to L¥' (Q) for all u € WhP(Q;RN),
where p/ = p%l. In such cases, a function u € VVO1 P(Q;RY) is called a weak solution of
(3.5) if the following holds

(3.6) /Q

for all p € Wol’p(Q) and each k =1,2,--- , N.

Z A¥(x,u, Du)Dyp + b* (x,u, Du)p | dz = (f*, )
i=1

Definition 3.4. The system (3.5) is said to be linear if both A and b are linear in the
variables (u, §); that is,

N

AF(z,u, Du) = Z aff(x) Djul + Z d"(z) o,
1<I<N,1<j<n =1

(3.7)

N
Ve (x,u, Du) = Z b;?l(x) Djul + Z M (x)ul.
1<j<n, 1<I<N =1
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For linear systems, the suitable space is Hilbert space H&(Q;RN ) equipped with the
inner product defined by

(u,v) = /Du Dk dz.
1<i<n, 1<k<N
The pairing between H}(€2; RY) and its dual is given by

N
(Fou)y =Y (fFu) if F=(f*) and u = (u*).

The bilinear form in this case is defined by
Balu,v] = / (af}DjulDivk + dMul Dk + b?leu U cklulvk> dx;
Q

here the conventional summation notation is used. With this Ba[u,v], a weak solution to
the Dirichlet problem of linear system (3.5) is then a function u € Hg(Q; RY) such that

(3.8) Bolu,v] = (F,v) VY wve Hp(QRY).

Ellipticity Conditions. There are several ellipticity conditions for the system (3.5) in
terms of the leading coefficients A(z,u,&). Assume A is smooth on £ and define
DAY (2, u,€)

kl
Aij(x?uag) = afé )

£=(&).

The system (3.5) is said to satisfy the (uniform, strict) Legendre ellipticity condition
if there exists a v > 0 such that, for all (x, s, &), it holds

(3.9) Z Z Akl (x,8,&)n; né >v|n* for all N x n matrix n = (n¥).
t,j=1k,l=1

A weaker condition, obtained by setting n = ¢ ® p = (¢"p;) with p € R", ¢ € RV, is the
following (uniform) Legendre-Hadamard condition:

(3.10) Z Z Afi(z,5,€) ¢"¢'pip; > vp/ g VpeR", ¢eRV.
1,7=1k,l=1

For systems with linear leading terms A given by (3.7), the Legendre condition and
Legendre-Hadamard condition become, respectively,

(3.11) Z Z z)ninl = vinf® Vo

4,j=1k,l=1

(3.12) Z aij(z) ¢"d'pip; > vIpl*la* ¥p, q
1,j=1k,l=1

Exercise 3.5. If N > 1, the Legendre-Hadamard condition does not imply the Legendre
ellipticity condition. For example, let n = N = 2 and € > 0. Define constants a ! by

2

Z aff{f&é =det & + ¢ |¢]2.

ivjvkvlzl
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Show that the Legendre-Hadamard condition holds for all € > 0. But, the Legendre condi-
tion holds for this system if and only if ¢ > 1/2.

Exercise 3.6. Let u = (v,w) and z = (21, 22) = (x,y) € R?. Then the system of differential
equations defined by af} given above is
€AV + Wy =0, €Aw — v,y =0.
This system reduces to two fourth-order equations for v, w (where Af = fop + fyy):
A%y — Vgzyy = 0, A% + Wazyy = 0.
We can easily see that both equations are elliptic if and only if € > 1/2.

Exercise 3.7. Formulate the biharmonic equation A>u = f as a linear system and find the
appropriate bilinear form B[u,v] in the definition of weak solutions.

3.2. The Lax-Milgram Theorem

Let H denote a real Hilbert space with inner product (-,-) and norm || - ||.
A map B: H x H — R is called a bilinear form if
Bloau + Bv,w| = aBlu,w] + BB[v, w],
Blw, au + v] = aBlw,u] + BBw, v]
for all u,v,w € H and all o, 8 € R.

Our first existence result is frequently referred to as the Lax-Milgram Theorem.
Theorem 3.1. (Lax-Milgram Theorem) Let B: H — H be a bilinear form. Assume
(i) B is bounded; i.e., |Blu,v]| < allull||v||, and
(ii) B is strongly positive; i.e., Blu,u] > S| ul?,

where a, B are positive constants. Let f € H*. Then there exists a unique element v € H
such that

(3.13) Blu,v] = (f,v), VwveH.

Moreover, the solution u satisfies ||ul| < % IIf1].

Proof. For each fixed u € H, the functional v — Blu,v] is in H*, and hence by the Riesz
Representation Theorem, there exists a unique element w = Au € H such that

Blu,v] = (w,v) YwveH.

It can be easily shown that A : H — H is linear. From (i), ||Au||? = Blu, Au] < a|ul|||Aul|,
and hence ||Au|| < aflu| for all w € H; that is, A is bounded. Furthermore, by (ii),
Bllull? < Blu,u] = (Au,u) < ||Aul||lu| and hence ||Au| > B||u|| for all u € H. By the
Riesz Representation Theorem again, we have a unique wy € H such that (f,v) = (wo,v)
for all v € H and || f|| = ||wo||. We will show that the equation Au = wg has a (unique)
solution. There are many different proofs for this, and here we use the Contraction Mapping
Theorem. Note that the solution u to equation Au = wy is equivalent to the fixed-point
of the map T: H — H defined by T'(v) = v — tAv + twy (v € H) for any fixed ¢t > 0. We
will show for ¢ > 0 small enough T is a contraction. Note that for all v,w € H we have
T (v) —T(w)|| = ||(I —tA)(v — w)||. We compute that for all u € H

12— tAWlP = Jlul]® + €] Aul® — 2¢(Au, u)
Jul2(1 + 202 — 25¢).

IN
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We now choose t such that 0 < t < Z—é Then the expression in parentheses is positive and
less than 1. Thus the map T': H — H is a contraction on H and therefore has a fixed point.
This fixed point u solves Au = wy and thus is the unique solution of (3.13); moreover, we
have || f|| = |lwo|| = ||Aul|| > B]||u|| and hence ||ju|| < % I f]]. The proof is complete. O

3.3. Energy Estimates and Existence Theory

We study the bilinear forms By, By defined above. In the following, we assume all coefficients
involved in the problems are in L*°(£2). One can easily show the boundedness:

|Bj[u, v]| < ][]
for all u,v in the respective Hilbert spaces H = H(Q) or H = H}(Q;RY) for j = 1,2.

The strong positivity (also called coercivity) for both B; and Bj is not always guar-
anteed and involves estimating on the quadratic form Bj[u,u], usually called Garding’s
estimates. We will derive these estimates for both of them and state the corresponding
existence theorems below.

3.3.1. Garding’s estimate for Bi[u, u].

Theorem 3.2. Assume the ellipticity condition (3.3) holds. Then, there are constants
B >0 and v > 0 such that

(3.14) Biu,u] = Bllul® = yllullZaq) V€ H = Hy().

Proof. Note that, by the ellipticity,

Bilu,u] — /Q(Z biDiu + cu)udx > G/QZ |Dsul*dz.
i=1 =1

Let m = max{||b;|| () |1 < i < n} and ko = [[c| (). Then
|(bi Dyw, w)z| - < ml|Diullaull2
< (m/2)(e]| Dyull3 + (1/¢)ul3)

where in the last step we used the arithmetic-geometric inequality | 3| < (e/2)a?+(1/2¢)32.
Combining the estimates we find

Bilu,u] > (0 — me/2)||Dul|Z2q) — (Ko +mn/2¢)ul72(q)-
By choosing ¢ > 0 so that § — me/2 > 0 we arrive at the desired inequality, using the
Poincare inequality: [[ul| 1) < C||Dul|r2(q) for all u € HE(Q). O

Theorem 3.3. (First Existence Theorem for weak solutions) There is a number
v > 0 such that for each X > ~ and for each function f € L*(Q), the boundary value
problem

Lu+Xu=fin Q, u=0 ondfd
has a unique weak solution w € H = HJ(Q) which satisfies
[ullzr < ellfllzzq)

where the positive constant c is independent of f. Then result also holds for all f € H=1(Q),
with || f||2(q) replaced by || fl|g-1(q)-
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Proof. Take v from (3.14), let A > ~ and define the bilinear form
B*u,v] = Bi[u,v] + Mu,v)y forall wu,ve€ H
which corresponds to the operator Lu + Au. Then B)‘[u, v] satisfies the hypotheses of the

Lax-Milgram Theorem. O
ExaMPLE 3.4. Consider the Neumann boundary value problem

(3.15) —Au(z) = f(z) in Q, % =0 on 0f.

A function v € H'(Q) is said to be a weak solution to (3.15 if

(3.16) /QVu-Vvd:E:/vadm, Vove  HY(Q).

Obviously, taking v = 1 € H'(f), a necessary condition to have a weak solution is

Jo f(z)dz = 0. We show this is also a sufficient condition for existence of the weak so-
lutions. Note that, if u is a weak solution, then u + ¢, for all constants ¢, is also a weak
solution. Therefore, to fix the constants, we consider the vector space

H= {u e H'(Q)| /Qu(x)d:z: :0}

equipped with inner product
(u,v)g = / Vu-Vudz.
Q

By the theorem on equivalent norms, it follows that H with this inner product, is indeed a
Hilbert space, and (f,u)2(q) is a bounded linear functional on H:

(w2l < Il llvllzze) < 12 llvlla-
Hence the Riesz Representation Theorem implies that there exists a unique v € H such
that

(3.17) (u,w)g = (f,w) 2y, VweH.

It follows that u is a weak solution to the Neumann problem since for any v € H(Q2) we
take w = v — ¢ € H, where ¢ = ﬁ Jovdz, in (3.17) and obtain (3.16) using [, fdx = 0.
ExAMPLE 3.5. Let us consider the nonhomogeneous Dirichlet boundary value problem
(3.18) —Au=fin Q, wulpo=¢

where f € L%(Q) and ¢ is the trace of a function w € H'(£2). Note that it is not sufficient
to just require that ¢ € L2?(0f)) since the trace operator is not onto. If, for example,
© € CHOR), then ¢ has a C! extension to 2, which is the desired w.

The function u € H(12) is called a weak solution of (3.18) if u — w € H}(Q2) and if
/Q Vu - Vudr = /Q fodz  for all v € H(Q).
Let u be a weak solution of (3.18) and set u = z + w. Then 2 € H{(Q) satisfies
(3.19) /QVZ -Vudx = /Q(fv — Vo -Vw)dz forall ve HIQ).

Since the right hand side belongs to the dual space H~1(Q2) = H}(Q)*, the Lax-Milgram
theorem yields the existence of a unique z € H{ () which satisfies (3.19). Hence (3.18) has
a unique weak solution u.
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EXAMPLE 3.6. Now let us consider the boundary value (also called Dirichlet) problem for
the fourth order biharmonic operator:

0
Alu=fin Q, ulpg= 8j|aﬂ =0.
n

We take H = HZ(f2). By the general trace theorem, H = H3(Q) = {v € H3(Q) : vov =
~y1v = 0}. Therefore, this space H is the right space for the boundary conditions.

Accordingly, for f € L%*(Q), a function u € H = HZ(Q) is a weak solution of the
Dirichlet problem for the biharmonic operator provided

/AuAUd:U:/fvdx YveH.
Q Q

Consider the bilinear form
Blu,v] = / AuAvdz.
Q

Its boundedness follows from the Cauchy-Schwarz inequality
| B[u, ]| < [[Aull2][Avlz < dljull22]v]|2,2-

Furthermore, it can be shown that ||Aul|s defines a norm on HZ () which is equivalent to
the usual norm on H?(2). (Exercise!) Hence

Blu,u] = || Aull3 > cflull3 5

and so, by the Lax-Milgram theorem (in fact, just the Riesz Representation Theorem), there
exists a unique weak solution u € H.

Exercise 3.8. Denote by H! the space
H! = {u € H(Q) : you = const}.
Note that the constant may be different for different u’s.

(a) Prove that H! is complete.
(b) Let f € C(Q2). Prove existence of a unique u € H} satisfying

/(Vu-Vv—l—uv)dx:/fvd:r VoveHL
Q Q

(c) If u € C?(Q) satisfies the equation in (b), find the underlying BVP.

Exercise 3.9. Let Q = (1, +00). Show that the BVP —u” = f € L*(Q), u € H} () does
not have a weak solution.

3.3.2. Garding’s estimate for Ba[u, u]. We will derive the Garding estimate for Bs[u, u].
For simplicity, let H = H}(€;RY) and let (u,v)y and ||ul g be the equivalent inner product
and norm defined above on H. Define the bilinear form of the leading terms by

n N
Alu,v] = Z Z /Qafjl(x) Dju! Dyv" da.

i,5=1k,l=1
Theorem 3.7. Assume that either coefficients aff satisfy the Legendre condition or a’

ij
are all constants and satisfy the Legendre-Hadamard condition. Then

Alu,u] > v||ull}, YucH.
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Proof. In the first case, the conclusion follows easily from the Legendre condition. We
prove the second case when Aiﬂ are constants satisfying the Legendre-Hadamard condition

Z Z al " ¢ pip; > vIpl’la]®, VpER", ¢ eRY.
i,J=1k,]l=1

We prove
Alu, u] ZZ/aleuDu dx>y/|Du\2dx
i,7=1k,l=1 Q

for all u € C§°(Q; RY). For these test functions u, we extend them onto R™ by zero outside
Q and thus consider them as functions in C§°(R™; RY). Define the Fourier transforms
for such functions u by

u(y) = (277)_"/2/ e Ty (z)dr; y € R™

Then, for any u, v € C§°(R™"; RY),

Dk (y) = i yuk (y);
the last identity can also be written as Du(y) =iu(y) ® y. Now, using these identities, we
have

= /Rn atl yiy; uk (y) ul(y) dy = Re (/Rn ot iy uF () ul (y) dy) :
Write 4(y) = n + i€ with 5, £ € RY. Then
Re (ﬁ(y)ltl(yo ="' + ¢
Therefore, by the Legendre—Hadamard condition,

Re 33 (ol ) 7)) 2 v (o + 16 = vIoF 6o

1,j=1k,l=1

Hence,

A(u,u) ZZ/aleu ) Djul(z) dz

i,=1k,l=1
=Re Z Z (/ af}yiyjuk(y)ul(y)dy>
igj=1ki=1 WR"
S PRNT o 2
21// lyl” |a(y)] dy—l// lit(y) @ y|” dy
Rn RTL
:y/ |m(y)|2dy:y/ |Du(z)|? da.
n R

The proof is complete. O
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Theorem 3.8. (Garding’s estimate for system) Let Ba[u, v] be defined by (3.8). Assume
1) afjl € C(Q),
2) the Legendre-Hadamard condition holds for all € Q; that is,
afl(z) "¢ pip; > vIp|*lal?, VpeR", g€ RN,
3) B MMl € [o(Q).
Then, there exist constants Ag > 0 and \; > 0 such that

Bolu,u] > Ao [ulfy — At ulZe, Vu e HY(QRY).
Proof. 1. By uniform continuity, we can choose a small ¢ > 0 such that

v _
\af]l(x)—afjl(y)lg? Vl',yEQ, |$_y‘ <e

We claim
. a;:(x) Diu U .TU_K u(x xzz U (T T
3.20 M(x) Diu* Djul da > Du(z))*d DiuF(z)|? d
Q ’ 2 Q 2 1<i<n Q
1<k<N

for all test functions u € C$°(Q;RY) with diam(suppu) < e. To see this, we choose any
point xg € supp u. Then

/Qaff(ar) Diuf Djul dx = /Qaff(:l;o) Diuf Dju! dz

+/ (afjl(m) — af}(mo)) D;uF Djul dx
supp u

v

> / \Du(z)2dz -~ / \Du()|? da,
0 2 Ja
which proves (3.20).
2. Now assume u € CSO(Q;]RN ), with arbitrary compact support. We cover Q with
finitely many open balls {B,/4(2™)} with 2™ € © and m = 1,2,..., M. For each m, let

Cm € C§°(Beja(z™)) with G (2) = 1 for & € B,j4(2™). Since for any = € Q we have at least
one m such that z € B, /4(2™) and thus ;,(7) = 1, we may therefore define

Cm ()
m(x) = , m=1,2,..,M.
i (S, )

Then Z%zl @2 (r) =1 for all x € Q. (This is a special case of partition of unity.) We
have thus

M
af} (z) D;uF Djul = Z (afj (z) gogn D;uF Djul)

m=1

ai}(z) Di(pm u*) Dj(pmu')

i (T) (apm u! Dy Dt + om u¥ Doy, Djul + u* u! Dipp, ngpm) )
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Since @mu € C§(QN Bejo(z™); RY) and diam(Q N B, (™)) < ¢, we have by (3.20)

v
| ati@ Diton Doty e = 5 3 [ Do) da

1<i<n
1<k<N
=2 [ (Dt 4 IDipnl? W+ 2 Do Dt
1<i<n Q
1<k<N
> — Z / (gofn ]Diuk\Q dx + 2ppm, uF D;om Diuk) dx
1<i<n Q
1<k<N
14 k 14
> 2 3 [ D Pds - ClulBagy =% [ ¢ IDu do — Cllulz o,
1<i<n Q Q
1<k<N

where we have used the Cauchy inequality with e. Then by (3.21) and the fact that
27]\7{:1 (,an =1on Q)

v
| i@ Dt Dt = % [ 1Duf? do = OVl = € ullzzoy 1Dl
The terms in Bs[u, u] involving b, ¢ and d can all be estimated by

Co(llull 2o 1Dull L2y + ull72(0)-
Finally, using the Cauchy inequality with € again, we have
v
Bolu, u] > g”uH%{é(Q) = CsllullZa) Vue CE(RY)
and, by density, for all u € H}(Q;RY). This completes the proof. d

Note that the bilinear form B*u,v] = Ba[u,v] + A (u,v) 2 satisfies the condition of
the Lax-Milgram theorem on H = H}(;RY) for all A > Ay; thus, by the Lax-Milgram
theorem, we easily obtain the following existence result.

Theorem 3.9. Under the hypotheses of the previous theorem, for A > A1, the Dirichlet
problem for the system (3.5) with linear coefficients (3.7) has a unique weak solution u in
HE(Q;RYN) for any bounded linear functional F on H. Moreover, the solution u satisfies
lullg < C||F|| with a constant C depending on A, and the coefficients.

Corollary 3.10. Given A\ > )\ as in the theorem, then the operator K: L*(Q;RY) —
L2(Q;RN), where, for each F € L*(Q;RN), u = KF is the unique weak solution to the
BVP above, is a compact linear operator.

Proof. By the theorem, [|ul|g1(pny < C||F | 12(;rv)- Hence K is a bounded linear opera-
tor from L2(Q;RY) to H} (; RY), which, by the compact embedding theorem, is compactly
embedded in L2(Q;RY). Hence, as a linear operator from L?(;RY) to L?(Q;RY), K is
compact. ]

3.4. Fredholm Alternatives

We study the general linear system Lu whose bilinear form is given by Bs[u, v] defined above
on H = H& (€; RY). We need some necessary results on the spectral theory of compact linear
operators given in §1.4 of Chapter 1.
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Definition 3.10. The adjoint bilinear form Bj of By is defined by
Bj[u,v] = Ba[v,u] Y u,ve H=H(QRY).
This bilinear form Bj[u, v] is associated to the formal adjoint of Lu of the form
(3.22) L*u = —div A*(z,u, Du) + b*(x, u, Du),
with linear coefficients A*(z,u, Du) = (/lejl) and b*(z, u, Du) = (b*) given by

N
Aaupi= S ol dan,
1<I<N,1<j<n =1
(3.23) !
Ek(x, u, Du) = Z g}?l(x) Djul + Zékl(x) w
where

al =k, @i B —dk, Mok (1<ij<n 1<kI<N).

The ellipticity condition of L*u is the same as that of Lu, and also Bj[u,u] = Ba[u, u].

Theorem 3.11. (Second Existence Theorem for weak solutions) Assume the ellip-
ticity and boundedness of the coefficients of Lu.

(i) Precisely one of the following statements holds:

either
(3.24) {fOT each F € L*(Q;RYN) there erists a unique
weak solution u € HE (Q;RY) of Lu = F,
or else
(3.25) there exists a weak solution u # 0 in H}(;RYN) of Lu = 0.

(ii) Furthermore, should case (3.25) hold, the dimension of the subspace N' C HE(; RY)
of weak solutions of Lu = 0 is finite and equals the dimension of the subspace
N* C HYH RN of weak solutions of adjoint problem L*u = 0.
(iii) Finally, the problem Lu = F has a weak solution if and only if
(F,'U)LQ(Q;RN) =0 VveN™
The dichotomy (3.24), (3.25) is called the Fredholm alternatives.

Proof. We assume the Garding inequality holds (see Theorem 3.8 for sufficient conditions):
(3.26) Bofuu,u] > ollulyy — pllula. ¥ ue H(QRY),

where ¢ > 0 and p € R are constants. We also assume p > 0. For each F € L?2(Q;RY),
define u = KF to be the unique weak solution in H{(€; RY) of the BVP

Lu+pu=F inQ, wul|sgg=0.

By Theorem 3.9 and Corollary 3.10, this K is well defined and is a compact linear oper-
ator on L2(Q;RY). We write K = (L + uI)~!. Here I denotes the identity on L?(2;RY)
and also the identity embedding of H(Q;RY) into L?(2;RY). Furthermore, given F €
L2 OQ;RY), u € HY (4 RY) is a weak solution of Lu = F if and only if Lu + pu = F + pu,
which is equivalent to the equation u = K(F + pu) = KF + pKu; that is, (I — pKC)u = KF.
Hence, we have N’ = N(I — pK) and similarly, N* = N(I — uK*); moreover, Lu = F if
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and only if KF € R(I — uK) = (N (I — uk*))* = (N*)*. The proof of (iii) follows as, for
all v € N*, v = uK*v and so

(Fa U) = (F7 NIC*’U) = M(ICFv’U);
hence KF € (N*)* if and only if F' € (N*)*. O
3.4.1. Symmetric Elliptic Operators. In what follows, we assume () is a bounded
domain. We consider the operator
Lu = —div A(z, Du) 4 c¢(z)u, u € HI(QRY),
where A(x, Du) is a linear system defined with A(z, &), & € MYV*", given by
M@= Y, i@

1<I<N,1<j<n

Here af} (z) and c(x) are given functions in L*°(Q2). The bilinear form associated to L is

N n
(3.27)  Blu,v] = / Z Z af}(x)DjulDivk +e(x)u-v | de, u,ve HI(QRY).
Q@ \gi=1i5=1
We assume that B is symmetric on Hi(Q;RY), that is,
Blu,v] = Blv,u] Y u,v e H}(Q;RY).

In this case B* = B and Lu is self-adjoint: L*u = Lu. This condition is equivalent to the
following symmetry condition:

(3.28) afl(x) =df(z), Vi, j=1,2-,n; k1=12- N.

We also assume the Garding inequality holds (see Theorem 3.8 for sufficient conditions):
(3.29) Blu,u] > ol|lullfy — pllullZ2, Y ue Hy(RY),

where o > 0 and p € R are constants.

For each F € L*(Q;RY), define u = KF to be the unique weak solution in Hg(Q;RY)
of the BVP
Lu+pu=F inQ, ul|pg=0.

By Theorem 3.9 and Corollary 3.10, this K is well defined and is a compact linear operator
on L2(Q; RY). Sometime, we write K = (L+uI)~!. Here I denotes the identity on L?(Q; R™)
and also the identity embedding of HZ(Q;RY) into L2(Q; RY).

Theorem 3.12. K: L2(Q;RY) — L2(Q;RY) is symmetric and positive; that is,

(KF,G) 12 = (KG,F)p2, (KF,F);»>0, YF,GeL*(%RY).
Furthermore, given X € R and F € L*(O;RY), v € HYRY) is a weak solution of
Lu—Xu=F if and only if [I — (A + p)K]u = KF.

Proof. Let u = KF and v = KG. Then

(u,G) g2 = Blo,u] + (o, u) 2 = Blu, o] + (v, ) 2 = (v, F) 12,
proving the symmetry. Also, by (3.29),
(3.30) (KF,F)p2 = (u, F)p2 = Blu,u] + pllul[72 > ollullfn = o[ KF|7, > 0.
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Finally, v € H}(Q;RY) is a weak solution of Lu — Au = F if and only if Lu + pu =
F + (A + p)u, which is equivalent to the equation u = K[F + (A + p)u] = KF + (A + pu)Ku;
that is, [[ — (A + p)K]u = KF. O

3.4.2. Eigenvalue Problems. A number A € R is called a (Dirichlet) eigenvalue of
operator L if the BVP problem

Lu—Xu=0, ulpn=0

has nontrivial weak solutions in H} (€2; RY); these nontrivial solutions are called the eigen-
functions corresponding to eigenvalue .

Theorem 3.13. (Eigenvalue Theorem) Assume (3.28) and (3.29). Then the eigenvalues
of L consist of a countable set ¥ = {\;}32,, where

—p <A <A< A3 <
are listed repeatedly the same times as the multiplicity, and

lim )\k =0
k—o0

Let wy, be an eigenfunction corresponding to Ay satisfying ||wk||p2qr~y = 1. Then {wi}2,
forms an orthonormal basis of L?(2;RY).

The first (smallest) eigenvalue A1, which is called the (Dirichlet) principal eigenvalue
of L, is characterized by

(3.31) A= min  Blu,ul.
ueH (4RN)
”u”L2(Q):1

Moreover, if u € HY (G RN), w # 0, then u is an eigenfunction corresponding to A1 if and
only if
Blu,u] = A ||ul|72 (-

Proof. 1. From Theorem 3.12, we see that A is an eigenvalue of L if and only if equation
(I — (A + p)K)u = 0 has nontrivial solutions u € L?(£2; RY); this exactly says that A\ # —pu

and ﬁ is an eigenvalue of operator K. Since, by (3.30), K is strictly positive, all eigenvalues

of IC consist of a countable set of positive numbers tending to zero and hence the eigenvalues
of L consist of a set of numbers {A;}3%, with

—u<)\1§/\2§-~§)\j—>oo.

2. We now prove the second statement. If u is an eigenfunction corresponding to A;
with [Jul|z2(q) = 1, then easily Blu u] = A1(u,u) = )\1||u||%2(9) = A1. We now assume

u € Hi(Q), lull2(0) = 1.
Let {w;} be the orthonormal basis of L?(Q) consisting of eigenfunctions. Then

Blwg, w] = Mg (wg, wi) =0 (k #1),
Blwy, wi] = Mg (wg, wi) = A

Set 1wy, = (A + 1)~/ ?wy, and consider the inner product on H = H}(Q;RY) defined by
((U, U)) = Bﬂ[ua U] = B['LL, U] + ,U,(U, U)LQ(Q) (U, CAS H)
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Then ((@W,w;)) = 0k Let di = (u, wg)2(q)- We have

(3.32) dodi=lullizgy =1, w=> diwi =Y dyiix,
k=1 k=1 k=1

where dj, = dg/A, + 4, in the sense of norm-convergence in L?(€; RY). We claim that the
series for u converges also in the norm defined by the inner product ((, )) in H. To prove
this claim, for m = 1,2, --- , define

m m

Um :dewk = Z ~k7jjk € H.

k=1 k=1

From ((wy, w)) = By, u] + p(ig, u) = (Mg + p) (W, u) = di, we have
((m,u)) = ZCP = ((um,um)) (m=1,2,---).
k=1

so, by a subsequence, u,, — % in H as m — co. Since u,, — u in L?, we must have & = u
and so

This implies ((tm, um)) < ((u,u)) for all m = 1,2,--- . Hence, {uy,} is bounded in H and

((u,u)) < lim_)inf((um,um)),
which, combined with ((u — U, v — up)) = (w,w)) + ((Um, um)) — 2((w, up)) = ((u,u)) —
((tm, upm)), implies that u,, — w in H, and the claim is proved.
3. Now, by (3.32), we have

Blu,u] =Y dpBlwg,ul = Y dide > > did = A1
k=1 k=1 k=1

Hence (3.31) is proved. Moreover, if in addition Blu,u] = A1, then we have

(o)

D> (k= A)di =05 so dp =0if A, > Ay

k=1
Assume A\ has multiplicity m, with Lwy, = Mwy (k =1,2,---,m). Then u = > ;" | dywy,
and so Lu = A\ju; that is, u is an eigenfunction corresponding to Aj. ]

We consider a special case when N = 1 and the operator Lu is given by

n
Lu=— Z Dj(a;j(x)Dju) + c(x)u,
i,j=1
where the uniform ellipticity condition is satisfied, 02 is smooth, and a;;,c are smooth
functions satisfying
a;j(x) = aji(x), clx)>0 (xeQ).

Theorem 3.14. The principal eigenvalue Ay > 0. Let wy be an eigenfunction corresponding
to the principal eigenvalue \1 of L above. Then, either wy(z) > 0 for allx € Q or wi(x) <0
for all x € Q). Moreover, the eigenspace corresponding to A1 is one-dimensional.

Proof. 1. Since in this case the bilinear form B is positive: Blu,u] > o||u|]§11(9), we have
0
A1 > 0. Let w; be an eigenfunction corresponding to Ay with [[w1|72(q) = 1, and set

w = max{0, w1}, w; = min{0,w;}.
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Then wit € HY(Q), w = wf + i, [} 220, + 07 By = 0122y = 1, and
wa = X{wlzo}le, Vwy = X{w,<0} VWI1.
Hence we have Blw; ,w;] =0, and
A = Blwy, wi] = Blw),wi] + Blwy, wi] 2 Mlfwf 720y + Mllwy [72) = Ar-
But then the inequality must be equality. So
Blwf,wi] = AlwillF2 )  Blwr,w] = Aillwy |72

Therefore, u = wf are both solutions to the elliptic equation

Lu = Xu in Q,
u=0 on 0f2.

2. Since the coefficients of L and Q are smooth, u = w7 are smooth solutions. (See
Theorem 3 19 below.) Note that Lw1 = Alwf > 01in Q. By Strong Maximum Principle,
either w1 = 0 or else w1 > 0 in §2; similarly, either w; = 0 or else w; < 0 in €. This
proves that either wy < 0 in € or else w; > 0 in €.

3. We now prove the eigenspace of A1 is one-dimensional. Let w be another eigenfunc-
tion. Then, either w(z) > 0 for all z € Q or w(z) < 0 for all z € Q. Let ¢ € R be such

that
/Qw(x) d:):—t/gwl(m)dx.

Note that u = w — tw; is also a solution to Lu = Aju. We claim v = 0 and hence w = twq,
proving the eigenspace is one-dimensional. Suppose u # 0. Then w is another eigenfunction
corresponding to A;. Then, by the theorem, we would have either u(x) > 0 for all x € Q or

u(z) < 0 for all z € Q; hence, in either case, [, u(z)dx # 0, which is a contradiction. O

Remark 3.11. Let L = —A. Then, there exists an orthonormal basis {wy}?2, of L?()
consisting eigenfunctions wy of —A in Hg (). We can see that {wy} is also orthogonal in
HE(Q); in fact,

/QVW;(&U) -V (x) de = Blwg, wi] = A (wr, wi) r2) = Medpr - (B, 1=1,2,--+).

Furthermore, w, € C*(Q). If 9Q is smooth, then each wy, is smooth on €. See Theorem
3.19 below.

3.5. Regularity
We now address the question as to whether a weak solution u of the PDE
Lu=f inQ

is smooth or not. This is the regularity problem for weak solutions.

We first study second-order linear differential equations of the divergence form

n
(3.33) Lu= - Di(a(x Du+2b YDju + ¢(x)u
ij=1
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To see that there is some hope that a weak solution may be better than a typical function
in H (), let us consider the model problem —Au = f in R™. Assume u is smooth enough
to justify the following calculations.

f2d$ = /H(Au)2d1" = Z /nuxixiul‘jﬂfjdx

i,j=1

n
- - § / Uacimia:ju:pj dm
n

1,j=1

n
2,12
= g /uxixjuxixjdx:/ |D*u|*dx.
R ' Rn

1,j=1

R”

Thus the L? norm of the second derivatives of u can be estimated by the L? norm of f.
Similarly, if we differentiate the PDE with respect to xj, we see that the L? norm of the
third derivatives of u can be estimated by the L? norm of the first derivatives of f, etc. This
suggests that we can expect a weak solution u € H} () to belong to H™*2(Q) whenever
feH™Q).

The above calculations do not really constitute a proof, since we assumed that u was
smooth in order to carry out the calculation. If we merely start with a weak solution in
H} (), we cannot justify the above computations.

3.5.1. Difference Quotient Method. One can instead rely upon an analysis of certain
difference quotients to obatin higher regularity of weak solutions in H'(2). Our first regu-
larity result provides the interior H2-regularity for weak solutions of the equation Lu = f
based on the difference quotient method.

Theorem 3.15. (Interior H?-regularity) Let L be uniformly elliptic, with a;; € C1(), b;
and ¢ € L®(Q). Let f € L?(Q). If u € H'(Q) is a weak solution of (3.33), then for any
Q' cC Q we have u € H2(Q), and

(3.34) ull 2y < C (Jullp2) + 1fll2 @)
where the constant C' depends only on n,Y,Q and the coefficients of L.

Proof. Set ¢ = f — > | biDju — cu. Since u is a weak solution of (3.33), (by the similar
definition as above), this means that

n
(3.35) / g aijDiuDjpdr = / qedr Y € HY(Q), suppy CC Q.
Q.= Q
,7=1

Step 1: (Interior H'-estimate). Take any 2 CC . Choose a cutoff function ¢ € C§°(€2)
with 0 < ¢ < 1and (|qr = 1. We take ¢ = (?u in (3.35) and perform elementary calculations
using the ellipticity condition, to discover

/@w%zx < o/(f2 + u?)da.
Q Q

Thus

(3.36) [ull @y < CUfllz) + lullz2@);

where the constant C' depends on Q.
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Step 2: (Interior H?-estimate). Take Q' CC Q) CC Qo CC Q" CC Q. Let v € H}(Q)
be any function with supp (v) CC Q. Let

5= % min { dist (supp (v), 921), dist (1, 002), dist (22, 99") }.

Let DZ be the difference quotient operator defined above. For 0 < |h| < 4, we choose
the test function ¢ = D;hv in (3.35) and obtain, using integration by parts for difference

quotient,
n
/ Di( Z aijDju)Djvdr = —/ gD, "vda.
Q Q

i,j=1
Notice that the integrals are in fact over domain ;. Henceforth, we omit the »_ sign. Using
the definition of ¢ and the equality
DZ(aUDZ’U,) = CLZDZDZU + DZ"U,DZCLij,
h

where a;;(v) = a;j(z + hey,), we get

/a%DiDZUDjvdx = _/ (DllzaijDiUDjU-i-QD;hU) dx
Q Q

IA

C (lull oy + 1 l2@) IVOll L2 (00)-
Take n € C§°(§41) such that n(z) = 1 for € Q' and choose v = n>Du. Then

/n2a%DiD,’§uDjD,’3udx < —2/ na?jDiDZu(Djn)DZudx
Q Q

+C (Il o) + 1 l2@0) (1Y Dkull 2oy + 21 Dfuvnllix, ) -
Using the ellipticity condition and Cauchy’s inequality, we obtain

0

5 /Q InDEVul*de < C/ﬂ \Vn|?| Diul*dz + C <||U”§11(Q~) + Hf||%2(9")) :
Hence

||77D1@VU||%2(Q) <C <||U||§{1(Q~) + Hf”%?(ﬂ”)) ‘

Since 7 = 1 on €', by using Theorem 2.34, we derive that DyVu € L?(Q). This proves
that u € H%(Q') and
(3.37) ull g2y < C (lullgrry + 1 fll2@m)) »
where C' depends on . Combining with (3.36) it follows u satisfies (3.34). O
Remark 3.12. (i) The result holds if the coefficients a;; are only (locally) Lipschitz con-
tinuous in 2, since the proof above only used the fact that DZaij is bounded.

(ii) The proof shows that DyVu € L*(') as long as the function ¢ = D, "(n?>Dju) is a
function in H'(Q) with compact support in Q even when ' N9 # ). This is used in the
boundary regularity theory later.

By using an induction argument, we can also get higher regularity for the solution.

Theorem 3.16. (Higher interior regularity) Let L be uniformly elliptic, with a;; €
CHH(Q), b,c € C*(Q), and f € H*(Q). If u € H (Q) is a weak solution of Lu = f, then
for any Q' cC Q we have u € H*2(QY) and

(3.38) 1wl etz < C (lull 2@ + 1l zr@)

where the constant C' depends only on n,Y,Q and the coefficients of L.
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Proof. Suppose we have proved this theorem for k. Now assume a;; € Ck2(Q), b, c €
CH1(Q), fe H**'(Q)and u € H'(Q) is a weak solution of Lu = f. Then, by the induction
assumption, v € HF2(Q), with the estimate (3.38). We want to show v € HF3(Q). Fix

loc loc

' cc Q' cc Qand a multiindex « with |a| = k + 1. Let
i =D c H'(Q").

Given any & € C3°(9"), let » = (—1)l*/D*% be put into the identity By[u,¢] = (f, ©)r2(0)
and perform some elementary integration by parts, and eventually we discover

Bl [a’ 6] = (f~a z~})L2(Q)7
where

n

n
f:=Df — Z (a) - Z (DafﬁaijDBuxi)xj + ZDafﬁbiDBuxi + D> FeDPuy

BLla,f#a '8 1,7=1 i=1

That is, @ € H'(Q") is a weak solution of L& = f on Q”. (This is equivalent to differentiating
the equation Lu = f with D%operator.) We have f € L?(Q"), with, in light of the induction
assumption on the H¥+2(Q)-estimate of u,

£l 2@y < CULF N s + lull grseiam) < CULF ) + lullz2))-
Therefore, by Theorem 3.15, % € H?(Q'), with the estimate
i)l g2y < CUFllp2@n + il rzm) < CUF ey + lullz@))-
This exactly proves u € H**3(€’) and the corresponding estimate (3.38) with &k + 1. O

3.5.2. Boundary Regularity. We now study the regularity up to the boundary. For this
purpose we need certain smoothness of the boundary. We have the following result.

Theorem 3.17. (Globa_l H?-regularity) Assume in addition to the assumptions of The-
orem 8.15 that a;; € C1(Q) and 9Q € C?. Ifu € H} () is a weak solution to Lu = f, then
u € H?(Q), and

(3.39) ull r2) < CllullL2@) + [1f1lL2@)

where the constant C' depends only on n, ||aj|lw1. (), [|0ill L (@), ¢l Lo (@) and 0.

Proof. 1. First investigate the special case that €2 is a half ball
Q= B(0,r)N{x, > 0}.

and u = 0 along plane {z, = 0} in the sense of trace. Set Q' = B(0,s) N {x, > 0}, where
0 < s <. Then select a smooth cutoff function ¢ € C§°(B(0,r)) with

0<¢ <1 (Ipos =1
So (=1 on Q and ¢ = 0 near the curved part of 9.
2. Now fix k € {1,2,--- ,n — 1}. For h > 0 sufficiently small, let

p= Dk_hv, v = <2DZu.
Let us note carefully that if x €  then

21‘—6 u\xr) —ulxr — ne —ZZEUZE € — U\
gp(x):C( heg)[u(z) — u( h;g] ¢C@)[ulx + heg) — u(z)]
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Since u = 0 along {z,, = 0} and ¢ = 0 near the curved portion of 92, we see ¢ € H}().
Therefore, we can use this ¢ as a test function in (3.35) as we did in the Step 2 above. The
end result is that

Dyue H(Q) (k=1,2,---,n—1)

with the estimate
n

(3.40) Z [ Dull 2y < CUfllLz@) + llullz2o))-
kl=1,k-+1<2n

3. We must estimate || Dppul| 2. We now use the fact that the assumption a;; € ct
and the interior regularity imply the equation Lu = f is satisfied almost everywhere in
Q; in this case we say u € H foc(Q) is a strong solution. Since the ellipticity implies
ann(z) > 0 > 0, we can actually solve Dp,u from the equation Lu = f in terms of D;ju
and D;u with ¢4+ j < 2n, 4,5 = 1,2, -+ ,n. This way we deduce the pointwise estimate

Dl <C | 37 [Digul + [Vl + [u] +[f]
ij=1,i+j<2n

Hence, by (3.40),

lull 20y < CUfllz2) + llullz2@)-

4. Now it is standard to treat smooth domains by locally flattening the boundary. Since

00 is C?, at each point 2° € 90, we have a small ball B(z°,7) and a C? map y = ®(z),
with ®(2°) = 0, that maps B(2°,7) bijectively onto a domain in the y space such that

®(QN B r) c{y eR" |y, >0}
We assume the inverse of this map is z = ¥(y). Both ¥ and ® are C2. Choose s > 0 so small
that the half-ball V := B(0, s)N{y, > 0} lies in ®(QN B(2°,7)). Set V' = B(0, s/2) N {yn >
0}. Finally define

v(y) =u(¥(y) (yeV).

Then v € HY(V) and v = 0 on OV N {y, = 0} (in the sense of trace). Moreover, u(z) =
v(®(x)) and hence

uxz(x) = Zvyk((b(x))(b’;,(x) (Z = 172a T vn)'
k=1

5. We now show that v is a weak solution of a linear PDE Mv = ¢ in V. To find this
PDE, let I(y) = det 2 ( ) be the Jacobi matrix of z = = U(y); since I(y) # 0 and ¥ € C?

we have |I], |I|7! € Cl(V) Let ¢ € HY(V) with supp¢ CC V and let ¢ = (/|I|. Then
o € HY(V) with suppp CC V. Let w(z) = o(®(x)) for € Q' = U(V). Then w € H' ()
and suppw CC 2. We use the weak formulation of Lu = f: Bi[u,w] = (f,w)r2(q) and the
change of variable x = ¥(y) to compute

B4 e = [ @ul@ds = [ FE@ROIWI = 6.0,

where for g(y) = f(¥(y)). We also compute
Bi[u,w] = /, (aij () g, (2)we; (@) + bi(2)ug,w(x) + c(z)u(z)w(x)) dz

— [ (es0o (@) @5, (@) (B 8L, (0) + ey, (@) (2)u(a) + cla)u(w(a) ) da
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: I
Since @y, |I| = ¢y, — |||f|” ¢, we have

42 Biluwu] = [ (#0000 )6 0) + B0 0)C0) + S0 )dy = Bl

where é(y) = c(¥(y)),

bu(0) = S8, (0) — Y i (W)L, ()0, (W) T (k= 12,0 ),

i=1 i,,l=1

By (3.41), (3.42), it follows that

Blv,¢] = (g, Q) r2(vy for all ¢ € H' (V) with supp¢ cC V;

hence, v € HY(V) is a weak solution of Mv = g in V, where

Z Dyl akl Dykv +Zbk Dykv+ (y)
k,l=1 k=1

6. We easily have that ay € C1(V), by, ¢ € L°(V). We now check that the operator
M is uniformly elliptic in V. Indeed, if y € V and £ € R”, then, again with x = ¥(y),

n n

> an)ad =) Z 2)®F O 68 = ars(@)ne()ns(z) > 0ln(x)P,

k=1 r,s=1k,l r,s=1

where n(x) = (qu(2), - ,na(2)), with

:Zq)];r(x)gk (7':1,2,"' 7n)'
k=1

That is, n(x) = £DP(x). Hence £ = n(z)D¥Y(y) with y = ®(x). So [£| < C|n(z)| for some
constant C. This shows that

n

Z ap(y)Erét > 9|77(:x)|2 > 9/‘§|2

k=1

for some constant ' > 0 and all y € V and £ € R™. By the result with flat boundary in
Step 1, we have

v/l g2y < Cllgll2vy + vl 2evy)-
Consequently, with O’ = ¥(V"), using the fact ®, ¥ are of C2, we deduce
(3.43) lullzr2c0ny < Ol f 2 + llull2(@)-

Note that 2° € W(B(0, s/2)) := G’, which is an open set containing open set O’.
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7. Since 99 is compact, we can find finitely many open sets O} C G} (i = 1,2,--- k)
such that 92 C Ui-“:lG;. Then there exists a § > 0 such that

k
F:={x € Q| dist(z,00) < §} C U O..
i=1
Then U = (2\ F') CC . By (3.43), we have
ullzzry < CUfllz2) + lullz2@))-
By interior regularity,
1wl g2y < CUfllzz) + llullz2@))-
Combining these two estimates, we deduce (3.39). O
Theorem 3.18. (Higher global regularity) Let L be uniformly elliptic, with a;; €
CH1(Q), bi,c € CHQ), f € H¥Q), and 00 € C¥T2. Then a weak solution u of Lu = f
satisfying u € HL(Y) belongs to H*2(Q), and
(3.44) [ull g2y < CllullLz@) + 11f |7+ @)
where the constant C is independent of u and f. Furthermore, if the only weak solution
u € HE(Q) of Lu =0 is u =0, then, whenever Lu = f,
(3.45) [ull grve () < ClFllar(o)
where C' is independent of u and f.

Proof. 1. As above, we first investigate the special case

Q=DB(0,1)N{x, > 0}.
Set Q0 = B(0,t) N {x, > 0} for each 0 < t < 1. We intend to show by induction on k that
whenever u = 0 along {x,, = 0} (always in the sense of trace), we have u € H**2(Q;) and
(3.46) [ell sz < Cllull2@) + 1 ln0)-

Suppose this is proved with k. Now assume a;; € C**2(Q), b;,c € CKT1(Q), f € HF1(Q),
and u is a weak solution of Lu = f in 2, which vanishes along {z, = 0}. Fix any 0 < ¢t <
r < 1. By induction assumption, v € H¥2(Q,), with

(3.47) [ull grra,) < CllullLe) + 1 f 1l mr@))-
Furthermore, according to the interior regularity, u € H l’j}iS(Q)

2. Let o be any multiindex with |o| = k + 1 and a,, = 0. Then @ := D% € H'(Q)
and vanishes along {z, = 0}. (For example, this can be shown by induction on |«| using
the difference quotient operator D;l) Furthermore, as in the proof of the interior higher

regularity theorem, @ is a weak solution of Lu = f in , with the same f as above. This f
belongs to L?(Q,) and

HJFHB(Qr) < O fll w1y + llullz2@))-
Consequently, @ € H?(£);), with
i)l 20y < CUF 2 + @l 2,) < CUF N ar ) + lullz2@)-
This proves
(3.48) ID%ull 2,y < CUIf Il re+1 () + Nl 20y
for all 8 with |f| =k + 3 and 8, =0,1,2.
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3. We need to extend (3.48) to all 8 with || = k + 3. Fix k, we prove (3.48) for all 3
by induction on j = 0,1,--- ,k + 2 with £, < j. We have already shown it for j = 0,1, 2.
Assume we have shown it for j. Now assume  with |3| = k+ 3 and (8, = j + 1. Let us
write § =~y + 9, for § = (0,---,0,2) and so |y| =k + 1. Since u € Hl’zjg’(Q) and Lu = f in
Q, we have D7Lu = D7 f a.e.in ). Now

DYLu = ap,DPu + R,

where R is the sum of terms involving at most j derivatives of u with respect to z, and
at most k + 3 derivatives in all. Since ap, > 6, we can solve D%u in terms of R and D" f;
hence,

ID%ull 20y < CUIFlme ) + lull2@):
By induction, we deduce (3.48), which proves
[ull grrs )y < CULF I aE @) + ullz)-

This estimate in turn completes the induction process on k, begun in step 2. This proves
(3.46).

4. As above, we can cover the domain Q by finitely many small balls and use the method
of flattening the boundary to eventually deduce (3.44).

5. We prove the last statement (3.45) for £ = 0; the more general case is similar. In
view of (3.44), it suffices to show that

lull2) < Cllfllz2 @)

If to the contrary this inequality is false, there would exist sequences u,, € H?(Q) N HZ ()
and f, € L*(Q) for which |juy|l2 = 1 and || f,||2 — 0. By (3.44) we have ||uy,||2,2 < C. Thus
we can assume that u, converges weakly to u in H?(2) and strongly in L?(£2). For fixed
v € HY(Q), the functional I(u) = Blu,v] € (H?(£2))*, and so by passing to the limit in

l(up) = Blup,v] = / favdz  for all v e HYR)
Q

we see that Blu,v] = 0 for all v € H}(Q) and thus u is a weak solution of Lu = 0. Hence,
u = 0 by weak uniqueness. This contradicts ||ul|2 = limy,—e0 [|un||2 = 1. O

Finally, we iterate this regualrity theorem to obtain
Theorem 3.19. (Infinite smoothness) Let L be uniformly elliptic, with a;;, b;, ¢, f€
C>=(Q), and 90 € C*. Then a weak solution u € H} () of Lu = f belongs to C*(Q).
3.6. Regularity for Linear Systems*

In this extra section, we study the regularity problem for weak solutions of elliptic second-
order linear systems. The methods include some direct generalization of linear equations
and some new techniques.

Let A(z,£) = A(z) € be a linear matrix function of £ given by
(A, €)= (A@)E): = A (1)),
where A%ﬁ € L>°(Q). Consider the linear partial differential system



3.6. Regularity for Linear Systems* 77

2
loc

(©2). We also write this system as
—div(A(x)Du) = g — div f,
where g = (¢%), f = (f%). Recall that u € H. (S RY) is a weak solution of (3.49) if

where we assume ¢*, f, € L

(3.50) /Q A(2)Du - Dé(z) dz = / (9(2) - (x) + [(x) - D(x)) du

Q
holds for all ¢ € C5°(;RY). Since A%-B € L>(Q), the test function ¢ in (3.50) can be
chosen in H}(€V;RY) for any subdomain Q' CC Q.

The regularity for system (3.49) relies on certain ellipticity conditions. We shall assume
one of the following conditions holds: with some constant v > 0,

(H1) A () €685 > v
(H2) A%ﬁ are constants, A%’B Papsd'd > vpl*a*.
(H3) A € C(Q), AF (@) papsa'd’ = v IpPlal’.
Under such a condition, we shall have the following Garding inequality holds:
(351) A@Dw-Dozw [ DuP-n [ WP Vee HBR),
Br Bg Bg

where vy > 0, v > 0 are constants. For, under the hypothesis (H1) or (H2) the Garding
inequality (3.51) holds with vy = v, v1 = 0, and under (H3) the inequality (3.51) also holds
(see Theorem 3.8).

3.6.1. Caccioppoli-type Estimates. Assume u € Hlloc(Q; RM) is a weak solution of
(3.49). Almost all the estimates pertaining to regularity of u are derived using test functions
of the form ¢ = n (u—\), where 7 is a cut-off function which belongs to WOI’OO(Q’) for certain
Q' cc Q. Let B, CC Br CC £ be concentric balls with center a € ). Let
1 if0<t<p,
— R—t
0 ift > R.
Let ¢ = (,,r(z) = 0(Jx — a|). Then ¢ € Wol’OO(Q) with supp ¢ € Bg and
_ Xp,R
3.52 0<¢<1 =1, |D{| <~
( ) _C_ ) C‘Bp ’ ’ C‘_R_pa

where X, r = XBp\B,(7) is the characteristic function of Bg \ B,. Define
p=Cu—=2A), ¢=Cu—A)=Cy.
Then 1, ¢ € H}(Bg; RY) and
D¢ =(DYp+v @D, Dip=C_Du+ (u—\)® DC.
Using ¢ as a test function in (3.50) yields

/B(g-<b+f~Dd>) — [ A@Du- Do

Bgr

= A(z)Du - (DY + A(z)Du -y ® DC.
Bgr Bgr
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Note that
A(z)Dy - Dy = A(x)Du- (D + A(z)(u — \) @ DC - D,

(z)
A(@)Du-¢v @ D¢ = A(x)(Du-(u—A) ® D¢
= A(x)Dy¢ - (u—A) @ D¢
— A@)(u—A)@D¢-(u—A)® DC.
Therefore, it follows that
A(z)Dy - Dy = A(z)(u — A) ® D¢ - Dy
Bgr Br
+ [ @or1Do)~ [ A@DE- (=N @D
Bgr Br

+ / A(x)(u—A) @ D¢ - (u— ) ® DC.
Br

(Note that the first and third terms on the righthand side would cancel out if A(x)¢ -7 is
symmetric in &, n.) Then, by (3.51), it follows that

I/()/B ]Dw\z < A(:U)Di/}-Dl/J—i—Vl/B |¢|2

Bpgr

R R T

- A A2
+ o f py Xerlt=AL ’W‘M/ = AP
Br R—p By (R—p)? Br

Using the Cauchy inequality with €, we deduce

/BR\B Ju— AP +‘/BR9 o + / |f|2+V1/BR|“A|2]'

Since ¥|p, = u — A, this last estimate (3.53) proves the following theorems.

(3.53) /B |Dy> < C

Theorem 3.20. Let u €
(H1) or (H2) holds. Then

HE (Q;RY) be a weak solution of (3.49). Assume either condition

=) R Ry

for all concentric balls B, CC Br CC £) and constants \ € RN, where ¢ = Cp,r and C >0
is a constant depending on the L -norm of A%ﬁ.

(3.54) / |Du*> < C
By

Theorem 3.21. Assume condition (H3) holds. Then

o B ol f e

for all concentric balls B, CC Br CC Q and constants A € RN,
P

(3.55) / |Dul* < C
By

Corollary 3.22. Letu € H. (;RY) be a weak solution of (3.49). Assume either condition

(H1) or (H2) holds. Then
lu — )\|2 / 2
+ [u—Al- g + [f]
/BR\BR/Q Rr? Br ( )

(3.56) / |Dul? < C
Bpr/2
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for all balls Bg CC Q and constants A\ € RY.

Remark 3.13. 1) The estimates (3.54), (3.55) and (3.56) are usually referred to as the
Caccioppoli-type inequalities or Caccioppoli estimates.

2) In both (3.54), (3.55), we keep the term fBR g-C%(u — ) in the estimates. We shall
see later that this term needs a special consideration when we deal with higher regularity
for weak solutions, especially when g is of the form of quotient difference.

As an application of these Caccioppoli estimates, we prove the following results of
Liouville’s theorem.

Corollary 3.23. Suppose u € Hlloc(R";]RN) is a weak solution of
(3.57) —Do(AS (2) Dgul) = 0,
where coefficients A%ﬂ(a:) satisfy (H1) or (H2). If |Du| € L*(R™), then u is a constant.

Proof. By (3.56), it follows that

C
/ DuP < & u— AP
Br/2 R Br\Br/2

1
~ IBr\ Br/s| Br\Bg/s

We choose

Then the Poincaré inequality shows that

/ lu— A2 < c(n) R2/ | Dul?.
Br\Br/2 Br\Br/2

Therefore

/ Du? < C |Dul?.
Br/a Br\Bgr/2

Adding CfBR/2 |Du|? to both sides of this inequality (a.k.a.the hole-filling technique of

Widman), we obtain
C
/ |Dul? < / | Dul?.
Br/a ¢+1 Br

Letting R — oo we have

/ |Du]2dx§0/ | Dul|? dz.

Since CLH < 1 we have [, |Dul* =0 and thus Du = 0; hence u = constant. O

Corollary 3.24. Assume either condition (H1) or (H2) holds. Then any bounded weak
solution u € HL (R*RYN) to (3.57) for n =2 must be constant.

Proof. Let |u| < M; then by the Caccioppoli inequality (3.56) with A = 0 we have

/ |Dul*dz < CM < 00, YR>0.
Br2

This implies |Du| € L?(R?); hence by the result above, u is a constant. O
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3.6.2. Regularity — Difference Quotient Method. This is completely similar to the
scalar case studied above.

Assume u € H} _(Q;RY) is a weak solution of linear system
—div(A(z) Du) = g — div f.

This means
| @) Du(w) - Do) do = [ g(a) - 6()do+ [ f(@)- Do) da
Q Q Q
holds for all ¢ € Wy (V3 RY). If 0 < || < dist(€; 9Q) we have

/ A(x + hes) Du(x + heg) - Do(x) dz
Q

= / g(x + hes) - ¢(x) dz + / f(z + hes) - Dp(x) dx.
Q Q
Subtract two equations and divide by h to get

/A(x+hes)DDQu-D¢ = /Dgg(x)-qs(a;)dx
Q Q

4 / D! f(x) - Do(a) da — / D! A(z) Du(z) - Dé(x) da.
Q Q
This shows that v = Du is a weak solution of system
(3.58) — div(A(x + hes) Dv) = D'g — div(D" f) + div(D" A Du) on Q.

Assume that Garding’s inequality (3.51) holds. Then we can invoke the estimate (3.53)
with A =0, p = R/2 to obtain

1
(3.59) [ e <c[[ ipbul| [ Dlgeo
BR BR R BR
+ [ (DESP 4 mlDuf? + [DEAP|DUP)
Br
where ¢ = ¢ Du, ¢ = ¢ DM and ¢ = Cry2,r 1s defined as before. Note that

—| Dlg-¢ = /QD?g-cb:/Qg-D;hcb

Br
= /g-C(l‘—hes)Ds_thr/g-wD;hC
Q Q
I+1II.

We estimate I, I as follows.

/ gl - 1D < e / DT 4 C / g2
Q Qf Q

e/|Ds¢|2+ce/ \gPSe/ |Dw|2+c€/ 92,
Q o Br o

where ' CC Q is a domain containing Bg.

_ C
1< [ Dkl IDsel < 5 [ loP o [ Db
Bgr Q Br

1|

IN

IA
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Combining these estimates with (3.59) yields
| 1Dek <c® [ (1Dhl? 1P + |DLsE + DEAPIDuP)
Br %
Since Y = Di}u and Dy = D?Du on Br/; we have

(3.60) / \DQDUPSC(R)/ (IDkuf? + lgf? + DL 7P + |DEAP|DuP).
Br/a 94

Finally, if we assume f € H} (€;M"*") and A(z) is Lipschitz continuous with Lipschitz
constant K then

[ 1D < [ IDAP DR < K,
where Q' cC Q" CC , and hence by (3.60) we have

/ |ID'Du}(z)de < M < ooV |h| << 1,
Bpr/2

and thus Dg;Du exists and belongs to LQ(BR/Q;MNX") for all s =1,2,--- ,n. This implies
H? (9Q;RY). Therefore, we have proved the following theorem.

Theorem 3.25. Suppose A € C(Q) is Lipschitz continuous and the Gdrding inequality
(3.51) holds. If g € L} (S5 RY), f € HE (Q;MN*") and u € HL (S RYN) is a weak solution
of the system

—div(A(xz) Du) = g — div f
then u € HZ (S RN).

The following higher regularity result can be proved by the standard bootstrap method.

Theorem 3.26. Suppose u € H} (Q;RY) is a weak solution of the system

loc
—div(A(z) Du) = g — div f

with A € C*1(Q) (that is, D¥A is Lipschitz continuous) satisfying the Gdarding inequality
(3.51) and g € HE (O ]RN) f e HL(Q,MN*), Then u € HFP2(Q; RN).

loc loc

Proof. Let ¢ € Cg°(;RY); then we use ¢ = Dgi) as a test function for the system to
obtain

/D x) Du) Dl/}dx—/Dsgzp—i—/Dwa
Since Ds(A(x) Du) = (DsA) Du + A(x) DDgu we thus have
/QA(:L’) D(Dgu) - Dy = /QDsg S+ /Q (Dsf — (DsA) Du) - Dy
This shows v = Dyu € H} (Q;RY) is a weak solution of
—div(A(z) Dv) = Dyg — div(Dsf — (DsA) Du),

and hence v € H2 _(;RY); that is, u € H (;RY). The result for general k then follows
from induction. U

Remark 3.14. Note that if 4, g, f are all of C* then any weak solution u € H}. (£ RM)
must be in C°(9; RY). We also have the following result.
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Theorem 3.27. Assume (H2) holds. Let u € H} (S5 RN) be a weak solution of
(3.61) —Do(AY Dgu?) =0, i=1,2,..,N.
Then u € Hl]f)c(Q;RN) forallk=1,2,... and
ull e (g pmyy < C (K, R) |ull 25wy
for any ball Br CC €.

Proof. By the Caccioppoli-type inequality, we have for any weak solution u of system (3.61)

C
Du2d:1:§/ ul? dz.
/BP' Nl

The regularity result shows that u € W'ZIZ’CZ(Q;RN ) for all £ and then it follows that any
derivative D¥u is also a weak solution of (3.61). Therefore, the conclusion will follow from
a successive use of the above Caccioppoli inequality with a finite number of R/2 = p; <
p2 << pg = R. g

In exactly the same way as the scalar equations, we obtain the global H?-regularity.

Theorem 3.28. (Global H?2-regularity) Let Q2 be C?. Suppose A € C1(Q) and the
Gdrding inequality (3.51) holds. If g € L2(;RY), f € HY(Q;MNX") and v € HY(Q;RY)
is a weak solution of the system

—div(A(x) Du) = g — div f
then u € H*(Q;RY) and we have
(3.62) [l 720y < Clgllz2@) + 1 f @) + lwll2 @)

where the constant C depends only on ) and the coefficients.

3.6.3. Morrey and Campanato Spaces. Let {2 C R" be a bounded open domain. For
z€e€R™ p>0let

Qz,p) ={y € Qlly — x| <p}.
Definition 3.15. For 1 < p < 0o, A > 0 we define the Morrey space LP*(; RY) by

LPAMORY) = { w e LP(Q;RY) ’ sup p /Q( | |u(z)|P dr < oo
a.p

a€eQ
0<p<diame
We define a norm by
1/p
[ull pr@ryy = sup (ﬂ’\/ lu(z)|P dx) )
agQ Qa,p)
0<p<diame

Theorem 3.29. LP*(Q;RY) is a Banach space.
Lemma 3.30. (Lebesgue Differentiation Theorem) If v € L} () then

loc

lim lv(x) —v(y)|dy =0
P=0J B,(x)

for almost every x € (.



3.6. Regularity for Linear Systems* 83

Theorem 3.31. (a) If A > n then LPA(Q;RY) = {0}.
(b) LPO(Q;RN) =2 LP(Q;RY); L (Q;RY) =2 L°(Q; RY).
(c) If1<p<g< oo, % > "B, then Lot (RN € LPA(Q; RN).

Proof. (a) By Lebesgue’s differentiation theorem,

(3.63) |u(a)| = lim lu(x)| dz, Y a.e. a €.
P70 Q(ap)

Now, by Hélder’s inequality,

1/p
A—n
oy | \u(x)\dxs<][ ru<m>rpdx) < Cp" 7 oz,
Q(a,p) Q(a,p)

If A > n, letting p — 0 we have u(a) = 0 for almost every a € Q; thus u = 0.
(b) That LPO(Q; RY) = LP(Q; RY) easily follows from the definition. We prove LP"(; RY) =2
L®(Q;RY). If w € L°°(Q; RY), then

[ qu)de < C full
Qa,p)
so that ||ul| e < Clulleo. Suppose now u € LP7(£;RY). Then by (3.63), (3.64)

u(a)| = lim ul < Clull Lo @r)-
p=0J Q(a,p)
Hence [|u| oo qrny < C |ul[ gon(qryy- Therefore LP(Q;RN) =2 Lo°(Q; RY).
(c) We first note that u € LPA(Q;RY) if and only if fQ(a ») lu(z)[Pdz < C p* for all
a € Qand 0 < p < po = min{l, diamQ}. Suppose u € L (Q;RY). Then, by Holder’s
inequality, for all a € 2, 0 < p < pp < 1,

/ luf? da
Q(a,p)

p

Qa, p) ( / u|de>
Q(a,p)

r
q

IN

IN

o™ (IIUHLq wrn) P

IN

_l’_ _np
Cpq " HuHLq,u QRN)

IN

Cp ”uHLqu (RN )

where we have used the assumption % +n— % > X and the fact 0 < p < 1. Therefore,
u € LPA(Q; RY). O
Definition 3.16. For 1 < p < 0o, A > 0 we define the Campanato space £P*(Q;RY) by

LPMNGRY) = {w e LP(Q; RY) ‘ sup ,0_)‘/( ) )
Q(a,p

aEQ
o<p<diame

where u,, is the average of u on Q(a, p). Define the seminorm and norm by

1/p
[Wlcprryy = sup <pA/ |u—ua,p|pdq:) ,
agQ Q(a,p)

0<p<diame

lull cororyy = ullr@ryy + [ul 2o @rny)-
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Remark 3.17. For the estimates on linear elliptic systems of second-order partial differen-
tial equations, only spaces L>*(Q;R™) and £2*(€2; RY) are needed. The spaces with other
p > 1 are useful for nonlinear problems; however, we shall not study the nonlinear problems
in this course.

For 0 < a < 1, we define the Holder space C%*(Q);R") by
COo(@RY) = {v e L=(URY) |Ju(@) - v(y)| < Cla —y|*, ¥a, y € 2}

and define the seminorm and norm by

[v]coa@ryy = sup )
(RY) T, yeN |33 - y‘a
Y
[vllcoa@ryy = lvllpe@rny + [U]co.a@rny-

Theorem 3.32. Both LPA(Q;RY) and C%*(Q;RYN) are Banach spaces.

Theorem 3.33. (a) For any p > 1, A >0, LPA(Q;RY) c £PA(Q;RN).
(b) For any 0 < a <1, CO*(Q;RYN) c £pmtre(Q;RV).

Proof. (a) Note that

- 1Q(a, p)[ V7.

1/p
(/ |U(y) - 'Ua,p’p d.%') < HUHLP(Q(a,p) + ‘va,p
Q(a,p)

It turns out that we can exactly estimate the two terms on the right-hand side by
A
9]l 2o (ap)) < 2P 10l Lor ),

[vapl - 19a; p)| P < PP 0]l Loy
so that it follows that
[W]eramryy < 2|0 2o @erny.-
Hence LPA(Q;RN) C LPA(Q;RY).
(b) Assume v € C%*(€; RY). Then

[v(z) —vapl = | (v(z) —v(y)) dy|
Q(a,p)

leveam) - o=yl dy
Q(a,p)

IN

< [v]eoa@ryy - (20)%.

Hence

and hence

(3.65) [v]cpntpa(rry < C [V]go.a@mn)-

The proof is complete. H

In order to study the properties of Campanato functions, we need a condition on domain
Q) introduced by Campanato.
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Definition 3.18. We say that (2 C R™ is of type A if there exists a constant A > 0 such
that

(3.66) 1Qa,p)| > Ap", VaeQ, 0<p<diamQ.

This condition excludes that 2 may have sharp outward cusps; for instance, all Lipschitz
domains are of type A.

Lemma 3.34. Assume Q is of type A and u € LPA(Q;RYN). Then for any 0 < r < R <
00, a € it follows that

_1 A _n
’ua,R - ua,r| < 2A »Rrr ». [U]ﬁp,/\(Q;RN).

Proof.
1
|Ua,R - Ua,r‘| Qa,r)[P = ||“a,R - “a,rHLP(Q(a,r))
< = ua,Rl Lr((ar)) + 14— Uay || Lr©ar))
< = uarllLr((e,r) + lv = tarllLe @)
A A
< [ulgprryy B? + [u] g rny TP
A
< 2[ulgraoryy R7.
Hence the lemma follows from the assumption that |Q(a,r)| > Ar™. O

Theorem 3.35. If Q is of type A then LPA(Q;RY) = LPAQ;RY) for 0 < X < n.

Proof. We only need to show £PA(Q;RY) ¢ LPA(Q;RY). Let u € £PA(Q;RY). Given any
a €, 0 < p<diam(2, we have

IN

[ull Lr (2(a,p)) 1w = wapll e 9(ap)) T 1Uapllr©a,p))

2 n
< [ulgerryy p? + Cluaplp?.

We choose an integer k large enough so that Q(a,2%p) = Q. By Lemma 3.34, we have
k—1
|ua7p‘ < |ua,2kp‘ + Z |ua,2j+1p - ua,2jp|
§=0
k—1 )
fug| + 3" 2477 (27+1)
§=0

2
p

IN

(27p)" % - [u] or oy

=

A—n .
< Jual+Cp P [u]gramny - Z 9i(A=n)/p
j=0
A

< \UQIWLC[U]L:M(Q;RN)P v )

where ug is the average of u on €2 and therefore [ug| < C(Q) ||ul L»(o;r~). Combining these
estimates, we deduce

2 n
[ullLr(@a,p)) < C [Uulgrr@mryy p? + Cllulloryy P
and, by dividing both sides by p% and noting A < n,

A
p 7 [ullr@ap) < C ulrr@ryy + C(Q) [[ull o oirmy.-
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This proves
[ull Lor irvy < C(Q) [[ull o (@my.-
d

Remark 3.19. Note that £P7(;RYN) 22 LP(Q;RY) = L°(Q;RY). For example, let
p=A=1,n=N=1and Q= (0,1). Then u = Inx is in £1(0,1) but not in L11(0,1) =
L>(0,1). In fact, LP"(;RYN) =2 BMO(Q;RY), which is called the John-Nirenberg space.
Theorem 3.36. (Campanato 63) Let Q be of type A. Then forn < X < n+p,

A—n

LPAORY) = OO RY), = =

whereas for X > n + p we have LPA(Q;RN) = {constants}.

Proof. 1. Assume A\ > n and v € LPA(Q;RY). For any z € Q and R > 0 we define

o(z) = li .
o) = i v g
We claim © is well-defined and independent of R > 0. We first show the limit defining o(x)
exists. We need to show the sequence {v, 1 } is Cauchy. For h > k we have, by Lemma
2

3.34,

h—1
v.. R —VU, R| < V. R —U, R
Ts5h x’2T| - |x,2—] 17W|
Jj=k
1 A—n h=1 ji(n—=X\)
S 2A p[v]ﬁp,)\(Q;RN)R p E 2 »p s
Jj=k

which, since A > n, tends to zero if k, h — oco. Therefore {v, i1 } is Cauchy and the limit
72

0(z) exists. Also in the inequality above, if £ =0 and h — oo we also deduce
A=n
(3.67) [ve,r — 0(2)| < C V] prmryy - R 7 .
We now prove 0(z) is independent of R > 0. This follows easily since by Lemma 3.34

=0.

m v, R —v

li o
k—o0 ok T3k |

2. By Lebesgue’s differentiation theorem, we also have ©(z) = v(x) for almost every
x € Q. Therefore ¥ = v in LPANQ;RY). We claim 5 € CO¥(Q;RY), where o = %. To
show this, let z, y € Q and = # y. Let R = |z — y|. By (3.67) it follows that

6(e) ~ 3)| < 10(2) — wan] + [55) — vy2m] + e — 25
< Cllgpapryy - B +|vs2r — vy 2R|-
We need to estimate |v; 2p—vy 2r|. To this end, let S = Q(z,2R)NQ(y, 2R). Then Q(x, R) C
S and hence
|S| > |2z, R)| > AR".

On the other hand, we have

1
ISP - |vzor —vy2r| = |vz2r —vy2rllLes)
< Nve2r = vllees) + vy 2r = vlle(s)
< ve2r = lze@2r) + 1vy2r — vlie@,2r))

IA

2 [v] o ey - (2R)MP.
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Combining the above two estimates we have

[ve2r = vyarl < Clolgaopn) B 7 = Cllga@an - R®
and hence
[0(2) = 0(y)| < C[v]gormn) - [ —y[*
This shows
[0]co.a@mny < C0] g @mrny-

Finally, observe that, by (3.67) with R = diam(2,

||77HL00(Q;RN) < |va|+C [U]EM(Q;RN) - R*
< CQ) [l praryy + C() [v] 2o @rM)
= C()[[vllzoarmy-
3. We have thus proved that if A > n then every v € LP*(€; RY) has a representation
¥ which belongs to C%%(Q; RY) with a = (A —n)/p. If A > n +p then o > 1 and any u €

C%(Q; RY) must be a constant (why?). The proof of Campanato’s theorem is complete. [

In order to use the Campanato spaces for elliptic systems, we also need some local
version of these spaces. To disperse some technicalities, we prove the following lemma.

Lemma 3.37. Let p = 1,2 and u € L} (RYN). Then the map E — [ |u — ug|P is
nondecreasing in subsets E CC ).

Proof. We prove the case p = 2 first. Let £ C F CC ). Then
/|u—uE|2 = /]u—up—i—uF—uE\Q
E E
_ /|u—uF|2—|—2(uF—uE)-/(u—uF)—|—|E|-|uF—uE2
E E
— [ e = Bl ur - P
E
< /|u—uF]2.
F
We now prove the case p = 1. Note that
/|qu| = /|uuF+uFuE]
E E
< /|u—uF|+/|uF—uE\
E E
- /\u—qu—/ = up| + || - Jup — ug).
F F\E

(3.68) \B| - jur — ug| g/ -
F\E

Thus we need to prove
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Note that, by Jensen’s inequality,

][ lu—up| > ][ (u—up)
F\E F\E

= ! \F\E]uF—/ u
F\E

|F'\ E|
_ 1“ﬂ1¢—@]u—/u+/u
[F\E| ! e e

1
_ _IEl _
ATz
and hence (3.68) follows. O

Theorem 3.38. Letp=1,2 and u € LfOC(Q;RN). Assume there exists a constant C,, > 0
and o > 0 such that

/ lu —up,|P dr < Cy p”
By

holds for all balls B, CC Q. Then for any subdomain ' CC Q we have u € LPA QRN
and moreover

[ull 2o (ririy < C(Q) [Ch/? + [ull Lo mmy)-

Proof. Let ' CC Q be given. We will show u € LPA(Q;RY). Let d = dist(Q';99). Given
any a € 2 and 0 < p < diam(Q'). If p < dist(a; 9) we have by the previous lemma,

[ — ugy(q,p) | dz < / lu—up (o) dz < Cu p.
/ma,p) & (@) o

o(a

If p > dist(a; 0€2), then p > d > 0 and hence

2P ||UHI£p(Q/-Rn) A\
/ [u — uqr(q,p [P dz < 2P / lulP dv < ——————=p".
Q' (a,p) Q' (a,p) d

Therefore, for all a € ', 0 < p < diam(€') it follows that

/‘ gy a P <
@ (a,p)

and hence by definition u € £P*(€; RY) and moreover

2 lulf,

Cy + >

)

Q/;R7
) ] p)\

[t] oy < C(Y) [CHP + [Jull oo vy -
The proof is complete. ]

Theorem 3.39. (Morrey) Let u € VV;;S(Q;RN). Suppose for some > 0 we have

/ |DufPde < Cp" PP, VB, cc Q.
P
B _
Then for any ' CC Q of type A, we have u € C’O’?(Q’;RN).
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Proof. Using the Poincaré type inequality

(3.69) / lu— up, | dz < Cy R / \Dul da,
BR BR

we have for all balls B, CC {2,

/ |u—up,|dr < C’np/ | Dul| dx
B, B,
11
< Copl|Dullpe,panv=ny - [Bpl™ P

n—p+p8 n(l—l)
p

< Cp-p 7 -p
i B _
Therefore, by Theorem 3.38, u € L% (V;RN) 22 %% (V3 RY). O

When § = 0 Morrey’s theorem has to be replaced by the John-Nirenberg estimate; see
G-T, P. 166, Theorem 7.21.

Theorem 3.40. (John-Nirenberg) Let u € WH(Q;RY) where Q is convex. Suppsose
there exists a constant K such that

(3.70) / |Duldr < KR"™™' VYaecQ, R<diamQ.
Q(a,R)
Then there exist positive constants og and C depending only on n such that
(3.71) / exp (g lu — UQ]> dr < C (diamf2)",
Q K

where o = o |Q] (diam)~".

Remark 3.20. The set of all functions u € W1(Q;RY) satisfying (3.70) is the space
BMO(;RY) introduced by John and Nirenberg, and for € cubes or balls it follows that

BMO(Q;RY) = P (Q; RY), Vp>1.

For the proof of all these results and more on BM O-spaces, we refer to Gilbarg-Trudinger’s
book for a proof based on the Riesz potential, and Giaquinta’s book on the Calderon-
Zygmund cube decomposition.

3.6.4. Estimates for systems with constant coefficients. We consider systems with
constant coefficients. Let A = A%B be constants satisfying hypothesis (H2). We first have
some Campanato estimates for homogeneous systems.

Theorem 3.41. Let u € H. (4 RY) be a weak solution of
(3.72) DoAY Dgul) =0, i=1,2,...,N.

Then there exists a constant ¢ depending on A?jﬁ such that for any concentric balls B, CC
Br CC Q,

(3.73) / lul*dz < c-(p)”/ lu|? dz,
R Br

P

(3.74) [ umun e < e (2 [ juupP s,
B, R Br
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Proof. We do scaling first. Let Br = Bg(a), where a € Q. Define
v(y) = u(a + Ry),

where y € D = {y € R"|a + Ry € Q}, which includes B;(0) in the y-space. Note that
v e HE (D;RY) is a weak solution of

loc
Dy, (A3 Dy 07) = 0.

Then the Caccioppoli estimates show that

[ollwras, H0)ry) < CE) V2B 0ry), VE=1,2,..

and hence for all 0 < t < 1/2 it follows that

/ WPdy < )t s Jo(y)?
B:(0) yEBl/Q(O)

IN

() " 10y (s, , 0mn)
< cn,k)t" HUH%Z(Bl(o);RN)?

where we have chosen integer k > n/2 and used the Sobolev embedding W*?2(B; 5(0); RY) <
CO%(By /2(0); RY) for some 0 < o < 1. Now if t > 1/2 we easily have

/ lv|? dy < 2" " / lv|? dy.
B;(0) B1(0)

Therefore we have proved

/ lv|> dy < C(n)t" / lv*dy, VO <t<l.
B:(0) B1(0)

Rescaling back to u(z) and letting p = tR we have

/ 2 dz < C(n) (2 / W2de, Vp< R < dist(a; 00);
By(a) R JBra)

this proves (3.73). Note that Du is also a weak solution of (3.72); therefore, by (3.73) it
follows that

/ |Du|?dz < C(n) (E)” : / |Du?dz, Vp< R < dist(a;00).
By(@) R Jer

Suppose 0 < p < R/2. Then we use the Poincaré inequality, the previous estimate and the
Caccioppoli inequality to obtain

/ \u—qu|2d9: < c(n)p2-/ |Dul|? dz

P p

< Cmp Ly /B |Duf? da
R/2

IN

P \n
Clo) ()42 [ =, do.
R
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Now if p > R/2 we easily have

/\uquFdx — / i — g2 di — |B,| - Jup, — upy?
B, B,

< / lu —up,|? dx
Bgr

< 2n+2 (2)n+2/ |U—UBR‘2dl’.
Br

Therefore, for all 0 < p < R < dist(a; 092),

/ o — ug, [2dz < Cln) (22 / () — up, | de
R Br )

P

The proof of both (3.73) and (3.74) is now complete. O

In (3.73) and (3.74), if we let R — dist(a; 02), we see that both estimates also hold for
all balls B, CC Bgr C ). We state this fact as follows.

Corollary 3.42. Both estimates (3.73) and (3.74) hold for all balls B, CC Br C Q.

In the following, we consider the nonhomogeneous elliptic systems with constant coef-
ficients:

(3.75) Do(AY Dgu?) = Do f, i=1,2,--.

Theorem 3.43. Let A?‘jﬁ satisfy hypothesis (H2) and u € W?(SRN) be a weak solution

loc

of (3.75). Suppose f € EQ’/\(Q;MNX") and 0 < A <n+2. Then Du € £2’)‘(Q;MNX").

loc loc

Corollary 3.44. Under the same assumptions, if f € C’lOO’éL(Q;I\\/JINX”) and 0 < p < 1 then
Du € CYH(€; MN ™).,

loc

Proof of Theorem 3.43. Let ' cC Q" cC Q. Let a € Q' and Bg(a) = Br C Q". We
write u = v +w = v + (u — v), where v € H'(Bp;RY) is the solution of the Dirichlet
problem
{div(A Dv)=0 in Bpg,
v|oBg = U.
The existence of solution v follows by the Lax-Milgram theorem. We now by Corollary 3.42
have for all p < R

(3.76) / Do — (Do)g, P de < - (2)n+2 / Do — (Do), 2 da.
B, R Br
From this we have

/ Du— (Du)p, |2 da

p

= /B |Dv + Dw — (Dv)p, — (Dw)Bp|2dac

P

< C- (%)"*2 /B |Dv — (Dfu)BR\2 dx —|—/ |Dw — (Dw)Bp\Qda:
R P

IN

01-(2)”“/ IDu—(Du)BR\QdaerCg/ |Du — Dvl|? dx.
BR BR
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Since u — v € VVO1 ’2(B r;RY), we use the Legendre-Hadamard condition to have
V/ |Du — Dv|*dz < AD(u—v)-D(u—v)dx
Bgr Br

= [ (=) Dlu-v)ds
Br

< V/ |Du — Dv|*dx + C, |f — fB|* da
2 BR Br

and hence
/ ’DU—DU|2 dx S Cy / ‘f_fBRde S CI/ [f]%Z,/\(QH;MNXn) 'R)\'
Bgr Br
Combining what we proved above, we have

/ |Du — (Du)p |*de < Cj - (p)”+2/ |Du — (Du) g, |* dz
) ’ R Br

+ 03 [f]z‘,Z,A(Q//;Man) ° RA.
Let
®(p) = / |Du — (Du),|* da.

P

Using the Campanato lemma below, it follows that

®(p) < Cy [(g)A‘I’(R) + [f]%w(m;Man) -

Now we have

/ Du— (Du)griap < / Du— (D), (o)
Q' (a,p) Q' (a,p)

< [ 1Du- D, = ()
P
S 05 p)\ (”DUH%?(Q“,MNX") + [f]%Q,)\(Q//;MNXn)).
Therefore
[Du]ﬁz,A(Q/;Man) < C (||DUHL2(QN;MNXTL) + [f]EQ’A(Q“;MNX"))'
The proof is complete. O

Theorem 3.45. (Campanato Lemma) Let ®(t) be a nonnegative nondecreasing function.
Consider the inequality

(3.77) B(p) < A [(%)a +e| ®(B)+BR' Vp<R< R,

where A, B, a, B, € are positive constants with o > [3. Then there exists ¢g = €o(A, a, 3)
such that if (3.77) holds for some 0 < e < ¢q then

o(p) < C [(Z)ﬂé(R)JerB] Vp < R < Ry,

where C' is a constant depending only on «, 5, A.
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Proof. For 0 < 7 <1 and R < Ry, (3.77) is equivalent to
O(TR) < AT (1 +er™ ) ®(R) + BR".

Let v € (B, a) be fixed and choose 7 € (0, 1) so that 247% < 77. Let ¢9 = 7¢. Then, if
(3.77) holds for some 0 < € < ¢, we have for every R < Ry

®(TR) < 77 ®(R) + BR®
and therefore for all k =1,2,---
(I)(Tk+1R) < 77 (I)(TkR> + B7* R

k
< 7* D7 9(R) + B RP ZTJ'(V*/J’)
=0

C7**+D8(&(R) + B RP).

IN

Since ®(t) is nondecreasing and 7¥T2R < p < 7FT1R for some k, we have
B B
B(p) < C (%) (®(R) + BR®) = C [(1’;) ®(R) + Bpﬁ] :
as desired. The proof is complete. ([l

3.6.5. Schauder estimates for systems with variable coefficients. We now study
the local regularity of weak solutions of systems with variable coefficients. We first prove
the regularity in the Morrey space Lli’i‘(Q) for the gradient of the weak solutions.

Theorem 3.46. Let A%ﬁ(a:) satisfy the hypothesis (H3) and u € lef(Q;RN) be a weak
solution of system

(3.78) Do (A () Dgu!) = Do f-

Suppose f € L*MQ;MN*™) and 0 < A < n. Then Du € L2 (Q; MN*™),

loc loc

Proof. Let Q' cCc Q" cC Q. Let a € Q' and Br(a) = Bg C Q”. Using the standard Korn’s
freezing coefficients device, u is a weak solution of system with constant coefficients

div(A(a) Du) =divF, F = f+ (A(a)— A(x)) Du.
Let v € HY(Bg;RY) be the solution of the Dirichlet problem
div(A(a) Dv) =0 in Bg,
Vo, = U.
Then, as before, using (3.73) instead of (3.74) we have
[ paf < e hyr [ paf e [ Do
B Br Br

P

IN

IN

Pin
e (b [ e [ pp
Br Br

Ay / Duf’ 4 C / P+ Cuw(R) / |Duf?
R BR BR BR

P\n
< c[(ﬁ) +w(R)}/ |Dul® + C || f 172 qrapan sy B,

Br

IN
o
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where w(R) is the uniform modulus of continuity of A(z) :

w(R) = sup |A(x) - Ay)l.
lz—y|<R

We choose Ry > 0 sufficiently small so that w(R) < ey for all R < Ry, where ¢y is the
constant appearing in the Campanato lemma above. Therefore,

/ Dup do < (@, Q") (11Dl a(qrgan sy + 1132 @rgan s ) £

P

This, by a local version similar to the Campanato space, we have

HDUHL%*(Q’;MNX”) S C(Q/, Q”) <HDUHL2(QN;MNXTL) + HfHLQ’)‘(Q”;MNX”)>’
which proves the theorem. ]
We now study the regularity of the gradient of weak solutions in the Holder spaces.

This is done by proving the regularity of gradient in the Campanato space £12£+2u (Q) for
some p € (0, 1).

Theorem 3.47. Let Al-ajﬁ € CO*(Q) with some 0 < u < 1 satisfy the hypothesis (H3) and

u € VV;’Z(Q;RN) be a weak solution of system

(3.79) Da(A5f (2) Dyu?) = Do fi.

Suppose f € C'loo’g(Q;MNX”). Then Du € CH(Q; MN*™),

loc

Proof. Similarly as above, we have

[ 1Du-unP < e (o [ pu- Dup P [ 1F = gl
o Br Br

IN

P \n+2 2 2
e (g [ 1Du=us 0 [ 15 n

+ LR B [ |Duf
Br

p n n
< e (B [ DU (D, P+ C oy B
R

+ C[A]Qco,uRQM/ | Du?.

Br

Since by the previous theorem Du € L3 (Q; MY ") for all € > 0 we obtain

loc
/ |Du — (Du)p, |* < A(%)”+2 / |Du — (Du)p,|> + B R"2<,
4 BR

Using Campanato’s lemma, we have
| 1Du= (Du, P < €
BP

and hence Du € L2727 ¢(Q; MN*") for all € > 0. This implies Du € Co’ﬁ(Q;MNX”)

loc loc
for = p — §. In particular, Du is locally bounded. Therefore, again, using the above
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estimates, it follows that

| iDu= s < (B [ 1Du= (Du)s,

P

4 O By BV 4 C A, B [ Dup
Bgr

< e (g [ Du (Du,
Br
OBy R+ C (AR, R

and using Campanato’s lemma again we have Du € L?OZH“ (; MY*") and hence Du €

Cpt(Q; MN>™), O

loc
Finally we remark that the following higher order regularity result can be easily deduced.

Theorem 3.48. Let k> 0,0 < pu <1 and A%B € Ck1(Q) satisfy the hypothesis (H3) and
u € M/loc (;RN) be a weak solution of system

(3.80) Da( A3 (2) Dw?) = Dafl,

Suppose f € Cl H(Q;MNX™). Then u € CELI(Q RY).

loc

3.6.6. Systems in non-divergence form and boundary estimates. In this section,
we show that the Campanato estimates can also be proved for systems that are not in
divergence form and also the global estimates are valid if the boundary 0f2 of the domain
Q) C R” satisfies certain smoothness condition.

We first prove the interior estimates for systems in the following form:

AP (@) Dagud = fi5 i=1,2,-+ ,N.

By a weak solution u to this system we mean a function u € Wl o (Q RY) such that the
system is satisfied almost everywhere in ().

Theorem 3.49. Let A%’B, fte Cl%f(ﬂ) and 0 < pp < 1. If u € W2AQRN) is a weak
solution to the system above, then u € Cloc (G RY).

We now consider the regularity up to the boundary. In what follows, we assume the
boundary 9 of the domain  is of C1#; that is, for any x¢ € 052, there exist an open set
U C R" containing x¢ and a C"#-diffeomorphism y = G': U — R” such that

G(zo) =0, GUNQ) =B ={yeR"[[y| <1, y,>0};

GUNOQ) =T1={y eR"[ly| <1, yn =0}

This G is called (locally) flattening the boundary. As in the scalar case studied above, we
have the following global regularity theorems for linear systems.

Theorem 3.50. Let OS2 be of CY* with 0 < u < 1 and AU , fie CO(Q) and g7 € CHH(Q).
Let A(x) satisfy the condition (H3). If u € H'(Q;RN) is a weak solution to the problem

div(A(xz) Du) =div f, ulspq = g,
then u € CHH(Q; RN).
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Theorem 3.51. Let 02 be of CY* with 0 < p < 1 and Af‘jﬁ € CY(Q) satisfy (H3).

Assume fi € COH(Q), g/ € C*H(Q). If u € W22(Q;RY) is a weak solution to the problem
A (@) Dog? = f55 w]oq = ¢,
then u € CHH(Q; RY).



Chapter 4

Linear Evolution
Equations

This chapter studies various linear partial differential equations that involve time. We call
these equations linear evolution equations. We will study two major types of evolution
equations of second-order: parabolic and hyperbolic equations. Two methods will be used:
Galerkin method and Semigroup method.

4.1. Second-order Parabolic Equations

For this chapter we assume €2 to be an open bounded subset in R™ and set Qp = % (07, T for
some fixed time T' > 0; the parabolic boundary 9'Qp of Qg is defined by 9'Qp = Qr\ Q7.

We will study the initial-boundary value problem

u+ Lu=f in Qp,
(4.1) u=0 on 09 x [0, 77,

u=g on  x {t =0},
where f: Qr — R and g: Q@ — R are given and u: Q7 — R is the unknown function,
u = u(z,t).

The operator Lu denotes for each time ¢ a second-order partial differential operator,
having either the divergence form

(4.2) Lu=— Z Dj(asj(x,t)Diju) + Z bi(z,t)Dju + c(x, t)u
ij=1 i=1

or else the nondivergence form

n n
(4.3) Lu=— Z a;j(x,t)Diju + Z bi(z,t)Diu + c(x, t)u,
ij=1 i=1
for given coefficients a;j,b;,¢ (1,7 =1,2,--- ,n).



98 4. Linear Evolution Equations

Definition 4.1. We say the operator % + L is (uniformly) parabolic on Qo if there
exists a constant § > 0 such that

(4.4) D (@, 0)6& > 0|¢)* for all (2,t) € Qp and £ € R™.

,j=1

Note that for each fixed time ¢ € [0, T] the operator Lu is uniformly elliptic in z € Q.

4.1.1. Weak Solutions. We consider the case that Lu has the divergence form (4.2). We
assume

aij, biy, c € L®(Qr) (i, =1,2,---,n), feL*Qr), g L*(Q).

We will also assume a;; = aj; for ¢,5 =1,2,--- ,n.
Introduce the time-dependent bilinear form

n

(4.5) Blu,v; t] :/< E aij(x,t)DiuDjv + g bi(:c,t)Diuv—i—c(x,t)uv)d:r
7,7=1 =1

for u,v € H}(Q) and almost every t € [0, T).

Definition 4.2. A weak solution to Problem (4.1) is a function v € L?(0, T'; H}(Q)) with
weak time-derivative v’ € L%(0,T; H~1(f)) such that

(i) (u'(t),v) + Blu(t),v;t] = (f(t),v) for each v € H}(Q) and a.e.time ¢ € [0,T], and
(ii) u(0) = g. (Note that u € C([0,T]; L*(€2)) and thus u(0) is well-defined in L?(£2).)

Remark 4.3. (Motivation for definition of weak solutions.)

Suppose v = u(z,t) is a smooth solution of (4.1). Then u defines a function, still
denoted by u: [0,T] — HL(Q) by u(t)(z) = u(x,t). In other words, we consider u not as
a function of (z,t) but rather as a function of ¢ into the space HJ (). We also consider
f:[0,T) — L3(R) in terms of f(t)(z) = f(x,1).

Fix v € H(Q) and multiply the PDE by v and integrate by parts, and we find

(4.6) (ue(t),v) + Blu(t), v;t] = (f(t),v) Vtel0,T],
where the pairing (, ) is the inner product in L?(€2). Note that the PDE can be written as
Ut = 90 + Z?:l gzlvla with

n n
gozf—ZbiDiu—cu, gi:ZaijDiu (1=1,2,---,n).
i=1 i=1

Hence, with G = (907917 e g") € L2(Q;Rn+1)’
(4.7) HUtHH—l(Q) < HG||L2(Q) < C'(||u||H1(Q) + ||f||L2(Q)) a.e. t €[0,7).

This estimate suggests it is reasonable to look for weak solutions u € L?(0,T; H}(f2))
with weak time-derivative u/(t) € H~1(Q) for a.e.t € [0,T], which, by (4.7), also satisfies
u' € L2(0,T; H-1(£2)). In this case the first term in (4.6) should be reexpressed as (u/(t), v),
as the pairing of H~1(Q) and Hg(Q).
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4.1.2. Galerkin Method — Existence of weak solutions. We intend to build a weak
solution to (4.1) by constructing approximate solutions uy that, for each ¢ € [0, 77, lie in a
finite-dimensional space Vj, of HZ(£2) such that condition (i) in the definition above holds for
all v € Vi. Then we pass to the limit as £ — oo. This is the so-called Galerkin’s method.

Assume the functions w; = w;(x) are smooth and
(4.8)  {w;}$2, forms an orthogonal basis of H}(£2) and an orthonormal basis of L?(£2).
(For instance, we could take {w;} to be the complete set of appropriately normalized eigen-
functions for —A in H(9).)

Fix now a positive integer k. Let Vi be the linear span of {wy, - ,wy} and we look for
a function uy: [0,7] — Vi of the form

k
(4.9) up(t) = di(t)w;,
=1

where the coefficient functions d;(t) is selected so that
(4.10) (uh(8), wi) + Blug(t), wis t] = (f(t),wi),  di(0) = (g,ws),
for almost every t € [0,T] and i = 1,2,--- , k.

Here and what follows, (, ) denotes the inner product in L?*(Q), and ’ denotes the
time-derivative of a function (whenever it is well-defined in classical or weak sense).

Theorem 4.1. (Construction of approximate solutions) For each k = 1,2,--- there
exists a unique function uy of the form (4.9) satisfying (4.10).

Proof. Note that
k .
(up(t),wi) = di(t),  Blug(t),wist) = al(t)d;(t),
=1

where o (t) = Blwj,w;;t] (i,j = 1,2, , k). Hence condition (4.10) becomes the initial

%

value problem for the ODE system on d(t) = (dy(t),--- ,dk(t)):
k
di(t) + Za{(t)dj(t) = fit) = (f(),wi), di(0) = (g,wi) (i=1,2,--- k).
j=1

Note that the coefficients ag belong to L*>(0,T) and f; € L?(0,T). The existence of a
unique solution d € H(0,T) C C([0,7]) is guaranteed by the (not so) standard existence
theory for ODE (think of approximating ozg and f; by smooth functions first and then pass
to limits). O

4.1.3. Energy Estimates.

Theorem 4.2. Assume the uniform parabolicity condition. There exists a constant C,
depending only on Q, T, and the coefficients of L, such that, for all k =1,2,--- |
(4.11)

tg[l(?}T{} k() r2(0) + llukll L2051 0)) + il 20701 (0)) < CUIF 200 + 9l L2e))-

Proof. 1. From the uniform parabolicity, as in the elliptic case, there exist constants
6 > 0,v > 0 such that

(4.12) 5“””%(9) < Blv,v;t] + 7||v||%2(9) Voue H}(Q), ae. tel0,T)].
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Multiply (4.10) by d;(t) and sum for i = 1,2,--- , k to find

(4.13) (up(t), ur (1)) + Blug(t), ux(t); 1] = (f(), ur(t)) Yae t €0,T].
Hence
(4.14) ()20 ) + 280 By ) < Cullus (D)3 + CollF (1) ey

for a.e.t € [0,T], and appropriate constants Cy, Cs.

2. Now write

() = luk (720 €O = 1 OI720
Then
7' (t) < Cin(t) + Coé(t) Vae. tel0,T]

Thus, by Gronwall’s inequality,

n(t) < Clt( +02/§ ) 0<t<T).

Since n(0) = Huk(O)H%Q(Q) < HgHLz q)» We obtain the estimate

i Jux(1) 720 < Cllolaq0) + 1120

3. Integrating (4.14) over ¢ € [0,T], we have

T
||uk‘||%2((]7T;Hé(Q)) = /0 Huk’(t)H?{é(Q) dt < C(HQH%%Q) + Hf”%?(QT))'

4. Finally we need to estimate ||uf, || 120 7 5-1(q))- S0, fix any v € Hj(Q), with [0l g ) <
1. We write v = v! +v?, where v! € V4, and (v, w;) =0 for all i = 1,2,--- , k. (That is, v?
is in the L? orthogonal complement of Vj.) Since {w;} are orthogonal in H}(f2), we have

o a3 ) < lollaye) < 1.
Using (4.10), we have
(up(t),0") + Blug(t), v 8] = (f(t),0").
Then
{uh (1), v) = (uf(£), v) = (u(8),0") = (F(£),0") — Blug(t), o'
and consequently
[{uk (8), 0)| < CUFOlz20) + llurllmy@)-
This implies

Il ()71 () < CUFWIZ2() + luc®)l ) V€ [0,T].

Integrate over ¢t € [0,7T] to finally obtain

T
HU?CH%Q(QT;H—l(Q)) = /0 g (t )HH Q)dt < C(HfHL? Q) T ”uka OTHl(Q)))

which, combining with the estimate in Step 3, derives the desired estimate. ]
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4.1.4. Existence and Uniqueness.

Theorem 4.3. There exists a unique weak solution to (4.1).

Proof. (Existence.) 1. According to the energy estimate (4.11), we see that {uy} is
bounded in L*(0,T; H}(2)) and {u},} is bounded in L*(0,T; H1(€)). Consequently there
exists a subsequence {uy, } of {uy} with k, — oo and functions u € L?(0,T; H(Q)),
w € L?(0,T; H~1(Q)) such that

— in L2(0,7; H}(Q
(415) Uk, u ?n 2( s Ly 0(1 ))7
w, —w in L*(0,T; H~'(Q)).
Moreover, u' exists in L2(0,T; H-1(2)) and «/ = w. From the regularity result, u €

C((0, 7); 12(9).
2. Fix any integer N and let 1 € C*([0,T]; Hi(Q2)) have the form

N
B(t) = Gtywi,
i=1

where ¢; € C1([0,T];R). Let k > N, multiply (4.10) by ¢;, sum i = 1,2,--- | N and then
integrate over ¢ € [0, 7] to find

T T
(4.16) | (e wten + Bluo. i) de= [ (.00
Now let &k = k,,, — oo and we have
T T
(4.17) /O (/' (1), 9 (2)) + Blu(t), 1 (t); 1)) dt:/o (f(t),2b(¢))dt.
This equality then holds for all functions ¢ € L%(0,T; H}(f2)), as functions ¢ of the given

form are dense in this space. We then take ¥(t) = ((¢t)v with ¢ € L*(0,T) and v € HZ(Q)
in (4.17) to obtain

T T
| o) (W ®0 + Blu(o), vil) de = [ (o), v
0 0

This holding for all ¢ € L%(0,T) yields that
(4.18) (u'(t),v) + Blu(t),v;t] = (f(t),v) Vv & H}Q), ae. tec|0,T].

3. We need to show the initial data u(0) = g. In (4.16), (4.17), take 9 (t) = {(¢)v with
¢ € G0, T, ¢(T) =0, ¢(0) = —1 and v € H}(2). Note that, since 1'(t) = ¢'(t)v, we have

T T
| w0, w0t = @0, 0) - [ o) (o) 0
0 0
(ug(0),v) = (g,v) as k — oo, and
T T
| o= wo).0 - [ .
0 0

Hence, in (4.16), let k = k,, — oo, we eventually obtain (u(0),v) = (g,v), for all v € H(Q);
hence u(0) = g.
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(Uniqueness.) It suffices to prove that a weak solution u with f = g = 0 must be
zero. To show this, set v = u(t) € H} () in (4.18) with f = 0 to have

o (;Hu(tmgg(m> + Blu(t),u(t);f] =0 (a.e. t € [0,T)).

Since the Garding’s inequality above implies —Blu(t), u(t);t] < y||u(t) H%Q(Q), it follows that

d (1
& (310 ) <Ol ¥ae e .1
So Gronwall’s inequality implies ||u(t)||z2(q) = 0 as u(0) = 0. Hence u = 0. O

4.1.5. Regularity. We now discuss the regularity of weak solutions when the initial data
and coefficients are more regular. Our eventual goal is to prove that the weak solution is
smooth, as long as the coefficients and initial data and the domain are all smooth. This
mirrors the regularity of elliptic equations.

Before we proceed, we prove the following useful result which is Problem 9 of Chapter
7 in Evans’s book; the proof follows a paper by Brezis and Evans (Arch. Rational Mech.
Analysis 71 (1979), 1-13).
Lemma 4.4. If Lu is uniformly elliptic with smooth coefficients, then there exist constants
B8 >0, v >0 such that

(4.19) Bllullzy < (Lu, =Au) +7|lullF2qy ¥ u e Hy(2) N H(S).

Proof. 1. Given a function u € H?(Q) N H} (), we claim that there exists a sequence of
functions u, in C*(2) vanishing on 99 such that |Ju, — ul|g2(q) — 0; therefore, we only
need to prove (4.19) for functions u € C3(2) vanishing on 9. To prove this claim, let
f = Au € L*(Q) and choose f,, € C*(Q) so that || f — fllzz) — 0. Let up, € H (D)
be the weak solution of Au,, = fm in 2. Then the global regularity theorem shows that
U € HF(Q) if 09 is of C* and k > 2. By the general Sobolev inequalities we know that if
k> 5 then uy, € CF[51717(Q) for some 0 < v < 1. Hence if 99 is of C* with k =4 + (5],
then u,, € C3(Q). Clearly u,, = 0 on 9. Finally, since A(u,, —u) = fm — f, by the global
H?-estimate, we have

[um — ull g2y < Cllfm — fll2@@) — 0

2. In the following, assume u € C3(2) and u = 0 on 9. Then we can write Lu in
non-divergence form (using the new smooth coefficients) as

Lu = —a;j(x)ug;z; + bi(w)ug, + c(x)u().
Let 2° € 90 and assume a smooth homeomorphism y = ®(z) from small ball B(z°,r) to
a domain D in y-space satisfies that ®(z%) = 0 and ®(B(2°,7) N Q) = D N {y, > 0} and
®(B(2°,7) N 9Q) = DN {y, = 0}. Let = ¥(y) be the inverse map of y = ®(x). (This
is the standard technique of locally flattening the boundary.) Let ¢ € C°(B(z% r) and
0 < (¢ <1. Then

/ C(&) (L, —Au)dz = / B(y) (Lo, L2o)dy,
Q Dn{yn>0}

where v(y) = w(¥(y)), ¥(y) = ((¥(y))|{(y)| with I(y) the Jacobian determinant of z =
U(y), and L', L? are the new differential operators of v(y) from Lu and Awu, both of the
form

Ly = *a?j(y)vyw;’ + bf(y)vyi + ck(y)v(y) (k=1,2).
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aj;(y), bf (y) are

)
2?

Q

The coefficients ¢*(y) are bounded (in fact, c?(y) = 0) and the coefficients a¥;(
smooth functions on D N {y, > 0} and satisfy for a constant § > 0, with k£ = 1,

aji(y) = aj(y),

ali(y)&i&; > 1€ (ye DN{yn >0}, E€R™).

From this, an easy algebra proof shows that for all symmetric matrices C € M"*"™

n n

(4.20) > alenai(we = 0° Y ¢ (y€ DNy, > 0}).
i1 =1

We need to estimate fDm{yn>0} U(y)(L'v, L?v)dy.
3. We write the integrand as
1, 712 1 2
Y(y)(L v, Lv) = ¢aijvyiyjaklvykyl + VYR,
where R is the term of the form
R = Z Ak Vy;y; Uy + Z Bijvy,vy; + Z Cijvyy,; v + clv?,
with bounded coefficients A, B, C. The leading term can be written as
1 2 1 2
waijvyiyj A1 Vyy; = wa’ijvyiyk A Vyy,
1.2 1,2
+ (Yag;ak)y; Vysy Uy — (V05550 )y Vyiy; Oy,
1 2 12
+ (waijaklvyiijyz>yk - (wa’ijaklvyiykvyl)yj'

Therefore, by (4.20), we have

B(y)(L'o, IPv)dy > 0 / D)., dy
/Dm{yn>0} Z D {yn>0} Vs

ij=1
n
(4.21) + Z / ¢a}ja%l(vyiijyl Vi = Uy, Uy, Vj) dS
i.j k=17 9(DN{yn>0})
n
2 2., .2
—c / Vg dy — C (IVv]* +v%) dy,
Zg:l Dfyn>0} Y DN{yn>0}
where v = (vq,- -+, 1) is the outer unit normal on the boundary.
4. Since ¥ =0 on (D N {y, > 0}) \ (D N {y, = 0}), we have the boundary integral
Z / ¢az'1ja%l(vyiyj Uy Vi — Uy, Uy, Vj) as
i kl=1 O(DN{yn>0})

n

B 1 2 /
=— E / ¢awanlvyly] vy, dy’ + g / P O Vyiyy Vyy AY' -
i 121 D{yn=0} ik 1=1 7 DO {yn=0}

Now since v(y’,0) = 0 we have v,, = 0, Vyyy; =0 for 1 <4,j <n—1. So

n

1 2 /I
E / Va0 Vyyy; Uy, dY =
i l=1 Dn{yn=0}

n

Z/ ¢az] nnvyiijyn dy,
Dm{ynzo}

ij=1

:/ wann nnvynyn”yn dy +2Z/ zn nnvyiynvyn dy,?
Dﬂ{yn:O} ﬂ{yn—o}
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and

1 2 /
E / ¢aznaklvyzykvyz dy' = E / Y Qo Uy Uy, AY
iki=17 P{yn=0} i k=17 D{yn=0}

:/ wann nnvynynvyn dy +Z/ zn nnvyiynvyn dy/
D{yn=0} ﬂ{yn—O}

n—1

§ ’ 1 2 /

+ / wannaknvykyn Vyn dy .
k=1 Dﬂ{ynzﬂ}

Therefore

1 2
Z / ¢aijakl(vyiyj Uy, Vl — Uy, Uy, Vj) dS

i el=1 (DN {yn>0})

n—1
= Z/ ¢( Apnin wam nn)inynUyn dy/
Dn{yn,=0}
2 /
Z/ nn m wam nn)( yn)yi dy
Dﬁ{yn70}

= _Z/ nn ln ¢azn nn)] ivﬁgn dy/
Dm{yn—O}

Hence

1 2
E / ¢aijakl(vyiyj Uy, Vl — Uy Uy, Vj) dS

ij ke i=1" 9(DN{yn>0})

n—1

5 w A, zn_wazn nn iU2 d !
) e Lot dy

i=1

<C |Vv|2dS
d(DN{yn>0})

n
<e
i,j=1

/ ylyjder C. |Vv|2dy,
Dn{yn,>0} Dn{yn>0}

by the trace inequality: for € > 0,
Vol 200y < €||D2U||L2(U) + Cel[Vol 2@y Yve H*(U).

(Prove this inequality!)
5. Putting all inequalities above together in (4.21), we eventually obtain
n
Ve Loy = 0 3 [ g, dy
/Dm{yn>0} z‘JZ:1 Dn{yn>0} Yt

-€ Z / yzy] 05 (|Vv|2 +U2) dy7

where € > 0 is arbitrary and C. depends on ).
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6. Switching back to the domain €2, we have

—Au)dzx 2 " z)u? €T
/Qg(x)(Lu, Au)dz >0 Z/QC( VU, d

1,j=1

_E,Z /Quiixjda:—Cs/Q(|Vu|2+u2)da:,

where C. depends on (. Clearly this estimate also holds when ¢ € C2°(9).

7. We now cover 0Q by finitely many balls By, := B(z*, r;) with z* € 0Q, k =
1,2,---, N, that the local flattening of the boundary works. Let By11 := Q\U{cvle(xk, rr/2).
We find a partition of unity Zg:ll (x = 1 subordinate to {By, By, -+, By4+1} with 0 < ( <
1 and supp ( CC By. Then using (4.22) and a choice of small € > 0 we deduce that

(4.22)

02
(4.23) /(Lu,—Au) dr > D230, c/(yvu\Q +u?) da.
Q Q
From this, the estimate (4.19) follows since || D?ul|;2(q) is an equivalent norm for H?(£2) N
H(Q) in H2(Q) and
IVullr2() < ellD?ull 20y + Cellull 2@ ¥ u € H2(Q) N Hy (),

which can be seen from one of the homework problem. O
Remark 4.4. Clearly, from the proof, the estimate (4.19) holds if we replace —Au by
another uniformly elliptic operator Mu.

In the following we assume the coefficients a;;, b;, c are as smooth as we need on 7. As

usual, we always assume the uniform parabolicity.

Theorem 4.5. (Improved regularity) (i) Assume g € H3(Q), f € L*(Qr). Suppose u
is the weak solution of (4.1). Then

w € L*(0,T; H*(Q)) N L>(0,T; Hy (), o' € L*(0,T; L*()),
with the estimate
[l oo 0,751 (2)) + Null 220,12 () + 1l 220,122 (02
< Cllgllmp ) + 1£12201));
where C' depends only on 0, T and the coefficients of L.
(i3) If, in addition, g € H*(Q), f' € L*(0,T; L*(2)), then
u e L(0,T; HX()), u' € L=(0,T;L*(Q)) N L*(0,T; HY(Q)), u” € L*(0,T; H(Q)),

with the estimate

(4.24)

(4.25) [ull Lo 0.7 12(02)) + 10 | oo 0,22 () + 10| L2 (0,751 ()
+ vl 20,711 (02)) < CUlgll 2y + 1l 0,.7:22(02))

where C' depends only on Q,T and the coefficients of L.

Proof. Let {uy} be the Galerkin approximations satisfying (4.10) constructed as above
with {w;} being the complete collection of eigenfunctions with eigenvalues {\;} for —A on
H (). As before, we assume {w;} is orthogonal on H}(€) and orthonormal on L?(Q).

By the uniqueness theorem, the weak solution u is obtained as the limit of the Galerkin
approximations {uy}. We prove the theorem by deriving the same estimates for the ap-
proximate solutions uj independent of k.
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1. We first claim the following estimate for {uy}: for each ¢ € [0, T,
(4.26) lur (O Fr2 () < CUSONF20) + w1720y + lur®) 7)),
where C' is a constant independent of k. To prove (4.26), note

(Luk(t), wi) = Blug(t), wis t] = (f(t) — wp(t),wi) (i=1,2,--+ k).

Multiply this equation by A;d;(¢) and sum over ¢ = 1,2,--- , k to deduce
(4.27) (Luk(t), —Auk(t)) = Bluk(t), —Auk(t);t] = (f(t) — wp(t), —Au(t)),
since —Auy(t) € H} (). Then (4.26) follows from (4.27) and Lemma 4.4.

2. We multiply the equation in (4.10) by d.(¢) and sum i = 1,2,--- , k, to discover
(4.28) (g, (t), up (8)) + Blu(t), up,(t); 1] = (f (), ui(t))-
Write Blu,v;t] = Alu, v;t] + Clu, v; t], where

Alu, v; t] :/Q (Z aij(a:,t)DiuDjv) dz,

(4.29) ni=1

Clu,v;t] = / <Z bi(x,t)(Dju)v + c(:v,t)uv) dx.

€ \i=1

Note that Afu,v;t] is a symmetric bilinear form on H}(2) and for any functions u €
CY([0, T Hy (),

d

(430) AN, 006 = Ao, o' = 5 (5

Awuxwwwy—éma»wwwo,

where
5 n
Alu, v; t] :/ Z ag;(x,t)DyuDjv | dx.
Q \ij=1
The equation (4.28) above can be written as

! 1d .
(4.31) )220y + 5 g7 (Aluw(®), we(#);4]) -
= (f(8), ur (1)) — Clun(®), ur(1); 8] + 5 ALur(t), un(?); 1]

Moreover, for all € > 0,
(4.32) |Clu, v; )] < ellvlfzgq) + Cellullfn gy (v, v € Hy()).
Therefore, by (4.31), we have

(33 GO e + o (Al (0) w0 1) < COFO oy + ey )

Integrate over ¢ € [0, 7] to have

T
l 2 .
[ 1Oyt + mie Al (0. (01

< Afug(0), 14 (0):0] + Clluel By reamy ey + 1 F32(00y)

< Ol gy + 1 13200y)-
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where we have used (4.11) and the estimate A[uy(0), ug(0);0] < CHuk(O)Hf%(Q) < CHgHiIé(Q),

since

e

k

k(O3 ) = D dFONwillfa o) = D (9, wi)[will o
—1 i=1

.
Il

<

M8

2 2 2
l(g,wz‘) HwiHHg(Q) - ”g”Hé(Q)'

-
Il

Therefore, using Afv, v;t] > 9”7)”?{1(9) for all v € H} (),
0

HUZ;H%Z’(O,T;L?(Q)) + HukH%OO(O,T;Hé(Q)) < C(HQH%@(Q) + ||f||%2(QT))'
From this and (4.26),
||uk||%2(0,T;H2(Q)) = C(HQH%{(}(Q) + Hf”%?(QT))'

Note that (4.24) follows from the two estimates above.

3. Assume now the hypotheses of assertion (ii). We differentiate the equation in (4.10)
with respect to ¢ and set 4y := uj, to obtain

(4.34) (@ (1), wi) + Blag(t), wis t] = (f'(t),wi) = Blug(t), wis 1],

where B is the bilinear form defined by

Blu,v;t] = /Q ( Z az;(x,t) DyuDjv + Z b.(z,t)(Dsu)v + c'(x,t)uv) dx.
ij=1 i=1

Multiplying (4.34) by d}(t) and summing over ¢ = 1,2,--- | k, we discover

(@ (t), @ (8)) + Bl (t), a(t); t] = (f' (), @ (t)) — Blux(t), a(t); .
So,

1d

(435) 5o (1120 ) + Blan(t), a(t): 1) = ('), () — Blup(t), aa(t); 1]

Notice that, for u € H}(Q) N H2(Q),v € HE(Q), integration by parts yields

n n
Blu,v;t] = /Q v( > (=Djaj;Diu — aj;Diju) + Y bi(x, ) Diu + ¢ (x, t)u) dx,
ij=1 i=1

and, hence, for a.e.t € [0,T] and all u € H?(Q), v € H}(),
|Blu, v;t]] < C(lolp ) + lullizg)-

Using this estimate and Garding’s inequality, we deduce from (4.67)

d 7/, . -
= () 12209) + BNl

< Clan )72 + llun @20y + 1 O 20)-
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Hence Gronwall’s inequality implies

T
sup (030 + 5 [ 136(0) e
te[0,T] 0

T
(1.36) < (1O + | (lur(®lBey + 17Ol
< O(|ar(0)l[720y + 1 Iz 0,702 () + ||9||§{&(Q))
< C(Huk(O)H?ﬂ(Q) + Hf”?{l(o,T;L?(Q)) + HgH?'—[é(Q))a
where, recall that @, = uj, and by equation (4.10),
(0] 20 = [[ug(0)][L2() < CULFO)L20) + Nur(0) ]l 122())

< C(Ifla0,122(0) + 1wk (0) | 72(0))-

4. We must estimate [|uy(0)||g2(q). This is a little tricky. Recall that {w;} is the

complete set of smooth eigenfunctions of —A on H{ (). Since both u; and Awy are in
H(Q) N H?(Q), we have

1 (0) 12y < CllAu(0)[I72(q) = C(ur(0), A%ux(0)) = C(g, Aux(0)),

since (ug(0),w;) = (g, w;), and
(9, A%uk(0)) = (Ag, Aug(0)) < ellur(0)l[32(q) + Cc [19ll7r20-
From these, with sufficiently small € > 0, we have
lur (0) |72 () < Clg, A%ur(0)) < Cllgll 2 (-

Hence, by (4.36),

[l 0,722 () + Ikl 2o () < CULF I 0,122y + 1912 (0))-
From this and (4.26), noting max,c(o. 77 [|.f (t)|l22(0) < I |1 0,7:22(02)), We deduce

luk | Zoo 021202y < CUF N 0,122 002)) F 19l 2 (2))-

5. It remains to show uv” € L2(0,T; H-1(£2))). To do so, take v € HZ(Q) with [0l 2 () <
1 and set v = v! + 02, as above with v' € V; and (v?,w;) =0 for i =1,2,--- , k. Then, for
a.e.t € [0,T], by (4.34),

(i (1), v) = (uj(t),v) = (ui(t),0') = (f'(t),v") = Bluj(t), v'5t] — Blug(t), v';t].
Hence, since ||”1||H5(Q) <1,

[(ur (), )| < CULF Ol z2@) + ur @)z ) + 1wl gy @)-

This proves

[l z-1) < CUF Ol 2@ + 1Ol a0 + 1wl g q)-

So, squaring, integrating over ¢ € [0,7] and using the estimates obtained above, we have
2 2 2 2
Hulk/HLQ(O,T;H—l(Q)) < C(Hf/||L2(0,T;L2(Q)) + ||u;€||L2(0,T;H6(Q)) + HukHLQ(QT;Hé(Q)))

< CU I orsramy) + 1912 @)-
By limit, this proves u” € L?(0,T; H~(Q)) with the desired norm estimate. O
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We now study the higher regularity. For simplicity, we assume the coefficients of L
are smooth and independent of time t; we also assume the uniform parabolicity and the
smoothness of the domain €.

Theorem 4.6. (Higher regularity) Assume m > 0 in an integer and
d* f
dt Itk
Suppose the following m-th-order compatibility conditions hold:

g0 =g € HYQ), g1:= f(0) — Lgo € HA(),

ge (@), SLe 1201 HT Q) (k=0,1,--- ,m).

(4.37) dm—l
g = T (0) - Ly € HY(©),
Then the weak solution u to (4.1) satisfies
k
Cciltk LQ(O T H2m 2k+2(Q)) (k2071727 7m+1)7

with the estimate
m+1

dk
(4.38) Z I 20 i przm =22y < € <Z 1= 2 (0. 2m =2 c2)) + ||9||H2m+1(9)) :

Proof. The proof is an induction on m, the case m = 0 being the conclusion (i) of Theorem
4.5 above. Assume now the theorem is valid for some integer m > 0, and suppose then

d* f
dtk
and the (m + 1)-th-order compatibility conditions hold. Let @ = u’. Then the previous
theorem implies that @ € L*(0,T; H}(Q)) and @' € L%(0,T; H1(Q)). Also @ is the weak
solution to

g € H™3(Q), e L0, T; H**27%(Q)) (k=0,1,--- ,m+1)

+Li=f inQp,

Uy
u=0 on 0% x [0, 7],
U=y on Q x {t =0},

where f = f/, g=f (0)—Lg = g1. In particular, f and § satisfy the m-th order compatibility
conditions. Then we use induction on m; details are referred to Evans’s book. ]

Remark 4.5. The condition on f implies
F(0) € H*™H(Q), f(0) € B*™3(Q), -, f"1(0) € H'(Q)
and consequently
€ H*™(Q), g1 € H*™ HQ), -, gm € HY(Q).
The compatibility conditions are precisely the requirements that, each of these functions

gk is zero on Of). This is because the homogeneous boundary condition u(x,t) = 0 foron
x € 09 (in trace), making 4 dtk #(z,t) =0 on x € 0N (in trace) for each k =0,1,--- ,m.

Theorem 4.7. (Smoothness of weak solution) Assume g € COO( ), f€C>®r), and
the m-th-order compatibility conditions hold for allm = 0,1,--- . Then problem (4.1) has a
unique solution u € C*°(Qr).
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4.1.6. Maximum Principle. We now study some properties for classical (smooth) so-
lutions of parabolic equations. We include such a study here in order to compare with
the properties for classical solutions of hyperbolic equations we shall study later in Section
4.2.6. Although the methods we use here to treat both parabolic and hyperbolic equations
are very similar, we shall see that their solutions behave quite different.

Let us denote by C?1(Qr) functions satisfying U, Uz, € C(Qr). We shall consider
general inequalities of the form

(4.39) ur+Lu <0 in Qr

where we assume L is of nondivergence form:

- 0%u ou
Lu=— i;I a;j(x, t)iaxiaxj + Z bi(z, t)a—xl + c(z, t)u

and satisfies the ellipticity condition

n

D aij(z, &8 > e for (,t) € Qp

ij=1
where A > 0 is a constant, and the coefficients a;;, b;, ¢ are all bounded functions in Q7.

Theorem 4.8. (Weak Maximum Principle) Suppose u € C?1(Qr) N C(Qr) satisfies
(4.39) and ¢ > 0. Then

(4.40) maxu < maxu’.

Qr o'Qr

Theorem 4.9. (Parabolic Harnack inequality) Assume u € C*(Qr) solves u; + Lu =
0 i Qr and v > 0 in Qp. Suppose Q' CC Q is connected. Then, for each 0 < t; <ty < T,
there exists a constant C' depending only on V, t1,to, and the coefficients of L, such that

(4.41) supu(-,t1) < Cinfu(-,t2).
% |4

Theorem 4.10. (Strong Maximum Principle) Suppose u € C*1(Q7)NC(Qr) satisfies
(4.39). Let

M = maxu = u(xg, to).
Qr

Assume one of the following conditions holds:
(a) c(x,t)=0; (b) c(x,t)>0and M >0; (c) c(z,t) arbitrary and M = 0.

Then we have the strong maximum principle:
(1) If (zo,t0) € Qp, then u(x,t) = M for all (x,t) € Q.
(11) If xo € O and 0 < to < T, but u(x,t) < M for allz € Q, 0 <t < to, then

)
(4.42) (%(a:o,to) >0

provided the exterior normal derivative exists at (zo,to).
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4.2. Second-order Hyperbolic Equations
We will study the initial-boundary value problem

uy + Lu=f inQp,
(4.43) u=0 on 09 x [0, T,
u=g, uy="h onQx {t=0},

where f: Qr — R and g,h: Q — R are given and u: Q7 — R is the unknown function,
u = u(z,t).
The operator Lu denotes for each time ¢ a second-order partial differential operator,
having either the divergence form
n n
(4.44) Lu=— Z Dj(a;j(z,t)Diu) + Z bi(x,t)Dyu + c(z, t)u
ij=1 i=1

or else the nondivergence form

n n
(4.45) Lu=— Z aij(x, t)Diju + Z bi(z,t)Diu + c(z, t)u,
ij=1 i=1
for given coefficients a;;, b;,¢ (4,5 =1,2,--- ,n).

Definition 4.6. We say the operator g—; + L is called (uniformly) hyperbolic on Qp if
there exists a constant # > 0 such that

(4.46) Z aij(z,1)&€ > 0|¢)* for all (x,t) € Qr and & € R™.

2,j=1

Note that for each fixed time ¢ € [0, 7] the operator Lu is uniformly elliptic on €.

4.2.1. Weak Solutions. We consider the case that Lu has the divergence form (4.44).
Let Blu,v;t] be the time-dependent bilinear form defined as above.

Definition 4.7. A weak solution to Problem (4.43) is a function u € L?(0,T; H}(2))
having weak time-derivatives v’ € L?(0,T; L*(Q)) and v” € L?(0,T; H=1(Q2)) such that
(i) (u"(t),v) + Blu(t),v;t] = (f(t),v) for each v € H}(Q) and a.e.time ¢ € [0,7], and
(ii) u(0) = g, ¥/(0) = h. (Note that u € C([0,T]; L*(R2)) and v’ € C([0,T]; H~(2)),
and thus «(0) and u'(0) are well-defined.)

4.2.2. Galerkin Approximations. We assume
aij, bi, c€ C*(Qr) (3,5 =1,2,--- ,n),
f e L*Qr), g€ Hy(Q), h € L*(Q).
We will also assume a;; = aj; for ¢,7 =1,2,--- ,n.
Again, assume the functions w; = w;(z) are smooth and

(4.47)  {w;}22, forms an orthogonal basis of H}(f2) and an orthonormal basis of L?().

(For instance, we could take {w;} to be the complete set of appropriately normalized eigen-
functions for —A in H}().)
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Fix now a positive integer k. Let V) be the linear span of {w1, -+ ,wy} and we look for
a function wuy: [0,7] — Vi of the form

k
(4.48) ug(t) = di(tyw;,
i=1
where the coefficient functions d;(t) is selected so that

(4.49) (up(t), w;) + Blug(t), wi; t] = (f(t), ws),
. di(0) = (g, wi), di(0) = (h,w;),

for almost every ¢ € [0,7] and i = 1,2,--- , k. Here (, ) denotes the inner product in L?(€2).

Theorem 4.11. (Construction of approximate solutions) For each k =1,2,--- there
exists a unique function uy of the form above satisfying (4.49).

Proof. Note that

k
(wfi (1), wi) = d{ (1), Blur(t), wist] = > (1 (8),
j=1
where ozg(t) = Blwj,w;;t] (i,j = 1,2,--- ,k). Hence condition (4.10) becomes the initial

value problem for the ODE system on d(t) = (di(t),--- ,dk(t)):
{d?(t) + Y0 ol (D, (1) = filt) = (F(t),wh),

Note that the coefficients ozg belong to L>(0,7) and f; € L?(0,T). The existence of a
unique solution d € H?(0,T) C C*([0,7]) is guaranteed by the (not so) standard existence
theory for ODE (think of approximating az and f; by smooth functions first and then pass
to limits). O

4.2.3. Energy Estimates.

Theorem 4.12. Assume the uniform hyperbolicity condition. There exists a constant C,
depending only on Q. T, and the coefficients of L, such that, for all k =1,2,--- |

t !/ t " e
(150) tlg[lgfﬁ;](HUk( ez @) + lur (Ol 2@) + llukll 20,010
< CUlflz20r) + 19l 2 0) + 1121l 22(0))-
Proof. 1. Multiply (4.49) by d;(t) and sum for ¢ = 1,2,--- ,k to find
(4.51) (up(t), up(t)) + Blug(t), up (1) 1] = (f(£), up(t)) ¥ a.e. t €[0,T].
Observe (u},u},) = %(%H%H%Q(Q)); furthermore, as above,
Bluy(t), up,(t);t] = Alug(t), up,(t); t] + Clug(t), up(t);t] := By + Ba,
where,
Br = (X apunt), unt): 4 —1/ zn: ! DyupDjupd
1= o | g Atuelt), uklt); 2 /o Qi Liup U juax

i,j=1

> % (;A[uk(t),uk<t)§t]) - C”“’f(t)”?f&(m'
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We also note that
Bal < Cllu(®)l3 g + IOl 22(0)):

Hence, in view of (4.51), we discover
(4.52)

& ()12 + Alue®), u(8):8]) < DN a0y + () gy + 1£0) o)

7 kOl 120 k), Up(l);t] ) = kUl L2 KU HL (O L2(Q

< Clluk ()72 + Alun(®), ur(®); 1] + 1LF ()1 720)),
where we used the Garding’s inequality Afu,u;t] > 9Hu\|H3(Q).
2. Now write
1) = I (Ol 220y + Alur(®), us®)i 8], €8 = £ 2200

Then
n'(t) < Cn(t)+ CE(t) Yae tel0,T)].

Thus, by Gronwall’s inequality,

mws£%ﬂm+cﬁlwm§ (O<t<T)

1(0) = 1 0) By + Alun(0),un(0):0] < ClI2qgy + 1913 )
according to the initial data in (4.49) and [luy(0)| 1 (o) < 19/l g1 (), We thus obtain

s (o ()20 + Ale(0), (88 < ORIy + ol gy + 172 (ar))

Since

This proves

(453) - mauc (Jlur(®) g o) + lur ()l 22(0)) < CUIfIL20r) + 9l @) + 17ll22@)-

3. Finally we need to estimate [|ug||z2(0,7,5-1(q))- S0, fix any v € H(Q), with ||”HH(}(Q) <
1. We write v = v! 4+ v%, where v! € V}, and (v?,w;) =0 for all i = 1,2, --- , k. (That is, v?
is in the L? orthogonal complement of Vj.) Since {w;} are orthogonal in H}(2), we have

HleH&(Q) < vllgio) < 1.
Using (4.49), we have

(up(t),0") + Blug(t),v'; 8] = (f(t),0").
Then

and consequently
[(ur (@), v)| < CUF Ol L2() + lull g )-
This implies

Ik ()71 () < CUFWIZ2() + lue®)l7 ) ¥t € [0,T].
Integrate over ¢ € [0, 7] to finally obtain
T
Hu,k/H%Q(O7T;H—1(Q)) = /0 H%(ﬂ”%—l(g)dt < C(Hf”%Z(QT) + ”U‘kH%Z(O,T;H&(Q)))v

which, combined with the estimate (4.53), derives the desired estimate. O
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4.2.4. Existence and Uniqueness of Weak Solutions.

Theorem 4.13. (Existence) There erists a weak solution to (4.1).

Proof. 1. According to the energy estimate (4.50), we see that {uy} is bounded in
L%(0,T; H} (), {u}} is bounded in L%(0, T’; L*(92)), and {u}} is bounded in L?(0,T; H~(2)).
Consequently there exists a subsequence {uy, } of {uy} with %k, — oo and functions
u € L?(0,T; HY(Q)), with w' € L2(0,T; L?(2)), v” € L*(0,T; H=1(£2)), such that

ug,, —u in L*(0,T; H}(Q)),
(4.54) w, —u' in L*(0,T; L*(Q)),

wp =" in L*(0,T; H ().
In fact, by estimate (4.50), we also have u € L°°(0,T; H}(Q)) N C([0,T]; L*()) and ' €
L>(0,T; L*(9)); moreover, u' € C([0,T]; H1(£2)).

2. Fix any integer N and let 1 € C*([0,T]; Hi(Q2)) have the form

N
¢(t) = Z Ci(t)wi7

where ¢; € C1([0,T];R). Let k > N, multiply (4.10) by ¢;(¢), sum i = 1,2,--- , N and then
integrate over ¢ € [0, 7] to find

T T
(4.55) /0 (el (8), $(8)) + Blug(t), w(0); ]) dt = /0 (F () 0(t) .
Now let &k = k,,, — oo and we have

T T
(4.56) /0 (" (8), $(8)) + Blu(t), w(t); 1]) di = /O (F () 0(0) .

This equality then holds for all functions ¢ € L%(0,T; H}(f2)), as functions ¢ of the given
form are dense in this space. We then take ¥(t) = ((¢t)v with ¢ € L?(0,T) and v € HZ(Q)
in (4.56) to obtain

T T
/0 ¢(t) (W' (t),v) + Blu(t), vi]) dt:/o C(t)(f(t), v)dt.
This holding for all ¢ € L%(0,T) yields that
(4.57) (u"(t),v) + Blu(t),v;t] = (f(t),v) Vove HNQ), ae tec|0,T]

3. We need to show the initial data u(0) = g¢,4'(0) = h. In (4.55), (4.56), we take
P(t) = a(t)v + B(t)w with o, 8 € C?[0,T] and v,w € H}(Q) arbitrarily given such that
(T) =4 (T) =0, ¥(0) = v and ¥'(0) = w. Note that

T T
| o = ~(i0).0) + (ucl0).0) + [ o). 0) .

(ur(0),w) — (g,w), (u,(0),v) = (h,v) as k = ky, — oo, and

T T
| v = )0 + @O+ [ . e a
Hence, in (4.55), let k = ky, — oo, we eventually obtain
_<u,(0)’ U> + (U(O)v w) = —(h,’U) + (g7w) Vo,we H&(Q),
hence u(0) = g and «/(0) = h. O
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Theorem 4.14. (Uniqueness) A weak solution of (4.43) is unique.

Proof. 1. It suffices to prove that a weak solution u with f = g = 0 must be zero. Unlike
the parabolic case, the proof here is tricky because we cannot insert v = u/(t) in (4.49) since
u/(t) ¢ H(Q). We instead consider, for each fixed s € [0, 77, the function

o(t) = fts uw(r)dr ift €0, s,
0 ift € [s,T].

Then for each t € [0,T], v(t) € H}(£2), and so, by the weak solution definition,
[ o, 00) + Bluto), v ) e =o.
0

Since u/(0) = v(s) = 0, we obtain by integration by parts
(4.58) /X-@ﬁ%d@y+mmwwwﬁpa:0
0
As above, we write Blu,v;t] = Alu,v;t]+C[u,v;t]. Note, for all u,v € H}(Q) and ¢ € [0, T,

Clu,v;t] = /Q (En: b;Djuv + cuv) dr = /Q ( — En:(Dibiuv + bjuD;v) + cuv) dx.
i=1

i=1
(The trick here is to avoid the D;u terms.) Since v'(t) = —u(t) on [0, s], using (4.58), we
can write

Note that (u/(t),u(t)) = %(%Hu(t)H%Q(Q)) and, since A is symmetric,

Al (1), v(t);t] = % (;A[v(t),v(t);to - ;/Q Z a;; DivDjvdz.

1,7=1

Hence

L (0~ AL 001

s 1 s n ,
= —/0 C[u(t),v(t);t]dt—z/o /QZ a;;DivDjvddt,

ij=1

(4.59)

and consequently,

||u(s)H%2(Q) + A[v(0),v(0); 0] = —2 /OS Clu(t),v(t); t]dt — /OS/Q Z a;; Div Djvdxdt

i,7=1
<C [0y + u(OlEzq)) .
0
By Garding’s inequality for Afu,u;t], we obtain
@60) ) + 10Oy < C [ (00 + a0 e
0

2. Now let

um:Aumm(mmﬂy
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Then v(0) = w(s) and v(t) = w(s) — w(t), and hence (4.60) becomes

S
nmw@mwww$mmnscéqmm—w@ﬁmm+mwﬁmmw

But
lw(t) — w(S)H%Ié(Q) < 2Hw(t)H121jé(Q) + QHw(S)H%I(}(Q)’

so we have
|wﬂ@®+unwmww%msa/umwg@+ww@@w.
0

Choose 0 < Ty < T so small that 1 — 277Cy > % Then if 0 < s <T1, we have

|Mw@mﬂww@@saﬁwmwg@ﬂMwhww

Hence Gronwall’s inequality implies © = 0 on [0, T}].

3. Apply the same argument on the intervals [T, 271], [2T1,3T1], etc, to eventually
deduce u =0 on [0, 7. O

4.2.5. Regularity. We now study the regularity of weak solutions when the initial data
and coeflicients are more regular. Our eventual goal is to prove that the weak solution
is smooth, as long as the coefficients and initial data and the domain are all smooth.
Although the methods and results are similar to the ones used for the regularity study of
parabolic equations as above, as we shall see later, there are some quite essential differences
of regularity concerning these two classes of evolution equations.

We assume the coefficients a;;, b;, ¢ are smooth on 7. As usual, we assume the uniform
hyperbolicity.

Theorem 4.15. (Improved regularity) (i) Assume g € H}(Q), h € L*(Q), f € L*(Qr).
Suppose u is the weak solution of (4.43). Then

we L0, T HY(R)), € L%(0,T; L3(Q)),
with the estimate

(4.61) [l oo o713 02)) + 10 [l e 0,1:22(02)) < CUlglma ) + IRl L2 + 1f 1|22 (@)
where C' depends only on Q,T and the coefficients of L.
(ii) If, in addition, g € H*(Q), h € HY(), f € L*(0,T; L*(2)), then
u € L®(0,T; HX(Q)), o' € L>(0,T;H(Q)),

o’ € L0, T; L*(Q)), o € L*(0,T; H (),
with the estimate
(4.62) [[wll oo 0,7 2(0)) + ||U/HL<>0(0,T;H3(Q)) + [[u” || oo 0,722 ()
1 e rim-1(0)) < CUlgllerz) + 1B ap @) + 1 f 22 0.1:22(0):
where C' depends only on 2, T and the coefficients of L.
Proof. Let {ux} be the Galerkin approximations satisfying (4.49) constructed as above

with {w;} being the complete collection of eigenfunctions with eigenvalues {\;} for —A on
HE(Q). As before, we assume {w;} is orthogonal on H{ () and orthonormal on L?().
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By the uniqueness theorem, the weak solution is obtained as the limit of the Galerkin
approximations {uy}. We prove the theorem by deriving the same estimates for these
approximate solutions independent of k.

1. By energy estimates (4.50), we have
(4.63) tfen[g%(lluk(t)\lfzg(m + lue (@l L2@) < CUfllz@r + 190 m @) + 1Rl L2 @)

)

and thus we deduce (4.61).
2. Similar to the parabolic case, we claim the following estimate for {ug}: for each
t €10,7],
(4.64) k(D)1 720) < CUFONT2(@) + 4K 120y + lur ()] 72(0));
where C' is a constant independent of k. We would easily obtain this if u; was itself a

weak solution of (4.43), since then we could use the elliptic estimate to the elliptic equation
Luy(t) = f(t) — uf(t) on Q. To prove (4.64), write the equation in (4.49) as

Bluk(t),wi;t] = (f(t) — ug(t),wi) (i=1,2, k),
multiply this equation by A;d;(t) and sum over i = 1,2, -- |k to deduce
(4.65) (Luk(t), —Auk(t)) = Bluk(t), —Auk(t);t] = (f(t) — ug(t), —Au(t)),
since —Aug(t) € HE(Q). Then (4.64) follows from (4.65) by using Lemma 4.4.

3. Assume now the hypotheses of assertion (ii). We differentiate the equation in (4.49)
with respect to ¢ and set 4y := u} to obtain

(@i (1), wi) + Blig(t), wist] = (f'(t),w;) — Blug(t), wi; t],
where B is the bilinear form defined by

Blu,v;t] = / ( Z az;(z,t) DyuDjv + Z bi(z,t)Djuv +  (, t)uv) dx.
3,7=1 =1

Multiplying by d/(t) and summing over i = 1,2,--- , k, we discover

(@i (t), @ (4)) + Bl (6), @, (1) t] = (f' (1), (1)) — Blux(t), @, (t); .
So

(i, (t), U (8)) + Al (t), @ (8); 8] =(f'(1), U (1)) — Blug(t), @ (t); ]

— Clag(t), @, (t); ],

where, as above, we set Blu,v;t] = Alu,v;t] + Clu,v;t], with A being the symmetric part
of B and C the term involving no D;v terms. We write this equation as

(Lo 331 (IO + Al auin) =5 [ Zl | Diiig (1) Dyiig (1) d

+ (F/(), @ (1) — Blur(t), @, (1); 1] — Clan(t), @ (¢); .
Notice that, for u € H}(Q) N H?(),v € H}(Q), integration by parts yields

Blu,v;t] = /Qv( Z (=Djai; Div — ai; Diju) + Z bi(z,t)Diu + ¢ (z, t)u) dx,
ij=1 i=1

and, hence, for a.e.t € [0,T] and all u € H?(Q), v € H}(),
|Blu, v 1] < Clllullraay + 10l172(0)-
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Moreover, for all u,v € H}(Q),
Clu, v )] < Cllullfp o) + Il Z2() < CCALu,us ] + [[v]1Z2(0y)-

Using these estimates in (4.66), we deduce from (4.64)

o (10 2y + Alie(0), (00
6T < Cla 01T + Alin (), i (0):1) + s 03200y + 1 () 72(0)

< C(lak (D172 + Alik (D), @ (0): 1) + [ FOF2(0) + a2y + 1 D)l 72(0))-
Hence Gronwall’s inequality implies

@ ()1 720 + Al (8), @n(t); 1]
T
c (H%(O)H%zm) + ALk, a8(050) + [ (11O + 100 e + Hf’(t)H%z(m)dt)

< C(||ﬂ;c(0)||%2(g) + Hﬂk(O)llfqé(Q) + ||f||%[1(07T;L2(Q)) + HQH%I&(Q) + HhH%Q(Q))'
Recall that @y, = u) and
[uk (Ol sz ) < CllRll g0y Tur(O)lz2(9) < CUFO)lz2@) + lux(0)ll ()
to simplify the previous estimate as
(8 By + IO oy < OO ey + 11 sz + 19123+ 1)
Finally as above, |lug(0)|m2(q) < Cllgllm2(q), from which and (4.64), we deduce
sup ([|uj(t )||L2(Q) + [Juk(t )HH2(Q) + ”Uk(t)H?qé(Q))

(4.68) telo.T
< CU W o220y T 191130y + 1Al o)

4. As in the earlier proof for the parabolic equations, we can deduce the estimate for
u" € L2(0,T; H~1(2)) in terms of the right-hand side of (4.68). O

Theorem 4.16. (Higher regularity) Let m € {0,1,2,---}. Assume

dk
g€ H™(Q), he H™(Q), o € L*(0,T; H"*(Q)) (k=0,1,--- ,m).

Suppose the following m-th order compatibility conditions hold:
go =g € H}(Q), hy :=h e HYQ), -,

20 —2 .
(4.69) g2t = Lot (0) — Lgo—o € HY(Q) (if m = 20),
20—1 .

hotp1 = oL (0) — Lhoy_y € HY(Q) (if m =21+ 1).
Then

dku 0o m+1—k

dtkeL (0, T;H Q) (k=0,1,2,--- .m+1),
with the estimate
(4.70)
m—+1

dk
Z =% pTE | Loo (0,7 1m—r41(02)) < C (Z =% qik HL2 o, m—k(0)) T gl 1) + ||h”Hm(Q)> .
k=0

Proof. Again use induction on m and differentiate the equation with respect to t. Details
are referred to Evans’s book. U
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Remark 4.8. The condition on f implies
f(0) € H™H(Q), f'(0) € H"*(Q), -, f"72(0) € H'(Q)
and consequently
go € H™H(Q), hy € H™(Q), go € H" 1(Q), hy € H" 2(Q),

g € HY(Q) (if m = 21),hoy 1 € HY(Q) (if m =21 +1).

The compatibility conditions are precisely the requirements that each of these functions is
zero on 0f2.

Theorem 4.17. (Smoothness of weak solution) Assume g, h € C*(Q), f € C*(Qr),
and the m-th-order compatibility conditions hold for allm = 0,1,--- . Then problem (4.43)
has a unique solution u € C*(Qr).

4.2.6. Propagation of Disturbances. So far our study of hyperbolic equations has much
paralleled our treatment of parabolic equations, using the Galerkin method. However, we
learned that the classical solution to a second-order parabolic equation has the maximum
principle, which implies an infinite propagation speed of initial disturbances for such
equations. We now study a property for second-order hyperbolic equations that is totally
the opposite phenomenon, namely the finite propagation speed of initial disturbances.

For simplicity, we study the operator of nondivergence form

n

Lu=— Z a;j(z)Djju,
ij—1

where the coefficients a;; are smooth, independent of time,a;; = a;;, and satisfy the usual
uniform ellipticity condition.
Assume ¢(x) is a continuous function on R™ and smooth in R™ \ {z¢}, satisfying

q(z) >0 in R"\ {z0}, q(zo) =0,

n

3" aij(@)DigDjq <1 in R™\ {zo}.
2,7=1

(4.71)

Given a tg > 0, define the cone-like domain with vertex (zo,¢o)
K ={(z,t) e R" x (0,t0) | q(z) < to—t}.
For each 0 < t < tg, define
K, ={z eR"| q(x) <ty —t}.
Theorem 4.18. (Finite propagation speed) Let u = u(z,t) be a smooth solution of
ug + Lu=0 in R™ x (0,00).
If u=wu; =0 on Ky, then u =0 within K.

Proof. 1. Define the energy

1 n
e(t) = / th + Z ai;DiuDju | dx (0 <t <tp).
Ky

,j=1
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We compute €'(t). In order to do so, note that if f(z,t) is continuous in 2 and smooth in ¢

then p o)
'/177
p7 ( . f(x,t)d:c) = . fx,t)dx — /8Kt V@) ds,

according to the co-area formula.

2. Therefore, we compute

- 1 1
6’(t) = /Kt (ututt + Z aijDiuDjUt> dr — 5 /BKt (ut + Z ai; DiuD; u) vl ds

4,j=1 4,j=1
= A — B.

Using ai; DiuDju; = Dj(a;jusDyu) — ugDj(ai; Diu) and integration by parts, we have

A= / wg | g — Z Dj(a;jD;iu) daz—f—/ Z ;v Jug DyudS

OK: 5
(4.72) =
/ Ut Z D, a”D U dx +/ Z iV utD udS,
Ky 1,7=1 oK =1
where v = (v!,--- ,v™") is the outer unit normal to dK;. Since on 9Ky, q(z) = tg — t, we

have v = |§ pon OKy; that is, v/ = D;q/|Vq| on K. Since matrix (a;;) is symmetric and
positive definite, for each x € R"™, the form (£,7) = ij 1 aij(x)&m; (&, n € R™) defines

an inner product on R™, with norm [|€|| = (£,€)'/2; hence, the Cauchy-Schwarz inequality
(& mI < [I€llin]l implies
. . vz o 1/2
Z aij(z)v! Diu| < Z a;j(z)DjuDju Z aij(z)v'v?
ij=1 ij=1 ij=1
. vz o, 1/2
quD]q
- (mmenn) (S
7j_ Z7j
. 1/2
1
< Z aij(x)DiuDju r— (IE € aKt),
= Vgl
J=
by (4.71). Returning to (4.72), we have
1/2
- |ut]
Al < Ce(t +/ aij(x)DiuDju ds
A<cen+ [ |3 ag@punu) g

=Ce(t)+ B
3. Therefore, we deduce
d(t)=A—-B<Ce(t)+B—-B=_=Ce(t) (0<t<ty).

Since e(0) = 0 and e(t) > 0, we deduce from Gronwall’s inequality, that e(t) = 0 for all
0 <t <tg. This proves u =0 in K. O
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4.3. Hyperbolic Systems of First-order Equations
We broaden our study of hyperbolic PDE to the first-order PDE systems.

4.3.1. Notations and Definitions. Consider systems of linear first-order PDE having
the form

(4.73) u; + zn:Bj(x, t)Dju=f inR" x (0,00),

j=1
subject to the initial condition
(4.74) u=g onR"x {t=0}.
The unknown is u: R” x [0,00) — R™, u = (u',---,u™), and the functions B;: R" x
[0,00) — M™*™ (j =1,2,--- ,n), £: R” x [0,00) — R™ and g: R” — R™ are given,
Definition 4.9. (i) The system of PDE (4.73) is called a hyperbolic system if the m xm

matrix
(z,t:€) = Zgj

is diagonalizable for each z,£ € R™, t > 0. In other words, (4.73) is a hyperbolic system
if for each z,¢,t the matrix B(x, t;y) defined above has m real eigenvalues

and corresponding eigenvectors {ry(z,t;&)};, that form a basis of R™.
(ii) We say (4.73) is a symmetric hyperbolic system if B;(z, ) is symmetric for each
zeR™ t>0.

(iii) The system is called strictly hyperbolic if if for each z, &, ¢t the matrix B(z,¢;€)
defined above has m distinct real eigenvalues

)\1(.’,U,t; 6) < )\2($7t; 6) << )\m(xvta g)
4.3.2. Vanishing Viscosity Method. We study the initial value problem (4.73),(4.74),
with
B; € C*(R" x [0, T]; M™*™) is symmetric,

sup (|Bj|+ |D.:Bj| + |D2,B;|) < oo,
(4.75) R”X[O,T](’ il + 1D2:Bj| + D3 Bl)

g€ H' (R R™), fe H'(R" x (0,T);R™).

In this section, we do not need the hyperbolicity of the system. We define the bilinear
form

(4.76) Blu, v;t] (ZB Duv /nz i(z,t)Dju(z)) - v(x) de

for all u,v € HY(R*;R™), t € [0,T].
Definition 4.10. We say a function
uc L2(0,T; HY(R™;R™)), with u’ € L*(0,T; L*(R™";R™)),
is a weak solution of the initial value problem (4.73), (4.74) provided
(i) (u',v) + Bu,v;t] = (f,v) for each v.€ H*(R";R™) and a.e. t € [0,7T], and
(ii) u(0) = g. Again, by regularity, u € C([0,7]; L?(R™";R™)), so u(0) is well-defined.
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We shall use the vanishing viscosity method to prove the existence of weak solution. To
this end, we approximate the initial value problem by the parabolic problem

(4.77) w —cAu+ 30 B;Dju=f inR"x(0,7],
u=g‘ onR" x {t =0},

for 0 < e <1, g. := n. xg. The second-order term —eAu is called the viscosity term,
which tends to regularize the original first-order system.

Theorem 4.19. (Existence of approximate solutions) For each 0 < ¢ < 1, there ezists
a unique solution u = u. of (4.77), with

u. € L*(0,T; H*(R™;R™)), ul e L*(0,T; H'(R";R™)).
Proof. 1. Set X = L*(0,T; H'(R™;R™)). For each v € X, consider the linear system

(4.78) {ut —eAu=f-3" B;Djv inR"x(0,7],

u=g‘ onR"” x {t=0}.
The right-hand side is bounded in L?, there exists a unique solution u € L?(0, T; H?(R™; R™)),
with u’ € L2(0,T; L2(R™; R™)). This solution u can be expressed by the Duhamel formula
using the heat kernel. From this we can also show that u € X = L®(0,T; H'(R™;R™)).
Hence we define a map S: X — X by setting u = S(v). Let vi € X and u; = S(vy). Set
w=u—uj and z =v — vy. Then

wi —eAw = -3 B;Djz in R" x (0,7,

w=0 onR"” x {t=0}.

From the representation of w in terms of the heat kernel and Z}l:l B;D;z, we have

n

HWHLOO(O,T;Hl(]R”;Rm)) < C(e)ll Z BijzHLQ(O,T;L2(R”;Rm))
j=1

< C@)zll L2 0,7;m (mrsRmY)
< 0(5)T1/2||Z||L°°(O,T;H1(R";Rm))-
Thus ||w||x < C(e)T?|z| x; that is,
(4.79) IS(v) = S(vi)llx < CET v —vilx.
3. If C()TY? < 1 then S is a strict contraction on X; hence it has a unique fixed point
u = u.: S(u.) = u.. Then u = u. solves (4.77) for such a T > 0. If C'(¢)T/? > 1, then
we choose 0 < 11 < T so that C’(E)Tll/2 < 1 and repeat the above argument on the time

intervals [0,T4], [T1,271], etc, to obtain a weak solution u = u, for all 7' > 0. Finally the
high regularity of such a solution u follows from parabolic regularity theory. [l

Theorem 4.20. (Energy estimates) There exists a constant C, depending only on n and
the coefficients,such that

B)l| 2 sy + 110 () | 2 e
(4.80) tgﬁ)Ti](Hua( M @ememy + 02 ()| 2 mm))
< Clliglar @nmmy + 1Ell 2o,y nsmmy + 1 ll20,1;02 @0 mm))

forall0 <e < 1.
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Proof. 1. We compute

d (1 -
- (2||ua<t>||%z(Rn;Rm)) = ((t),ul(t) = | ue, £(t) +eAus(t) = Y B;Dju(t)
j=1
Note that
(uc(t), eAuc (b)) = ]| Vue (t) [ F2gny <O (0 <t <T).

2. Suppose v € Cg°(R™;R™). Then, by the symmetry of B; (this is the only place the
symmetry assumption is used: if B is symmetric then Ba-b = Bb - a),

Blv,v;t] = (V,iBijV) = /n Zn:(Bijv) -vdz
=1 =1
- ;2 | D) i - ;z [ [DsBy)) - vids

1 n
=53 [ (DB)v) va.
=17
Hence, for all v e Cg°(R™;R™),

(4.81) [Blv,vitll = (v, > BiDyv )| < ClVIE gy
j=1

By approximation, (4.81) holds for all v € H*(R™; R™). Hence
n
[(0e6), > ByDjuc(t) )| < Clluc(t)]22 g omy:
j=1
We therefore deduce

d (1
7 (G nsey ) < O( sy + IO )

So Gronwall’s inequality and ||g:||z2 < ||gl|z2 will yield

(4.82) 8 [uc (8) 172 gmy < C(HgH%?(R”;Rm) + HfH%?(O,T;L?(R";Rm))>‘

3. Differentiating the equation with respect xj, estimating Diu. and summing k =
1,2,--- ,n, we deduce

(4.83) ax, ||Vua(t)”%2(mn) < C(HVgH%Q(R") + ”fH%Q(O,T;Hl(R”;Rm)))7

where we have used ||Vg:|12 < C||Vg] 2.
4. Next differentiating the equation with respect to ¢ and setting v = ul, we have
(4.80) vi—eAv+ 3 BiDjv=1£f-3"  B'D;Dju. inR” x (0,T],
v="Ff+eAg. — >\ B;Djge on R" x {t = 0}.

Reasoning as above, we deduce

(4.85) tg%!lu’a(t)!!%Q(Rn;Rm) < C<||ng%2(Rn) + EQHAgEH%%Rn;Rm)

+ Hf(O)H%?(IR";Rm) + HfH%?(O,T;Hl(R";Rm)) + Hf/||%2(o,T;L2(Rn;Rm))>-
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Now, using g. = 1. x g, we have

C
|Ag: 172 (g rm) < ZgHVgH%%Rn)-
Furthermore,

I£0)1 2 @nmm) < CllENF (0 1:L2 @R mm))-
Combining all these estimates completes the proof. ]

Theorem 4.21. (Existence of weak solution by vanishing viscosity) There ezists a
weak solution to problem (4.77) as certain limit of {u.} along a sequence € — 0.

Proof. This follows from the energy estimates above in exactly the same fashion as before.
O

Theorem 4.22. (Uniqueness of weak solution) A weak solution to problem (4.77) is
UNIQUE.

Proof. It suffices to show that the only weak solution to (4.77) with f =g =0isu = 0.
To verify this, note that (u'(¢),u(t)) + Bu(t),u(t);t] = 0 for a.e.t € [0, T] and, by (4.81),

|Blu(t), u(t); ]| < Cllu(t)ll72mn gm):

so we have

d
() s gngny ) < Cl) 3 n)
whence Gronwall’s inequality forces u = 0. -

4.3.3. Systems with Constant Coefficients. In this section, we study
(4.86) w + 37 BjDju=0 inR" x(0,00),
u=g on R™ x {t = 0}.

Here we assume that the coefficients B; are constant m x m matrices and that, for each
& € R", the matrix

B(¢) =) B,
j=1

has all real eigenvalues

AL(§) < Aa2(€) < < Am(§).
There is no hypothesis concerning the eigenvectors and there is no symmetry assumption
on B;. The weak notion of hyperbolicity lies in the assumption that matrix B(§) has all real

eigenvalues for all ¢ € R™. We will apply the Fourier transform to solve the corresponding
problem (4.86).

Theorem 4.23. (Existence of solution by Fourier transform) Assume g € H*(R™;R"™)
with s > & +m. There exists a unique weak solution u € C*(R™ x [0,00);R™) to the initial
value problem (4.86).

Proof. If u € L2 (R R™), u = (u!, -+ ,u™), we use

a(g) = (@'(¢),---,a"(),

where 9(¢) stands for the Fourier transform a function v € L2(R"). If u = u(x,t) €
L2(R™ R™) for each t, then we use (£, t) to denote the Fourier transform of u(-,t); we do
not transform with respect to t.
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1. Taking the spatial Fourier transform, System (4.86) becomes
(4.87) w (&) +iB(§)u(¢,t) =0, (g, 0) =g(E).
For fixed £ € R™, we can solve (4.87) to find
(4.88) (g, 1) = POgE) (€ERT, £20).
Consequently, via the Fourier inverse transform,

1
(4.89) u(z,t) = / e BOg(¢) e (z €R", t>0).
(QW)n/Q R"

2. We need to verify that the formula (4.89) indeed defines a function u € C1(R" x
[0,00); R™) that is a solution to (4.86). Since g € H*(R™;R™), we have
h(€) = (1 +[€]*)&(€) € L*(R™R™).
To show the integral in (4.89) converges, we must estimate [|e~*B©)||.

3. Let A1(€), -+, A (&) be the eigenvalues of B({). Let I be the circle 9B(0,r) in the
complex plane, traversed counterclockwise, with radius » > 0 so large that all \;(§) lie
inside I" and dist(\;(£);T") > 2. By Cauchy’s theorem in complex analysis, we have

—itB(¢) — L 7’Ltz I—B d )
e . /F (=T~ B(e)) " dz

21

4. Define a new path A in the complex plane by

a=o( B,
traversed counterclockwise. Deforming I' to A, we have
. 1 .
—itB(§) _ _~ —itz _ -1
e 5t /A e (2l —B(§)) " dz.

Note that ‘

le7 < et (z€A),
and

[det(z] —B(&))| = [(z = M(§))(z = A2(8)) -+ (z = Am())[ 21 (2 €A).
So we can estimate the inverse matrix by
(=1 = B()) || < [leof(2] = B(&))| < CL+ [+ [IBE)"™) < O+ g™,

where we used the fact [\;(£)| < C|€| since B(§) is linear in €. Combining these estimates,
we have

le”BO| <ef(1+[¢I™") (£ eRM).
5. Therefore,
le" "B a(e)

d
gn L+ [E]5 <

[ et g < 0

<cet [ M+ I+l de

< Ce!||A] 2@y | (1 + €71 75) | L2y < 00
since s > § +m > § +m — 1. Hence the integral in (4.89) converges, and it follows easily
that the function u(x,t) defined is continuous on R"™ x [0, 00).
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6. To show u is C*(R™ x [0,00); R™), observe for 0 < |h| <1,

u(z,t +h) — u(z,t) 1 / E(—i(t+h)B(E) _ —~itB(E)\4
— x i =i de.
h (271')"/2]1 ne (6 € )g(g) 5
Since
. ' t+h .
e~ itHh)B(E) _ —itB(§) _ _; B(§)e‘ZSB(5) ds,

¢
we can easily estimate

From this we have

u(z,t+h) —u(z,t)
h

S| =

(e-itermmee - e—itB(§))' < Ce(1 4 ™).

<cett [ @+ ) de <o

since s > 5 + m. Therefore u; exists and is continuous on R" x [0, 00). A similar argument

shows that Dju exists and is continuous for all j = 1,2,--- ,n (the proof is similar since £
is like B(¢)). Furthermore, we can differentiate inside the integral in (4.89) to confirm that
u solves the system (4.86). O

4.4. Semigroup Theory

Semigroup theory is an abstract study of first-order ordinary differential equations with
values in Banach spaces, driven by linear, but possibly unbounded operators. The method
provides an elegant alternative to some of the existence theory for evolution equations set
forth above.

The whole idea of semigroups springs from properties of solutions of the elementary

initial value problem in u € R™:
d
(4.90) di: = Au (t>0), u(0)=uo

where A is a constant m x m matrix. The solution of course is
(4.91) u(t) = T(t)ug = eug.
This operator T'(t) has some obvious properties:
(@) im0 T(t) =1, (b) T(t)T(t2) = T(t1 + t2).

Effectively, T'(t) maps the initial data ug into the current value of the solution u(t).

Before we discuss the general theory for (4.90) with A being a linear operator defined
in a subspace of a Banach space, we review some definitions and elementary properties.

4.4.1. Definitions and Elementary Properties. Let X,Y be normed spaces. A linear
operator T': D(T) C X — Y is said to be closed if whenever {z,} C D(T) is a sequence
satisfying

Ty —x, Tey —y

then x € D(T') and Tz = y.
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EXAMPLE 4.24. Let L : D(L) C L?(0,1) — L?(0,1) be the differential operator L = d/dx,
where D(L) = H}(0,1). To show that L is closed, let u, — u, u), — f in L*(0,1), where
un € D(L). Passing to the limit in

1 1
/ upv'dz = —/ uhvdr  for all v e C§°(0,1)
0 0

we see, by the definition of weak derivative, that v’ = f and u, — w in H(0,1). Since
H}(0,1) is closed, we have u € HE(0,1).

EXAMPLE 4.25. Let Q be a bounded domain in R” and let X,Y = L?(Q). Let
D(L) = H*(Q) N H}(Q)

Lu = Au, ueD(L).

Note that we are considering L as an operator on L?(€2). Clearly L is densely defined. It is
unbounded, for if we consider {p,}, the sequence of eigenfunctions of —A, then ||py|2 =1
while ||Lpy|l2 = A\, — 00 as n — oo.

To see that L : D(L) C L*(Q) — L%*(Q) is a closed operator, let u, € D(L) with
up — u, Lu, — f. Applying the estimate ||u|22 < ¢||Lul|2 to up — U, it follows that {u,}
is a Cauchy sequence in H?(2) and thus ||u, —v||2,2 — 0 for some v € H%(Q2). Clearly u = v
and u € D(L). Since L : H*(Q) — L?() is continuous, Lu,, — Lu which yields Lu = f.
Hence L is closed.

Theorem 4.26. (Closed Graph Theorem) If X,Y are Banach spaces and if T : D(T') C
X =Y is a closed linear operator with closed domain, then T is bounded.

Corollary 4.27. If X, Y are Banach spaces and if T : D(T) C X — Y is a closed linear
operator which is one-to-one, then T~ is bounded iff R(T) is closed. (In particular, if T
is 1-1 and onto, then T~! is bounded.)

Definition 4.11. Let X be a Banach space and let T: D(T') C X — X be a closed operator
on X.

(i) We say a real number A belongs to the resolvent set p(7T') of T, provided the
operator

A —T:D(T) = X
is one-to-one and onto.
(ii) If A € p(T), the resolvent operator Ry: X — X is defined by

Rwu:=MN-T)"u (ueX);
that is, Ry = (M — T))7L.

Remark 4.12. (i) Note that, since 7" is closed, by (4.27), R is a bounded linear operator
on X if A € p(T'). Furthermore,

TRyu= Ry\Tu (ueD(T)).
(ii) We have the resolvent identity:
Ry — RM = (,u — )\)R)\Ru, RARM = RMR)\ (/\ n e p(T)).
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4.4.2. Cy Semigroups of Operators.
Definition 4.13. Let X be a Banach space. A family {T'(¢)} € B(X) (0 <t < o0) is called

a strongly continuous semigroup of operators if

(i) T(t)T(s)=T(t+s), t,s>0 (semigroup property)

(i) T(0) = I

(iii) For all u € X, T(t)u is strongly continuous in ¢ € [0, c0), i.e.,

IT(t+ h)u—T(t)u| — 0 as h — 0.
For simplicity we say that 7'(¢) is a Cj semigroup.
Moreover, for fixed u € X, we write T'(-)u € C([0,00); X). If in addition the map

t — T(t) is continuous in the uniform operator topology, i.e., ||T(t + h) — T(t)|| — 0 for
t,t +h > 0, then the family {T'(¢)} is called a uniformly continuous semigroup. If

the Cy semigroup {T'(t)} satisfies the property ||T(¢)|| < 1 for ¢ > 0, then it is called a
contraction semigroup.

Note that T'(t) and T'(s) commute as a consequence of (i), and that T'(¢)u is also strongly
continuous in u for each fixed ¢t > 0. (||T'(t)u — T'(t)v|| < ||T(@)||||w — v]].)

EXAMPLE 4.28. Let A € B(X) where X is a Banach space. Then the series Y 2 (A" /n!)t"
converges in the uniform operator topology for any real number ¢. In fact, set

n

S =Y _(AF/ENEF

k=0

and observe that for m < n

IS0 = Smll < > (JAIF/ED[E* = 0 as m,n — oo.
k=m+1

Thus {5, } converges to a bounded linear operator, in the uniform operator topology, which
we denote by €. From the above estimate we see that

et < etliAl,
Let u(t) = e*4up where ug € X. Since ett9)4 = ¢t4es4 it follows that

u(t+h) —u) (W‘—I_A)u_

h h
However,
et 1 = k k—1
l=—— -4l < > (AJF /R Rl
k=2
elMIAl — q

= S A =0 as h—0.
A

tA

Hence /(t) exists for all ¢ and equals Au, and so we have shown that u(t) = e'*ug satisfies

the Cauchy problem
du

Wy = up.
o u (t>0), u(0)=mup
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Finally, we show that {etA}, t > 0, is a uniformly continuous semigroup. In fact
”e(tJrh)A - etA|| — ||etA(€hA _ I)”

< eItIIIAII(ethlA” —1)—0 as h—0.

Lemma 4.29. If {T(t)} is a Cy semigroup, then there exist constants w > 0 and M > 1
such that
IT@)] < Me*t, t>0

i.e., [|T(t)|| grows slower than an exponential.

Proof. In fact, since the function g(¢) = ||T(t)ul| is continuous on [0,1] for each fixed
u € X, we have sup;c(o 1) [|7(t)ul| < co. Hence, by the Uniform Boundedness Principle,
there is a constant M > 0 such that | T(¢)|| < M for t € [0,1]. Let w = log M. Then w > 0,
since M > 1 by virtue of T'(0) = I. Now let t be given and let n be the least integer greater
than or equal to t. By virtue of the semigroup property (7'(t/n))"™ = T'(t) and thus

IT@)] = (T(t/n)"]| < M™ < M* = M,
O

4.4.3. Infinitesimal Generator. Let {T'(¢)} be a Cj semigroup on the Banach space X.
For h > 0 we define the linear operator Ay by the formula

T(h)u —u
g
Definition 4.14. (i) Let D(A) be the set of all u € X for which limj,_,o+ Apu exists. Define
the operator A on D(A) by the relation

Apu = u e X.

) d
Au = hliréh Apu = %T(h)u|h:0+ (u € D(A)).

The operator A is called the infinitesimal generator of the semigroup {7'(¢)}.
(ii) Given an operator A on D(A), we say that it generates a Cy semigroup {7'(¢)} if A
coincides with the infinitesimal generator of {T'(¢)}.

EXAMPLE 4.30. Clearly A € B(X) is the infinitesimal generator of {e!4}, t > 0.

Theorem 4.31. Let {T'(t)} be a Cy semigroup on the Banach space X and let A : D(A) —
X be its infinitesimal generator. Then the following hold:

(a) D(A) is a subspace of X and A is a linear operator.
(b) If u € D(A), then T(t)u € D(A), 0 <t < o0, is strongly differentiable in t and

(4.92) (d/dt)T(t)yu = AT (t)u =T (t)Au, t >0
(c¢) If u e D(A), then

t
Tt)u—T(s)u = / T(h)Au dh, t,s >0

(d) If f(t) is a real-valued continuous function for t > 0, then

t+h
}llin%) ht f(s)T(s)uds=f(t)T(t)u, ue X, t>0
- t

(e) [iT(s)uds € D(A) and T(u=u+ A [J T(s)uds, u€ X
(f) D(A) = X and A is a closed operator.
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Proof. (a) This follows directly from the definition since Ay, is linear.
(b) Since T'(t) and T'(h) commute and || T'(t)|| < oo, we have

AT () =T(t)Apu — T(t)Au, as h — 0.

Hence
T(t)u € D(A), AT(t)u = T(t)Au = DTT(t)u.
Next we consider D~T'(t)u if t > 0. Note that

Tt)u—T(t — h)u CTWAu = T(t—h) <T(h)u—u —Au)

h h
+ (T(t—h)—T(t))Au.
But
T(h)u

— T(hu —
IT(t — h) <h“ - Au> | < Meth();Lu ~ Aul| =0

as h — 01 and
I(T(t —h)—T(t)Aul| - 0 as h — 0"

which implies the desired result.

(c) The abstract function T'(t)u is differentiable by (b) and its derivative T'(¢)Au is
continuous in ¢. The conclusion follows by integrating (4.92).

(d)
t+h

o B B . t+h B
17 f($)T(s)uds — fFO)T(t)ul = [~ /t (f(s)T(s)u — f(O)T(t)u) ds|

t

t+h th
<t [ T Tl ds+ b7 [Tl - £ ds

Since the functions 7T'(¢)u and f(t) are continuous in ¢, by choosing h small enough so that
(T (s)u —T(t)u|]| < e and |f(s) — f(t)| < € for |t — s| < h, the result easily follows.

(e) Let h > 0 and consider

(T(h)h‘l) /OtT(s)u ds = ;L/Ot(T(s+h)u—T(s)u)ds

- 1 ( /t " sy ds /0 " Ty ds>

— Ttu—u
by (d). Thus fo s)u ds € D(A) and (e) follows by the definition of A.

(f) Let w € X. Then fo Ju ds € D(A) and by (d), limj_oh~ 1f0 su ds =
T(0)u = u. Thus D(A) = X. Let u, € D(A) with u,, = u, Au, — v in X. Now

T n — Yn h
Apu = lim T(hyun = tn = lim h_l/ T(s)Au, ds
n—00 h n—00 0

where the last term follows from (c). But Awu,, — v and so
Apu=h" / sjvds —v as h—0

by virtue of (d). Thus u € D(A) and Au = v. O
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Remark 4.15. Since the map t — T'(t)Au is continuous, it follows from (b) that T'(¢t)u is
continuously differentiable from [0, 00) with values in X. Also T'(t)u € D(A) as proved, so
it has values in D(A) as well. Further, the continuous differentiability into X also proves
the continuity into D(A) (with the graph norm).

4.4.4. Application to Abstract Cauchy Problems. As an application we shall prove
that the abstract Cauchy problem

(4.93) % = Au (t>0), w(0) =uo, ug€ D(A)

has a unique solution.

Theorem 4.32. Let A : D(A) — X be the infinitesimal generator of a Cy semigroup
{T'(t)}. Then the Cauchy problem (4.93) has the unique solution

u(t) =T (t)ug, t>0.

Proof. The existence is a consequence of Theorem 4.31 (b). To prove uniqueness, let v(t)
be any solution of the Cauchy problem and set F'(s) = T'(t — s)v(s). Then

F(s+h)—F(s)=T({t—s—h)(v(s+h)—v(s)) = (T(t—s)—T(t—s—h))v(s).
Since v(s) € D(A), Theorem 4.31 implies that F'(s) is strongly differentiable in s and

(d/ds)F(s) = —AT(t— s)v(s)+T(t— s)v'(s)
= —AT(t—s)v(s)+T(t—s)Av(s) =0, 0<s <t

Hence by the mean value theorem, F'(s) =constant for 0 < s < ¢. In particular, F'(t) = F(0)
or v(t) = T(t)up = u(t). O

Remark 4.16. (i) If T'(¢)uy is differentiable for every ug € X and ¢ > 0, then in particular,
(d/dt)(T(t)uo)|t=0 = Aug. Hence, D(A) = X and A (being a closed operator) must be
bounded. Thus if A is unbounded, then T'(¢)ug is not differentiable for all uy € X. We can
however consider u(t) = T'(t)ug as a generalized solution of the Cauchy problem.

(ii) From the uniqueness in Theorem 4.32 we have that a linear operator A : D(A) — X
which is densely defined can be the infinitesimal generator of at most one Cy semigroup
{T'(t)}. Moreover, if {T'(t)} is a Cy semigroup whose infinitesimal generator A is bounded,
then T'(t) = e since then A is the infinitesimal generator of T'(t) and e*4.

4.4.5. Characterization of Generators. We know the generator A of a Cjy semigroup is
a closed, densely defined linear operator. Now given a closed, densely defined linear operator
A on a Banach space X, we would like to know whether A generates a Cy semigroup on X;
if it does, then the abstract Cauchy problem (4.93) has a unique solution.

Suppose A generates a C contraction semigroup {7'(¢)}, i.e., | T(t)|| < 1 for all ¢ > 0.
For uw € X, A > 0, the integral

t
/ e MT(T)udr

is well defined, and as ||T'(7)u|| < ||u|| for all 7, we deduce that this integral tends to zero
as t,s — 0o. Hence the integral

R(/\;A)u:/ e MT(T)udr
0
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exists as an improper Riemann integral. Since
o
-
[R(A; A)ul| < H’ull/0 e Tdr = (1/A)]|ul|

it follows that R(A; A) is a bounded linear operator and ||R(A; A)|| < 1/ for all A > 0.

Lemma 4.33. If A is the infinitesimal generator of a contraction semigroup {T'(t)}, then
(M — A) is invertible for every A > 0 and

(M — A)~t = R()\; A).

In particular, for every X > 0, ||[(A\I — A)7| < A~1. (Thus the resolvent operator Ry =
(M — A)~L is the Laplace transform of the semigroup.)

Proof. Let h > 0. Then for u € X

(P rocan = am) [T e @+ hu- T

— (1/h) /h T AP Yudr — (1/h) /0 eI () udr

6>\T -1 o0 Y e—)\h h o
= e "I (T)yudr — —— | e "T(7)udr
h 0 hJo

— ARNA)u—u
Thus R(A; A)u € D(A) and AR(\; A)u = AR(\; A)u — u, ie., (Al — A)R(\; A)u = u.
Now let u € D(A). Then

oo o d
R\ A)Au = / e_’\TT(T)AudT:/ e ——(T(7)u)dr
0 0 dr

= )\/ e MT(T)udr —u
0
= AR(MA)—u
i.e., R(\; A)(A — A)u = u. This proves R(A\; A) = (M — A)~! = R,. O

Theorem 4.34. (Hille-Yosida Theorem) A linear operator A : D(A) — X is the gen-
erator of a Cy contraction semigroup if and only if A is closed, densely defined and

(4.94) (0,00) C p(4), ||[M—-A)7<Xxtva>o.

Proof. 1. If A is the generator, (4.94) follows from the previous lemma.
2. Now assume A is closed, densely defined, and satisfies (4.94). We must build a Cj
contraction semigroup whose infinitesimal generator is A. For this, fix A > 0 and defined

Ay := =M+ A\2Ry = MAR,.

The operator Ay is a kind of regularization of A.
3. We first claim

(4.95) lim Ayu = Au (u € D(A)).

A—00

Indeed, for each u € D(A), since ARyu — u = AR\u = R)Au, we have

1
AR u — ul| < ||RA||||Aul| < —||Aul] = 0 as A — oo.
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Hence ARyu — u as A — oo if u € D(A). But since ||[AR,|| < 1 and D(A) is dense, we have
lim ARyu =u (ue€ X).
A—00

So, if u € D(A),

lim Ayu = lim AMRyu = lim AR)Au = Au.
A—00 A—00 A—00

4. Define

tA At AR Y - ()‘Qt)k k
T)\(t) ==e" =e Vet " =" Z i Ry.
k=0

Observe, since ||Ry|| < 1/A,

w’f)k —1 (t>0)

o
I < e
k=0
Consequently, {T)(¢) }+>0 is a contraction semigroup, with generator Aj.
5. By the resolvent identity above, we see A A, = A, A, for all \, x> 0. So
AT =T A, (t>0).
We thus compute
t d t
T =Tutyu = [ LI = Tuldr = [T, = DT (Ava = A,
Consequently, if u € D(A), then
| Ta(t)u — Ty (t)ul] < t|Ayu — Apull =0 as A\, u — oo.
This proves that {T)\(t)u}x>o is a Cauchy sequence in X. Hence define
T(t)u:= lim Th(t)u (u€ D(A), t>0).
A—00

From ||T)\(t)|] < 1, it is straightforward to show that {T'(¢)}:>0 is a C' — 0 contraction
semigroup.

6. Finally we show the generator of {T'(t)}:>0 is A. Write B to denote this generator.
Now

t
Th(tu—u= / T)(7) A udT
0
and
T\(1)Azu — T(7) Au|| < || Ta(7) ||| Aaw — Aul| + || Ta(7)Au — T'(1) Au|| — 0
as A — oo for all u € D(A). Thus we have

T(t)u—u= /0 T(r)Ayudr (u € D(A)).

This, recalling the definition of D(B), proves D(A) C D(B) and, for all u € D(A),

Bu = lim M

h—0+ h
To show D(B) C D(A), note (0,00) C p(A) N p(B) and also (Al — B)(D(A)) = (A —
A)(D(A)) = X. So, if y € D(B), then there exists a € D(A), such that (A\] — B)y =
Ay — By = (M — A)x = \x — Az = Az — Bz and hence y = = € D(A). This proves
D(B) C D(A). So A= B. O

= Au.
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Remark 4.17. A Cj semigroup {T'(¢)} is called a Cy w-contraction semigroup, provided
for some w € R,

(4.96) 1T <et (t>0).

In this case, Ty (t) = e “!'T'(t) will be a Cy contraction semigroup. If A is the generator of
T, then A — wl is the generator of T} and if A is the generator of 71, then A + wl is the
generator of 7. Thus we can deduce the following result:

Theorem 4.35. A linear operator A : D(A) — X is the generator of a Cy w-contraction
semigroup {T(t)} if and only if A is closed, densely defined and satisfies

1
(w,00) € p(A), (M —=A)7!| < o, TACw

To characterize the infinitesimal generators of general Cy semigroups, we usually renorm
the Banach space so that {T'(t)} becomes a Cy contraction semigroup in the new (equivalent)
norm. We just state the following general result without proof.

Theorem 4.36. (Hille-Yosida-Phillips) A linear operator A : D(A) — X is the gener-
ator of a Cy semigroup {T'(t)} if and only if A is closed, densely defined and there exist
constants M > 1, w € R such that X\ € p(A) for each A > w and

(AT — A" < YA>w, n=1,2,....

M
(A—w)™’
In this case | T(t)|| < Me“".

4.4.6. Another Characterization of Cj Contraction Semigroups. We now give a
different characterization of generators of semigroups of contractions in a Hilbert space H.

Definition 4.18. (i) A linear operator A : D(A) — H is said to be dissipative if
Re(Au,u) <0 forall we D(A).

(Note that if H is a real Hilbert space, then A is dissipative iff —A is monotone.)

(ii) We say that A is maximal dissipative if in addition R(I — A) = H. It is maximal
in the sense that there exists no linear operator B with the same properties and such that B
is an extension of A. Indeed, suppose such an extension exists. Let u € D(B) and v € D(A)
be such that (I — A)v = (I — B)u. Since Av = Bv, we have (I — B)(v—u) = 0. Multiplying
this by (v — u) we get

0 < |lv—ul®>=Re(B(v—u),v—u) <0
whence u = v or u € D(A). Thus B = A.
Lemma 4.37. If A is dissipative, then
(4.97) |(AL — A)ul| > Mu|| for all X >0, ue D(A).
Proof.
1A = Aullflull > Re((AT = A)u, u) = Allull® — Re(Au, u) > X|ul|*.
U

Theorem 4.38. (Lumer-Phillips) Let A : D(A) — H be a densely defined linear operator.

(a) If A is a generator of a Cy contraction semigroup {T'(t)}, then A is dissipative
and R(M — A) = H for all A > 0.
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(b) If A is dissipative and there exists a A\g > 0 such that R(AoI — A) = H, then
A is a generator of a Cy contraction semigroup. In particular, A is maximal
dissipative.

Proof. (a) By the Hille-Yosida Theorem, (0,00) C p(A) and therefore A\I — A is onto H
for all A > 0. Furthermore,

(T (tyu,w)| < ITOul® < Jul®.
Hence

Re <T(t)1:_“u> _ %(Re(T(t)u,u) —luf?) <o.

Let u € D(A) and let t — 0% obtaining Re(Au, u) < 0.

(b) Since R(NI — A) = H, it follows from (4.97) that Ay € p(A) and A is closed. If
R(M — A) = H for all X > 0, then (0,00) C p(A4) and ||R(X; A)|| < A=t by (4.97). The
desired result then follows from the Hille-Yosida Theorem.

In order to prove that R(A — A) = H for all A > 0, consider the open set
F={A:A>0 and R\ - A)=H}.

Note that A € T implies A € p(A), and since p(A) is open, there is a neighborhood of A
whose intersection with the real line is in I'. By hypothesis, Ag € I". Hence if T" is closed in
(0,00), then I" = (0,00). Let A, = A >0, A\, € I'. For every v € H, there exist u,,’s such
that

(4.98) Ay, — Au, =v  for all n.
From (4.97) it follows that |ju,|| < A, !||v|]| < c¢. Now by (4.97) again,

Anllun —umll < [[An(un — um) — A(un — um)||
= ||lv = Mum + Aup|| = [|v — At + At — ||
= A = Anlllum|l < c[An = Aml.
Therefore {u,} is a Cauchy sequence with limit, say, u. Thus by (4.98), Au,, = Au—v and
since A is closed, u € D(A) and Au — Au =wv. Thus A € T. O

Corollary 4.39. Let A: D(A) — H be a densely defined closed linear operator. If both A
and A* are dissipative, then A is a generator of a Cy contraction semigroup.

Proof. In view of (b) of Theorem 4.38, it suffices to show that R(I — A) = H. Since A is
closed so is I — A. Moreover, (4.97) and Corollary 4.27 imply R(I — A) is a closed subspace
of H and therefore R(I — A) = (N'(I — A*))L. Consequently, it suffices to show that I — A*
is one-to-one. But this follows from the fact that A* is dissipative. ]

While we could solve the initial value problem in [0, 00) when uy € D(A) and not for
general ug € H, one can show that if A is self-adjoint then we can solve the problem for
any initial data ug € H. The price we pay for this is the lack of differentiability at t = 0.

Theorem 4.40. Let A be a self-adjoint maximal dissipative operator and let ug € H. Then
there exists a unique u such that

u € C([0,00); H) N C'((0,00); H) N C((0,00); D(A))

and u satisfies the initial value problem (4.93). (Continuity in D(A) is with respect to the
graph norm.)
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Proof. We only prove uniqueness. Let uj, us be two solutions of (4.93). Set v(t) = ||ui(t)—
uz(t)||? which is continuous and such that v(0) = 0. Taking the inner product of ' = Au
with ug(t) — ua(t) for v = u; and u = ug and using the dissipativity of A, we get

d

—v(t) <0

TR
whence it follows that v(t) = 0 and so u;(t) = ua(t) for ¢ > 0. O

4.4.7. Applications. We demonstrate in this section that certain second-order parabolic
and hyperbolic PDE can be realized within the semigroup framework. The solvability of the
Cauchy problem for u/ = Aw is reduced to the study of the solvability and a-priori estimate
of the solutions of the usually simpler problem Au — Au = v, u € D(A) where v € X and
A > w.

A. Second-order Parabolic Equations. We consider the following initial-boundary
value problem (IBVP):
up+ Lu=0 in Qp,
(4.99) u=0 on 09 x [0, 77,
u=g on Q x {t =0},
which a special case studied above. We assume L has the divergence structure, satisfies the

uniform ellipticity condition, and has coefficients that are smooth and independent of time
t. We assume domain €2 is bounded and has smooth boundary 0f2.

We propose problem (4.99) as the flow determined by a semigroup on X = L?(2). For
this we set

D(A) = HY(Q) N H*(Q)
and define

Au:=—Lu (u € D(A)).
Recall the Garding’s inequality
(4.100) Bllulls oy < Blusu] + 1l -

Theorem 4.41. (Second-order parabolic PDE as semigroup) The operator A gen-
erates a Cy y-contraction semigroup {T(t)};>0 on L*(Q). Therefore u(t) = T(t)g defines
the solution to (4.99) for any given g € HL(Q) N H2(1).

Proof. We must verify the hypotheses of the Hille-Yosida-Phillips Theorem. Therefore
the evolution problem becomes a study of the spectral properties of the elliptic operator A
defined above.

1. D(A) is clearly dense in L?(().
2. We show A is closed. Indeed, let {uy} be a sequence in D(A) with

up — u, Aup — f in L2(9).
According the global regularity,
|ur — will 2i0) < C(|1Auk, — Awll 20y + lluk — will 2(0))
for all k,I. This shows that {u;} is a Cauchy sequence in H?(£2) and so
up — u € H(Q) in H3(Q).
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Moreover, u € Hg(Q). (Trace operator is continuous from H!(Q) to L?(99).) Therefore
u € D(A). Furthermore the strong convergence uj, — u in H2(Q) implies Auy — Au in
L?(2), and thus f = Au. By definition, A is closed.

3. We next prove the condition (v,00) C p(A); that is, A\l — A is one-to-one and onto
for all A > ~. By Lax-Milgram’s Theorem, for all A > ~, the BVP

L Au = in 2
(4.101) u+Adu=f in(,
u=20 on Jf2

has a unique weak solution u € H{(Q) for each f € L*(Q). The global regularity theory
shows that u € D(A), and
Au— Au = f.
Thus (AI— A): D(A) — X is one-to-one and onto, for all A > +. This proves [y,00) C p(A).
4. Let Ry = R(\, A) = (\[ — A)~L. We will show

1
R <—— (A>
I € 5= (>
as required for generating a Cj y-contraction semigroup. To show this, consider the weak
form of problem (4.101):
Blu,v] + Mu,v) = (f,v) Ywv e H(Q),

where, as usual, (,) stands for the L?inner product. Set v = u and recall the Garding’s
inequality to compute

A =NullZz) < 1Fl2@llullz2@)-
This implies, as u = Ry f,

1

[BAf L2y = llullr2() < j”fHLZ(Q)-
This bound is valid for all f € L?(£2), which proves the desired claim. O
ExaAMPLE 4.42. We study the heat equation:

ur(z,t) — Au(z,t) =0 in Q x [0, 00),
(4.102) u(z,t) =0 on 09 x [0, 00),

u(z,0) = ug(x), x €.
Theorem 4.43. Let ug € L?(Q2). Then there exists a unique solution u of (4.102) such that

u € C([0,00); L2(2)) N CH((0, 00); L*(£2)) N C((0, 00); H*(2) N Hp(2))-

Proof. Let H = L*(Q) and define A : D(A) C H — H by
D(A) = H*(Q) N H(Q); Au= Au for u € D(A).

Using the concept of an abstract function, the IBVP can be posed as the abstract Cauchy

problem

d
di;:Au(tZO), w(0) = ug € H.

Since for u € H2(Q) N H(Q)

(Au,u) = / uAu dr = —/ |Vul? dz < 0,
Q Q
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we have that A is dissipative. It is maximal dissipative; that is, R(I — A) = H, for, by the
Lax-Milgram, there exists a unique u € Hg () such that

(I—Au=u—Au=f forall feL*Q).

Also by elliptic regularity, u € H?(€2) and so u € D(A); hence R(I — A) = H. Finally, we
saw earlier that A is self-adjoint. Hence we can apply Theorem 4.40 to deduce the desired
conclusions. g

Remark 4.19. Note that however badly behaved ug € L?(2) may be, u(z,t) is very smooth
for all ¢ > 0. This is known as the strong regularizing effect of the heat operator. In
particular, this shows that the heat equation is irreversible in time, i.e., we cannot always
solve the problem

ur(z,t) — Au(z,t) =0 in Q x[0,7),

u(z,t) =0 on 90 x (0,7),

u(z, T) = up(x), x € Q.

B. Second-order Hyperbolic Equations. We consider the following initial-boundary
value problem (IBVP):

uy +Lu=20 in Qp,
(4.103) u=20 on 0 x [0, T,

u=g, uy=h onQx{t=0},

which a special case studied above. We assume domain {2 is bounded and has smooth
boundary 02 and L has the symmetric form:

Lu=— Z Dj(a;j(x)Diu) + c(x)u,
ij=1

where a;j(z) = aji(x) and c(x) > 0 are all smooth functions and (a;;(x)) > 61. Hence
(4.104) Blu,u] > 9|yuy\§é(m (u € H3(Q)).
We recast problem (4.103) as a first-order system by setting v := ;. Then (4.103) reads
u=v, vy+Lu=0 1in Qp,

(4.105) u=0 on 09 x [0, 77,
u=g,v=nh on Q x {t =0},

Now take Hilbert space X = H}(Q) x L?(€2), with the inner product
<<(ua U)v (fa g)>> = B[uv f] + (v’g)LQ(Q)

and the norm
(s )| := (Blu, u] + [[o] 72 (0)) >
Define
D(A) == [H?*(Q) N Hy ()] x Hy ()
and define
A(u,v) == (v,—Lu) Y (u,v) € D(A).

Theorem 4.44. (Second-order hyperbolic PDE as semigroup) The operator A gen-
erates a Cy contraction semigroup {T(t)}e>0 on HE(Q) x L%(Q). Therefore (u(t),v(t)) =
T(t)(g,h) defines the solution to (4.105) for any given (g,h) € [H} () N H?(Q)] x HL(Q).
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Proof. We must verify the hypotheses of the Hille-Yosida-Phillips Theorem. Therefore the
evolution problem again becomes a study of the spectral properties of the linear operator
A defined above.

1. D(A) is clearly dense in L?(9).
2. We show A is closed. Indeed, let {(ux,v)} be a sequence in D(A) with
(ukavk) - (’LL, U): A(ukka) - (fag) in X = H(%(Q) X LQ(Q)

Since A(ug,vy) = (v, —Lug), we conclude f = v and Lup — —g in L?(Q2). As before,
by elliptic estimates and regularity, ux — wu in H%(Q) and ¢ = —Lu. Thus (u,v) €
D(A), A(u,v) = (v,—Lu) = (f,g). By definition, A is closed.

3. We next prove (0,00) C p(A); that is, A\ — A is one-to-one and onto for all A > 0.
Now given A > 0 and (f,g) € X = H}(Q) x L*(Q2), consider the operator equation

(M — A)(u,v) = AMu,v) — A(u,v) = (f,g)-

This is equivalent to the two scalar equations:

(4.106) {)\u—v:f (u € H2(Q) N HY(Q)),

MW+ Lu=g (ve H}RQ)).
But this implies
MutLu=\f+g (ue H*(Q)NHHQ)).

Since A\? > 0, by existence and regularity of elliptic PDE, this problem has a unique solution
u € H?(Q) N H}(Q). Once u is found, define v = Au — f € H}(Q2). We have shown that
(4.106) has a unique solution (u,v). This proves that (Al — A): D(A) — X is one-to-one
and onto, for each A > 0; hence (0,00) C p(A).

4. Let Ry = R(\, A) = (A — A)~!. We will show
1
1Bl < & (A>0),

as required for generating a Cp contraction semigroup. Note that Ry(f,g) = (u,v) if and
only if (4.106) holds. From the second equation in (4.106), we deduce

M[vl12(q) + Blu, v] = (9, 0) 12(0-
Putting v = Au — f, we obtain
MIol32(0) + Bl ) = (0, 9)z2q0) + Bl 7] = (((w,0), (£,9))) < s 0) (S 9]
This implies
I, )l < £ 9

1B, 9)l = I 0) < S (S 9]

This bound is valid for all (f,g) € X, which proves the desired claim ||Ry|| < § for all
A>0. ([l
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4.4.8. Nonhomogeneous Problems. We consider the nonhomogeneous Cauchy problem

(4.107) % CAu=f(®) (E>0), u(0)=uo, uo € D(A).

A function u(t) € D(A) is called a classical solution of (4.107) if it continuous for
t > 0, continuously differentiable for ¢ > 0 and satisfies (4.107).

Theorem 4.45. Let A : D(A) — X be the infinitesimal generator of a Cy semigroup {T'(t)}.
Let f :[0,00) — X be continuously differentiable. Then the Cauchy problem (4.107) has a
unique solution
t
(4.108) u(t) = T(t)ug +/ T(t—s)f(s)ds, t>0.
0

Proof. Obviously u(0) = ug. Define the function
t t
v(t) = / T(t—s)f(s)ds= / T(s)f(t— s) ds.
0 0
Since T'(t) is bounded for each ¢t > 0 and f(s) is continuous, the above integrals exist. Now
t+h t
w(t+h) —o(®)]/h = h—l/ T(s)f(t + h — s)ds — h,—l/ T(s)f(t — 5)ds
0 0
t
= [T+ s) = f(t - s))/nds
0
t+h
4 h—l/ T(s)f(t+h — s) ds.
t
Hence v'(t) exists and

V() = /0 T(s)f'(t — s) ds + T(t)£(0).

On the other hand, for h > 0 we have
t+h t
[v(t+h)—v®)]/h = h! / T(t+h—s)f(s)ds—h* / T(t—s)f(s)ds

0 0

= [T'(h) — I]/h/ T(t—s)f(s)ds

0

t+h

+ h_l/ T(t+h—s)f(s)ds.

Since the limit on the left exists and also

t+h
ilzii%hl/t T(t+h—s)f(s)ds = f(t)

it follows that

h—0

lim Ah/OtT(t —35)f(s)ds = A/OtT(t —3s)f(s) ds
which yields

o (1) :A/O T(t — $)f(s) ds + f(£).
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As a result we get

t
%‘ — AT(t)up+ A / T(t— 5)f(s) ds + f(2)
0
= Au(t) + f(t)
and the proof is complete. ]

Remark 4.20. The expression (4.108) is called the variation of constants or Duhamel
formula. If the function f is integrable, then (4.108) still makes sense. Then u defined
by that formula is called a generalized solution or mild solution of (4.107). It can be
shown that a generalized solution always exists, but need not be a classical solution.
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