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ABSTRACT. This paper is motivated by a problem suggested in
Müller [11] that concerns the weak lower semicontinuity of a
smooth integral functional I(u) on a Sobolev space along all
its weakly convergent minimizing sequences. Here we study a
restricted weak lower semicontinuity of I(u) along all weakly
convergent Palais-Smale sequences (that is, sequences {uk} satis-
fying I′(uk)→ 0). In view of Ekeland’s variational principle, this
restricted weak lower semicontinuity, replacing the usual (unre-
stricted) weak lower semicontinuity in the direct method of cal-
culus of variations, is sufficient for the existence of minimizers
under the standard coercivity assumption. The main purpose of
the paper is to study the relationships of this restricted weak lower
semicontinuity condition with the usual weak lower semiconti-
nuity condition that is known to be equivalent to the Morrey
quasiconvexity in the calculus of variations. We show that the
two conditions are not equivalent in general, but are equivalent
in certain interesting cases.

1. INTRODUCTION

In this paper, we study a problem suggested in Müller [11] that concerns a weak
lower semicontinuity of a smooth integral functional I(u) of the type

(1.1) I(u) =
∫
Ω f(x,u(x),Du(x))dx
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along certain restricted weakly convergent sequences. Here Ω is a domain in Rn,
u : Ω → Rm is a vector-valued function with Jacobi matrix Du(x) = (∂ui/∂xj)
and f(x, s, ξ) is a given function of point x ∈ Ω, vector s ∈ Rn and matrix
ξ ∈Mm×n, the set of allm×n matrices.

Under some structure and growth conditions, one can define the functional
I(u) on the Sobolev space W 1,p(Ω;Rm) of mappings from Ω to Rm and study
the minimization problem of the functional I on a given Dirichlet class. Such a
problem can be studied by the direct method of calculus of variations [5]. An
important property often linked to the direct method of calculus of variations
is the so-called weak lower semicontinuity of the functional I. Recall that I is
(sequentially) weakly lower semicontinuous on W 1,p(Ω;Rm) if

(1.2) I(u) ≤ lim inf
k→∞

I(uk) whenever uk ⇀ u in W 1,p(Ω;Rm),

where uk ⇀ u means uk weakly converges to u.
It has been well-known that, under certain mild conditions on f , the weak

lower semicontinuity of integral functional I defined above is equivalent to the
important quasiconvexity condition introduced by Morrey; see, e.g., [1, 3, 5, 10,
11]. Recall that f(x, s, ξ) is quasiconvex in ξ in the Morrey sense provided that
the inequality

f(x, s, ξ) ≤ 1
|Ω|

∫
Ω f(x, s, ξ +Dϕ(y))dy

holds for a.e. x ∈ Ω, all s ∈ Rn, ξ ∈ Mm×n, and all ϕ ∈ C∞0 (Ω;Rm). Note
that in the case n = 1 (one-dimensional case) or m = 1 (scalar case) Morrey’s
quasiconvexity condition becomes the usual convexity condition.

We assume the functional I defined above is continuously differentiable on
W 1,p(Ω;Rm) and bounded below. We also assume p > 1 and p′ = p/(p−1) and
denote byW−1,p′(Ω;Rm) the dual space ofW 1,p

0 (Ω;Rm). In view of an important
variational principle discovered by Ekeland [6] (see also [2]), we can always obtain
a minimizing sequence {uk} of I over a Dirichlet classAg inW 1,p(Ω;Rm) which
satisfies I′(uk) → 0 in W−1,p′(Ω;Rm). Consequently, the weak limit (if exists) of
any such minimizing sequence will be an energy minimizer provided, as has been
suggested by Müller in [11], that I(u) only satisfies the condition:

(1.3) I(u) ≤ lim inf
k→∞

I(uk)

whenever uk ⇀ u in W 1,p(Ω;Rm) and I′(uk)→ 0 in W−1,p′(Ω;Rm).

Since a sequence {uk}with I′(uk)→ 0 is usually called a Palais-Smale sequence, we
call a functional I(u) satisfying condition (1.3) (PS)-weakly lower semicontinuous
on W 1,p(Ω;Rm).
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The main purpose of this paper is to investigate what intrinsic properties the
(PS)-weak lower semicontinuity of I(u) imposes on the function f(x, s, ξ). Cer-
tainly, Morrey’s quasiconvexity (of f on ξ) provides a sufficient condition for the
(PS)-weak lower semicontinuity. In this paper we obtain the following main re-
sults.

First, unlike the Morrey quasiconvexity, the condition on f(x, s, ξ) of the
(PS)-weak lower semicontinuity may depend not only on ξ but also on (x, s) in
a nonlocal fashion. For example, by (the proof of ) Proposition 4.2 and Theorem
5.1, the integral functional with a function h(ξ) may not be (PS)-weak lower
semicontinuous but the one with a(x)h(ξ) is, for some function a(x).

Second, we show that the (PS)-weak lower semicontinuity of a simple func-
tional

(1.4) I(u) =
∫
Ω f(Du(x))dx

defined by a function f : Mm×n → R+ may or may not be equivalent to the Mor-
rey quasiconvexity of f . In the case m = 1, which means u : Ω → R is a scalar
function, Theorem 5.1 shows that the (PS)-weak lower semicontinuity is equiv-
alent to the quasiconvexity of f , which is simply the convexity in this case. The
proof of this theorem uses a combination of a crucial convexity result for smooth
functions h : R → R+ (Lemma 4.8) and a classical one-dimensional construction
by layering, which produces a useful testing Palais-Smale sequence. In this layering
construction, it is the dimension m = 1 that is critical, not the Hadamard rank-
one jump condition because, in higher dimensions m > 1, even on the rank-one
directions, such a layering construction does not produce a Palais-Smale sequence
(see Remark 5.3) and thus cannot prove the quasiconvexity or even the rank-one
convexity from the (PS)-weak lower semicontinuity. In fact, Theorem 5.8 gives an
example in the one-dimensional vectorial case (n = 1, m ≥ 2) that a functional
(1.4) is (PS)-weak lower semicontinuous but f is not (quasi)convex.

Third, we also study the impact of the coercivity on the (PS)-weak lower
semicontinuity in Theorem 4.3 and Theorem 5.4. Under the given coercivity as-
sumption, we show that the (PS)-weak lower semicontinuity is equivalent to the
Morrey quasiconvexity. Without the coercivity assumption, Proposition 4.2 and
Theorem 5.8 show that the two conditions may not be equivalent. The proofs of
both Theorem 4.3 and Theorem 5.4 rely on the key idea that, under the coercivity
assumption, the (PS)-weak lower semicontinuity implies the existence of minimiz-
ers over all Dirichlet classes, which enables one to construct suitable Palais-Smale
sequences and to prove the convexity or quasiconvexity. This general existence
result, which is based on Ekeland’s variational principle, is also a main motivation
of the paper and is presented as Theorem 3.8.

Finally, we point out that even for the simplest functional (1.4) in the general
case of m, n ≥ 2 without the coercivity assumption a necessary and sufficient
condition on f for the (PS)-weak lower semicontinuity of I(u) remains open.
The major difficulty in the (PS)-weak lower semicontinuity lies in that the testing
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sequences {uk} constructed by the usual techniques [1, 5, 10] do not satisfy the
condition I′(uk) → 0 in W−1,p′(Ω;Rm). A related problem to the (PS)-weak
lower semicontinuity is to characterize all the gradient Young measures [8] gen-
erated by weakly convergent Palais-Smale sequences, which is also relevant to the
theory of compensated compactness [13]. Weak lower semicontinuity under cer-
tain linear differential constraints has been studied in [7]. These linear constraints
A(u) are independent of the functional and usually have large kernel. Then the
constrained lower semicontinuity of functionals may be characterized through the
Jensen’s inequality with the associated Young measures supported on the kernel of
A; this is the so-called A-quasiconvexity [7].

However, the difficulty in our case is that the strong convergence I′(uk) → 0
in W−1,p′(Ω;Rm) cannot be realized by the Young measure of {Duk} in the di-
mension n ≥ 2. Recently, in [14] we have successfully applied the Young measure
theory in the one-dimensional case (n = 1) to obtain a necessary and sufficient
condition of the (PS)-weak lower semicontinuity for the functional I(u) of the
type (1.4) for n = 1 and allm ≥ 1.

2. NOTATION AND PRELIMINARIES

Let Ω be a bounded domain in Rn. Let Mm×n be the set ofm×n matrices. For
vectors a, b ∈ Rn and matrices ξ, η ∈Mm×n, we define the inner products by

a · b =
n∑
j=1

aibi, ξ : η =
m∑
i=1

n∑
j=1

ξijηij,

with the corresponding Euclidean norms denoted both by | · |. For vectors q ∈
Rm, a ∈ Rn, we denote by q ⊗ a the rank-onem×n matrix (qiaj).

Let W 1,p(Ω) be the usual Sobolev space of scalar functions on Ω, and define
W 1,p(Ω;Rm) to be the space of vector functions u : Ω → Rm with each compo-
nent ui ∈ W 1,p(Ω) and we denote by Du the Jacobi matrix of u defined by

Du(x) =
(
∂ui

∂xj

)j=1,...,n

i=1,...,m
.

Let 1 ≤ p <∞. We make W 1,p(Ω;Rm) a Banach space with the norm

‖u‖W 1,p(Ω;Rm) =
(∫

Ω(|u|p + |Du|p)dx
)1/p

.

Let C∞0 (Ω;Rm) be the set of infinitely differentiable vector functions with com-
pact support in Ω, and let the spaceW 1,p

0 (Ω;Rm) be the closure of C∞0 (Ω;Rm) in
W 1,p(Ω;Rm). Then W 1,p

0 (Ω;Rm) is itself a Banach space and has an equivalent
norm defined by ‖|Du|‖Lp(Ω).
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Let g ∈ W 1,p(Ω;Rm). Define the Dirichlet class Ag = W 1,p
g (Ω;Rm) to be

g +W 1,p
0 (Ω;Rm); that is,

Ag = W 1,p
g (Ω;Rm) = {u ∈ W 1,p(Ω;Rm) | u− g ∈ W 1,p

0 (Ω;Rm)}.

For A ∈ Mm×n, define gA(x) = Ax and let W 1,p
A = W 1,p

gA (Ω;Rm) be the Dirich-
let class for the linear function gA.

We use uk ⇀ u to denote the weak convergence inW 1,p(Ω;Rm). Note that if
1 < p <∞, then any bounded sequence in W 1,p(Ω;Rm) has a weakly convergent
subsequence and if, furthermore, ∂Ω is smooth or the sequence is inW 1,p

g (Ω;Rm),
one can assume the subsequence is also convergent strongly in Lp(Ω;Rm).

Definition 2.1. A functional I on W 1,p(Ω;Rm) is said to be (sequentially)
weakly lower semicontinuous on W 1,p(Ω;Rm) provided

(2.1) I(u) ≤ lim inf
k→∞

I(uk) whenever uk ⇀ u in W 1,p(Ω;Rm).

Definition 2.2. Let h : Mm×n → R.
(i) We say that h is convex on Mm×n if the inequality

(2.2) h(λξ + (1− λ)η) ≤ λh(ξ)+ (1− λ)h(η)
holds for all 0 < λ < 1 and ξ, η ∈Mm×n.

(ii) We say h is rank-one convex if the inequality (2.2) holds only for all ξ, η
satisfying rank(ξ − η) ≤ 1.

(iii) We say that h is quasiconvex in the Morrey sense if the inequality

(2.3) h(A) ≤ 1
|Ω|

∫
Ω h(A+Dϕ(x))dx

holds for all A ∈ Mm×n and ϕ ∈ C∞0 (Ω;Rm).

For more on Morrey’s quasiconvexity condition and related results, we refer
to [1, 3, 5, 10–12]. Note that in the case of n = 1 (one-dimensional) or m = 1
(scalar) the convexity and quasiconvexity for the function h : Mm×n → R are
equivalent.

Note also that h is convex if and only if g(t) = h(ξ+tη) is a convex function
of t on R for all ξ, η ∈ Mm×n. For C1 functions h, the convexity condition is
equivalent to the condition

(2.4) h(η) ≥ h(ξ)+Dξh(ξ) : (η− ξ), ∀η, ξ ∈ Mm×n.

Furthermore, a C1 function h on R is convex if and only if h′ is nondecreasing,
or equivalently, the following condition holds:

(2.5) (h′(a)− h′(b))(a− b) ≥ 0, ∀a, b ∈ R.
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Let f : Ω × Rn × Mm×n → R. We say f is Carathéodory if f(x, s, ξ) is
measurable in x ∈ Ω for all (s, ξ) ∈ Rn × Mm×n and continuous in (s, ξ) ∈
Rn ×Mm×n for almost every x ∈ Ω. If f(x, s, ξ) is measurable in x ∈ Ω for all
(s, ξ) ∈ Rn ×Mm×n and is C1 in (s, ξ) ∈ Rn ×Mm×n for almost every x ∈ Ω,
we shall use the following notation to denote the derivatives of f on s and ξ:

Dsf(x, s, ξ) =
(
∂f
∂s1
, . . . ,

∂f
∂sn

)
,

Dξf (x, s, ξ) =
(
∂f
∂ξij

)j=1,...,n

i=1,...,m
.

Given a function f(x, s, ξ), define the integral functional I on W 1,p(Ω;Rm)
by

I(u) =
∫
Ω f(x,u(x),Du(x))dx, u ∈ W 1,p(Ω;Rm).

The following important result has been proved by Acerbi and Fusco [1].

Theorem 2.3. Assume f is Carathéodory and satisfies

0 ≤ f(x, s, ξ) ≤ c1(|ξ|p + |s|p)+A(x),

where c1 > 0 and A ∈ L1(Ω). Then the functional I defined above is weakly lower
semicontinuous on W 1,p(Ω;Rm) if and only if f(x, s, ·) is quasiconvex for almost
every x ∈ Ω and all s ∈ Rn; that is, the inequality

f(x, s, ξ) ≤ 1
|Ω|

∫
Ω f(x, s, ξ +Dϕ(y))dy

holds for a.e. x ∈ Ω, all s ∈ Rn, ξ ∈ Mm×n, and all ϕ ∈ C∞0 (Ω;Rm).

For smooth and bounded-below functionals on Banach space, we have the
following result from the Ekeland variational principle [2, 6]. We refer to [2, 6]
for the proof and more on the applications of the Ekeland variational principle.

Theorem 2.4. Let X be a Banach space and X∗ its dual space, and let Φ : X → R
be a C1 functional which is bounded below. Then, for each ε > 0, there exists uε ∈ X
such that

Φ(uε) ≤ inf
X
Φ + ε,(2.6)

‖Φ′(uε)‖X∗ ≤ ε.(2.7)

Therefore, there exists a minimizing sequence {uk} in X such that

lim
k→∞

Φ(uk) = inf
X
Φ, lim

k→∞
‖Φ′(uk)‖X∗ = 0.



Restricted Weak Lower Semicontinuity 875

3. THE (PS)-WEAK LOWER SEMICONTINUITY

In this section, we assume f(x, s, ξ) is measurable in x ∈ Ω for all (s, ξ) ∈
Rn ×Mm×n, and is C1 in (s, ξ) ∈ Rn ×Mm×n for almost every x ∈ Ω. We also
assume 1 < p <∞, and f satisfies the growth conditions

|f(x, s, ξ)| ≤ c1(|s|p + |ξ|p)+A(x),(3.1)

|Dsf(x, s, ξ)| + |Dξf(x, s, ξ)| ≤ c2(|s|p−1 + |ξ|p−1)+ B(x),(3.2)

for almost every x ∈ Ω and for all s ∈ Rn, ξ ∈ Mm×n, where c1, c2 are positive
constants and A, B are positive functions with A ∈ L1(Ω), B ∈ Lp/(p−1)(Ω).

From these assumptions, we easily obtain the following result, whose proof is
left to the interested reader.

Proposition 3.1. Under the conditions above, the functional I defined above is a
C1 functional on W 1,p(Ω;Rm) and for each u the Fréchet derivative I′(u) is given
by

〈I′(u), v〉 =
∫
Ω[Dsf (x,u,Du) · v +Dξf(x,u,Du) : Dv]dx,

for all v ∈ W 1,p(Ω;Rm).

When minimizing the functional I on a Dirichlet class Ag, one can shift the
class to the Banach space X = W 1,p

0 (Ω;Rm) since

(3.3) inf
u∈Ag

I(u) = inf
w∈X

Φ(w),
where Φ(w) = I(w + g). We easily have the following result.

Proposition 3.2. Let X = W 1,p
0 (Ω;Rm). For any g ∈ W 1,p(Ω;Rm), the

functional Φ : X → R defined by Φ(w) = I(w + g) is C1 and Φ′(w) = I′(w + g)
as elements in X∗, the dual space of X.

In the following we write X∗ = W−1,p′(Ω;Rm), where p′ = p/(p − 1). As
usual, we define

(3.4) ‖I′(u)‖W−1,p′ = sup{〈I′(u), v〉 | v ∈ W 1,p
0 (Ω;Rm), ‖v‖W 1,p

0
≤ 1}.

Note that, given a smooth functional I on X = W 1,p
0 (Ω;Rm), the sequences {uk}

in X satisfying

|I(uk)| ≤M, I′(uk)→ 0 in W−1,p′(Ω;Rm)

are usually called the Palais-Smale sequences or (PS) sequences for the functional I.
Therefore, for simplicity, we use the following definition.
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Definition 3.3. A sequence {uk} is said to (PS)-weakly converge to u (with
respect to I) in W 1,p(Ω;Rm) and denoted by uk

ps
⇀u provided that uk ⇀ u in

W 1,p(Ω;Rm) and I′(uk) → 0 in W−1,p′(Ω;Rm). Define the set of all (PS)-weak
limits to be

(3.5) S = {u ∈ W 1,p(Ω;Rm) | ∃uk ∈ W 1,p(Ω;Rm) such that uk
ps
⇀u}.

Let C = {u ∈ W 1,p(Ω;Rm) | ‖I′(u)‖W−1,p′ = 0}. Then clearly C ⊆ S,
and hence S can be viewed as a relaxation of C under the (PS)-weak convergence.
However, for certain functionals I the set S may be empty.

Example 3.4. Let f(x, ξ) = χE(x)h(ξ), where χE is the characteristic func-
tion of a measurable set E in (0,1) with 0 < |E| < 1 and h(ξ) = π/2+ arctanξ.
Define

I(u) =
∫ 1

0
f(x,u′(x))dx, u ∈ W 1,2(0,1).

We claim that for the functional I the (PS)-weak limit set S = ∅. Suppose to
the contrary uk

ps
⇀u in W 1,2(0,1). Let gk(x) = χE(x)h′(u′k(x)). Then, by

Proposition 4.1 below, there exists a subsequence gkj → L strongly in L2(0,1) for
some constant L. We also assume gkj (x) → L for almost every x ∈ (0,1). Hence
we must have L = 0 and gkj (x) = h′(u′kj (x)) → 0 for almost every x ∈ E. By
Egoroff ’s theorem, it follows that |u′kj (x)| → ∞ almost uniformly on E, which
implies ‖u′kj‖L2(E) →∞, a contradiction.

Definition 3.5. Given any nonempty family A ⊆ W 1,p(Ω;Rm), we say that I
is (PS)-weakly lower semicontinuous on A provided that

(3.6) I(u) ≤ lim inf
k→∞

I(uk) whenever uk, u ∈A, uk ps
⇀u.

We shall technically assume this property if A∩S = ∅.

The following result shows that if f = f(x, ξ) is convex in ξ, then the func-
tional I is in fact (PS)-weakly continuous on all Dirichlet classes.

Proposition 3.6. Assume f = f(x, ξ) satisfies the corresponding growth condi-
tions as in (3.1) and (3.2) above. Suppose f(x, ξ) is convex in ξ for almost every
x ∈ Ω. Then both I and −I are (PS)-weakly lower semicontinuous on all Dirich-
let classes Ag with g ∈ W 1,p(Ω;Rm). Therefore the functional I is (PS)-weakly
continuous on Ag in the sense that

(3.7) I(u) = lim
k→∞

I(uk) ∀uk, u ∈Ag, uk
ps
⇀u.
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Proof. For any uk, u ∈ W 1,p(Ω;Rm), by the convexity of f , it follows from
(2.4) that

f(x,Duk) ≥ f(x,Du)+Dξf(x,Du) : (Duk −Du),(3.8)

f(x,Du) ≥ f(x,Duk)+Dξf(x,Duk) : (Du−Duk),(3.9)

for almost every x ∈ Ω. If uk
ps
⇀u and u−uk ∈ W 1,p

0 (Ω;Rm), then integrating
the inequalities above, we have

lim inf
k→∞

I(uk) ≥ I(u) ≥ lim sup
k→∞

I(uk),

and hence (3.7) follows. ❐

We show that in general the (PS)-weak lower semicontinuity on all Dirichlet
classes does not imply the (PS)-weak lower semicontinuity on the whole space
W 1,p(Ω;Rm) (without the fixed boundary conditions).

Proposition 3.7. Let Ω be the unit disc in R2 and I(u) = −
∫
Ω|Du|2 dx for

u : Ω → R. Then I is (PS)-weakly lower semicontinuous on all Dirichlet classes of
W 1,2(Ω) but not (PS)-weakly lower semicontinuous on W 1,2(Ω).

Proof. By the preceding proposition, I is (PS)-weakly lower semicontinuous
on all Dirichlet classes of W 1,2(Ω). We now show it is not (PS)-weakly lower
semicontinuous onW 1,2(Ω) (without the fixed boundary conditions). We identify
R2 � C1. For z = x1 + ix2 ∈ Ω and k = 1, 2, . . . , we define uk(x1, x2) =
(1/
√
πk)<(zk). Then uk is harmonic in Ω and ∂x1uk − i∂x2uk =

√
k/πzk−1.

Hence |Duk(x)| =
√
k/π |z|k−1 and thus we have ‖Duk‖L2(Ω) = 1. So uk is

bounded in W 1,2(Ω). It is easy to see uk → 0 uniformly on Ω̄ and hence uk ⇀ 0
inW 1,2(Ω). Since uk is harmonic in Ω, it also follows that Duk → 0 inW−1,2(Ω).
Therefore, for functional I(u) = −

∫
Ω|Du|2 dx, we have uk

ps
⇀0, but I(0) = 0

and lim infk I(uk) = −1. Hence I is not (PS)-weakly lower semicontinuous on
W 1,2(Ω). ❐

As we mentioned in the introduction, the (PS)-weak lower semicontinuity has
been motivated by using the Ekeland variational principle in the direct method
for the minimization problem. We have the following existence result.

Theorem 3.8. Assume f satisfies, in addition to (3.1) and (3.2), the following
coercivity condition

(3.10) c0|ξ|p − a(x) ≤ f(x, s, ξ) ≤ c1(|ξ|p + |s|p)+A(x),
where c0 > 0 is a positive constant, a ∈ L1(Ω) is a function. Given g ∈ W 1,p(Ω;Rm),
assume the functional I defined above is (PS)-weakly lower semicontinuous on Ag.
Then the minimization problem infu∈Ag I(u) has at least one solution u ∈Ag.
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Proof. The proof uses a standard direct method of the calculus of variations.
Let X = W 1,p

0 (Ω;Rm). Define Φ : X → R by

Φ(u) = I(u+ g) = ∫Ω f(x,u(x)+ g(x),Du(x)+Dg(x))dx.
Then Φ is C1 and bounded below on X, and Φ′(u) = I′(u + g) in X∗. By
Theorem 2.4, there exists a sequence {uk} in X such that

Φ(uk)→ inf
X
Φ, ‖Φ′(uk)‖X∗ → 0.

Let wk = uk + g ∈Ag. Then

I(wk)→ inf
w∈Ag

I(w), ‖I′(wk)‖W−1,p′ → 0.(3.11)

Under the condition c0 > 0 the sequence {wk} determined by (3.11) above is
bounded in W 1,p(Ω;Rm) and, since 1 < p < ∞, has a weakly convergence sub-
sequence, relabeled {wk} again. Let u be the weak limit. Then u ∈ Ag and
wk

ps
⇀u; hence the (PS)-weak lower semicontinuity on Ag implies

I(u) ≤ lim
k→∞

I(wk) = inf
w∈Ag

I(w).

Hence I(u) = infw∈Ag I(w). ❐

Remark 3.9. Under the growth assumptions (3.1) and (3.2), any minimizer
u of I over Ag is a weak solution to the Dirichlet problem of the Euler-Lagrange
equation of functional I; that is,

(3.12)

−divDξf(x,u,Du)+Dsf(x,u,Du) = 0 in Ω,
u = g on ∂Ω.

4. ONE DIMENSIONAL SCALAR CASES

In this section we study the (PS)-weak lower semicontinuity in some special one
dimensional scalar cases.

We first consider the Sobolev space H1(0,1) = W 1,2(0,1) and functions
f(x, ξ) satisfying

(4.1) 0 ≤ f(x, ξ) ≤ C|ξ|2 +A(x), |fξ(x, ξ)| ≤ C|ξ| + B(x),

with A ∈ L1(0,1), B ∈ L2(0,1). Define

I(u) =
∫ 1

0
f(x,u′(x))dx, ∀u ∈ H1(0,1).
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Proposition 4.1. If uk
ps
⇀u in H1(0,1), then there exists a subsequence {ukj}

such that fξ(x,u′kj (x))→ L strongly in L2(0,1) as j →∞, where L is a constant.

Proof. Let

gk(x) = fξ(x,u′k(x)) and Lk =
∫ 1

0
gk(x)dx.

Since {gk} is bounded in L2(0,1), we assume for a subsequence gkj ⇀ g in
L2(0,1) as j →∞, where g ∈ L2(0,1). We define vk on [0,1] by

vk(x) =
∫ x

0
(gk(t)− Lk)dt, x ∈ [0,1].

Then it is easily seen that vk ∈ H1
0(0,1) = W 1,2

0 (0,1) and v′k = gk − Lk. More-
over, {vk} is bounded in H1

0(0,1) and hence

〈I′(uk), vk〉 =
∫ 1

0
fξ(x,u′k(x))v

′
k(x)dx =

∫ 1

0
g2
k(x)dx − L2

k → 0

as k→ ∞. Since gkj ⇀ g in L2(0,1), we have

Lkj → L =
∫ 1

0
g dx ,∫ 1

0
g2(x)dx ≤ lim inf

j→∞

∫ 1

0
g2
kj dx = lim inf

j→∞
L2
kj =

(∫ 1

0
g(x)dx

)2
.

This implies g(x) = L a.e. on [0,1] and gkj → L strongly in L2(0,1). ❐
In contrast to the theorem of Acerbi and Fusco (Theorem 2.3), we show below by
an example that the (PS)-weak lower semicontinuity of I may not imply f being
quasiconvex in ξ even for smooth functions f(x, ξ) in the scalar case.

Proposition 4.2. There exists a C1 function f(x, ξ) satisfying condition (4.1)
above for which the corresponding functional I is (PS)-weakly, but not (unrestricted)
weakly, lower semicontinuous on H1(0,1).

Proof. Assume f(x, ξ) = a(x)h(ξ) with a, h ≥ 0, both C1 and satisfying
the following conditions:

a(x) = 0 for x ∈ [0, θ], a(x) > 0 for x ∈ (θ,1],(4.2)

h ≥ 0, (h′)−1(0) = {0}, lim inf
|ξ|→∞

|h′(ξ)| > 0.,(4.3)

where θ ∈ (0,1) is a constant. Note that the condition (4.3) implies h(0) < h(ξ)
for all ξ ∈ R. Given any uk

ps
⇀u in H1(0,1), using a subsequence if necessary, we
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assume limk→∞ I(uk) exists. By Proposition 4.1 above, there exists a subsequence
{ukj} such that fξ(x,u′k) = a(x)h′(u′kj ) → L strongly in L2(0,1) for some
constant L. Since a = 0 on [0, θ), one must have the limit L = 0; this also implies
the whole sequence a(x)h′(u′k) → 0 strongly in L2(0,1). Therefore h′(u′k) → 0
strongly in L2(θ′,1) for any θ′ ∈ (θ,1). Hence, for a subsequence it follows that
h′(u′kj (x)) → 0 for almost every x ∈ (θ′,1). By (4.3), we have that u′kj (x) → 0
for almost every x ∈ (θ′,1). Therefore the weak limit u′ = 0 on (θ′,1) for all
θ′ ∈ (θ,1). This implies u′ = 0 in (θ,1). Since h(ξ) ≥ h(0) for all ξ, we have

lim
k→∞

I(uk) = lim
k→∞

∫ 1

θ
a(x)h(u′k(x))dx

≥
∫ 1

θ
a(x)h(0)dx = I(u).

Hence I satisfies the (PS)-weak lower semicontinuity on H1(0,1). Note that the
condition (4.3) does not imply that h is convex. (See, e.g., condition (2.5).)
Hence I may not be weakly lower semicontinuous on H1(0,1) by Theorem 2.3
above. ❐

Despite of the result above, we shall show that the (PS)-weak lower semicontinuity
is equivalent to the usual weak lower semicontinuity if f(x, ξ) satisfies certain
coercivity condition.

In the following, for β ∈ R, let W 1,p
β (0,1) be the Dirichlet class of functions

u in W 1,p(0,1) with u(0) = 0, u(1) = β. Then we have the following result.

Theorem 4.3. Assume f(x, ξ) and fξ(x, ξ) are both C1 on [0,1] × R and
satisfy, for some p > 1 and positive constants c0, c1, c2 > 0,

(4.4) c0|ξ|p ≤ f(x, ξ) ≤ c1(|ξ|p + 1), |fξ(x, ξ)| ≤ c2(|ξ|p−1 + 1),

for all x and ξ. If the functional I defined by f is (PS)-weakly lower semicontinuous
on W 1,p

β (0,1) for all β ∈ R, then f(x, ξ) is convex in ξ for all x ∈ (0,1).
For the technical reason of using the following Sard’s theorem [9], we have

assumed that f is sufficiently smooth in both x and ξ in the theorem.

Lemma 4.4. Let h : R → R be C1 and S = {y ∈ R | ∃x ∈ R, y =
h(x), h′(x) = 0}. Then the Lebesgue measure |S| = 0 and, in particular, the
set of regular values of h, R \ S, is dense in R.

We proceed with several lemmas to prove Theorem 4.3. First of all, for β ∈ R,
we define m(β) = inf{I(u) | u ∈ W 1,p

β (0,1)}. It follows easily from the growth
condition (4.4) that

(4.5) c0|β|p ≤m(β) ≤ c1(|β|p + 1).
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From Theorem 3.8 above, it follows that, if I is (PS)-weakly lower semicontinuous
on W 1,p

β (0,1), then there exists at least one minimizer uβ ∈ W 1,p
β (0,1) such that

I(uβ) =m(β). Hence I′(uβ) = 0 in W−1,p′(0,1). This implies fξ(x,u′β(x)) is
constant in (0,1) and let µ(β) denote this constant. Note that µ(β) depends also
on the minimizer uβ.

Lemma 4.5. It follows that

lim sup
β→+∞

lim sup
ε→0+

m(β+ ε)−m(β)
ε

= +∞,(4.6)

lim inf
β→−∞

lim inf
ε→0−

m(β+ ε)−m(β)
ε

= −∞.(4.7)

Proof. We only prove Equation (4.6); the other one follows similarly. By
contradiction, suppose the limit is not +∞. Then there exist positive constants
β0, ε0 and M such that

m(β+ ε)−m(β)
ε

≤ M, ∀β ≥ β0, ε ∈ (0, ε0],

which, in particular, implies that

(4.8) m(β0 + kε0)−m(β0) ≤Mkε0 ∀k = 1,2, . . . .

Using (4.5), we havem(β0+kε0) ≥ c0|β0+kε0|p ≥ γkp −C0 for some positive
constants γ and C0, and for all k = 1, 2, . . . . This combined with (4.8) yields a
desired contradiction, since p > 1. This proves (4.6). ❐

Lemma 4.6. For any β ∈ R, it follows that

(4.9) lim sup
ε→0+

m(β+ ε)−m(β)
ε

≤ µ(β) ≤ lim inf
ε→0−

m(β+ ε)−m(β)
ε

.

Proof. For 0 < δ < 1 we definew to be the linear function withw(1−δ) =
0, w(1) = ε. Hence w′(x) = ε/δ. Let uβ be a minimizer for m(β) and let
v(x) = uβ(x) on [0,1 − δ] and v(x) = uβ(x) + w(x) on [1−δ, 1]. Then
v ∈ W 1,p(0,1) satisfies v(0) = 0, v(1) = β+ ε. Hence

m(β+ ε) ≤ I(v) = I(uβ)+
∫ 1

1−δ
[f (x,v′)− f(x,u′β)]dx.

Since f(x,v′)− f(x,u′β) = fξ(x,u′β)ε/δ+ o(ε/δ) for ε/δ → 0, we have

m(β+ ε) ≤m(β)+ µ(β)ε + o
(
ε
δ

)
δ ≤m(β)+ µ(β)ε + o(ε),

as ε → 0. From this the lemma follows. ❐
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The lemmas above imply

(4.10) lim sup
β→+∞

µ(β) = +∞, lim inf
β→−∞

µ(β) = −∞.

Lemma 4.7. For any constant θ ∈ R, there exists a function qθ ∈ Lp(0,1) such
that fξ(x, qθ(x)) = θ for almost every x ∈ (0,1).

Proof. In view of (4.10) above, there exist β1 < β2 such that µ(β1) <
θ < µ(β2). Hence for almost every x ∈ (0,1) we have fξ(x,u′β1

(x)) < θ <
fξ(x,u′β2

(x)). Let

q−(x) = min{u′β1
(x),u′β2

(x)},
q+(x) = max{u′β1

(x),u′β2
(x)}.

Then q± ∈ Lp(0,1). By the intermediate value property of fξ(x, ·), there exists
q ∈ (q−(x), q+(x)) such that fξ(x, q) = θ. Let qθ(x) be the infimum of all
such q’s. Then fξ(x, qθ(x)) = θ, qθ(x) is lower semicontinuous and q−(x) ≤
qθ(x) ≤ q+(x) at almost every x ∈ (0,1) and hence qθ ∈ Lp(0,1). ❐

The following result turns out to be quite useful in the proof of the theorem and
also later; the proof is elementary and included here for the convenience of the
reader.

Lemma 4.8. Let h : R→ R be C1 and let

S =
{(
a
b

)
∈ R2 | h′(a) = h′(b)

}
,

S1 =
{(
α
β

)
∈ S | α < β, h′(t) 6= h′(α) ∀ t ∈ (α,β)

}
.

Assume h(t) ≥ 0 for all t ∈ R. Then the following statements are equivalent:
(i) h is convex.

(ii) S1 = ∅.
(iii) h(λa+ (1− λ)b) ≤ λh(a)+ (1− λ)h(b), ∀ ( a

b
) ∈ S, λ ∈ [0,1].

Proof. We prove the result by showing that (i) ⇒ (iii) ⇒ (ii) ⇒ (i).

1. (i) ⇒ (iii): This is easy.

2. (iii) ⇒ (ii): Suppose to the contrary S1 6= ∅ and let
(
α
β

)
∈ S1. Using

inequality (iii) with
(
α
β

)
∈ S yields that ∀0 < λ < 1 with tλ = λα+ (1− λ)β,

(4.11)
h(tλ)− h(α)
tλ −α ≤ h(β)− h(α)

β−α ≤ h(tλ)− h(β)
tλ − β .
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Letting λ→ 1− and 0+ in (4.11) respectively yields that

h′(α) ≤ h(β)− h(α)
β−α ≤ h′(β);

hence h′(α) = h′(β) = (h(β) − h(α))/(β − α). However, by the mean value
property, h′(α) = (h(β) − h(α))/(β − α) = h′(t) for some t ∈ (α,β), which
shows

(
α
β

)
∉ S1, a desired contradiction.

3. (ii) ⇒ (i): Again, to the contrary, suppose h is not convex. Then there
exist a < b such that h′(a) > h′(b). We consider only the case when h′(a) > 0;
otherwise, consider h̄(t) = h(−t), ā = −b and b̄ = −a. We claim there exist
c < d ≤ a such that h′(c) < h′(d). If not, h′ would be nonincreasing on
(−∞, a] and hence h would be concave on (−∞, a]. Therefore we would have
h(t) ≤ h(a) + h′(a)(t − a) for all t < a. Since h′(a) > 0, letting t → −∞,
we would have h(t) → −∞, a contradiction with h ≥ 0. Let c < d ≤ a be any
points as above. Let m = max[c,b] h′. Define Σ = {t ∈ [c, b] | h′(t) = m},
s− = minΣ, and s+ = maxΣ. Then s−, s+ ∈ Σ, and c < s− ≤ s+ < b. Hence
h′(c) < m, h′(b) < m. We define α′ < β′ as follows: If h′(c) = h′(b), define
α′ = c, β′ = b. If h′(c) > h′(b), then h′(c) ∈ (h′(s+), h′(b)) and hence by
the intermediate value property of h′, define β′ ∈ (s+, b) so that h′(β′) = h′(c),
and define α′ = c. If h′(c) < h′(b), then h′(b) ∈ (h′(c), h′(s−)) and hence
again by the intermediate value property of h′, we define α′ ∈ (c, s−) so that
h′(α′) = h′(b), and define β′ = b. The points α′ < β′ defined this way will
satisfy α′ < s− ≤ s+ < β′ and h′(α′) = h′(β) < h′(s−). Let G = {t ∈
(α′, β′) | h′(t) > h′(α′)}. Then G is an open set and s− ∈ G. Let (α,β) be the
component of G containing s−. Then it follows that

(
α
β

)
∈ S1, a contradiction

with (ii); hence h is convex. ❐

Remark 4.9. It can be shown that conditions (i) and (iii) in the lemma above
are not equivalent for functions h : Rm → R ifm ≥ 2 (see Remark 5.9 later).

Proof of Theorem 4.3. Given any x0 ∈ (0,1), we prove f(x0, ·) is convex.
By Lemma 4.8, it suffices to show that there exist no numbers ξ1 < ξ2 such that

(4.12) fξ(x0, ξ1) = fξ(x0, ξ2), fξ(x0, t) 6= fξ(x0, ξ1), ∀ t ∈ (ξ1, ξ2).

We prove this by contradiction. Suppose ξ1 < ξ2 satisfy (4.12). We will derive a
contradiction by showing such ξi’s must satisfy

(4.13) f(x0, λξ1 + (1− λ)ξ2) ≤ λf(x0, ξ1)+ (1− λ)f(x0, ξ2)

for all λ ∈ (0,1), which gives a desired contradiction as in the step 2 of the proof
of Lemma 4.8.
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To this end, assume fξ(x0, ξ1) = fξ(x0, ξ2) = θ0. Without loss of generality,
assume fξ(x0, t) > fξ(x0, ξ1) for all t ∈ (ξ1, ξ2). Let

max
[ξ1,ξ2]

fξ(x0, ·) = fξ(x0, ξ̄ ) = θ̄ > θ0.

To proceed, we need the following lemma, which is the only place we use the
smooth assumption of fξ(x, ξ) on (x, ξ).

Lemma 4.10. There exist a sequence θn ∈ (θ0, θ̄) with θn → θ0 as n → ∞, a
closed interval Jn = [an, bn] ⊂ (0,1) containing x0, and two continuous functions
q±n : Jn → (ξ1, ξ2) such that q−n(x) < q+n(x) and fξ(x, q±n(x)) = θn for all
x ∈ Jn. Moreover, q−,+n (x0)→ ξ1,2 as n→∞.

Proof. The proof is based on a use of Sard’s theorem. By Lemma 4.4 above
with h(ξ) = fξ(x0, ξ), the set of regular values of fξ(x0, ·) is dense. Hence there
exists a sequence of regular values θn of fξ(x0, ·) in (θ0, θ̄ ) such that θn → θ0

as n → ∞. Since fξ(x0, ξ1,2) = θ0 < θn < θ̄ = fξ(x0, ξ̄ ), by intermediate value
property, there exist ξ−n ∈ (ξ1, ξ̄ ) and ξ+n ∈ (ξ̄, ξ2) such that fξ(x0, ξ±n) = θn.
The assumption (4.12) implies ξ−n → ξ1 and ξ+n → ξ2 as n → ∞. Since θn
is a regular value of fξ(x0, ·), it follows that fξξ(x0, ξ±n) 6= 0. By the implicit
function theorem, we have an interval Jn = [an, bn] ⊂ (0,1) containing x0 and
two differentiable functions q±n : Jn → (ξ1, ξ2) such that

(4.14) q±n(x0) = ξ±n, fξ(x, q±n(x)) = θn, ∀x ∈ Jn.
Then the functions q±n(x) satisfy the requirements of the lemma. ❐

We continue the proof of the theorem. Let θn ∈ (θ0, θ̄), Jn = [an, bn] and
q±n : Jn → (ξ1, ξ2) be given as in the lemma above. Let J = [a, b] ⊂ Jn be
any interval containing x0. Let qn ∈ Lp(0,1) be the function qθ determined by
Lemma 5.2, with θ = θn. In what follows, we fix n. For each k = 1, 2, . . . ,

we define function uk(x) by uk(x) =
∫ x

0
wk(t)dt, where wk(t) is defined as

follows:

(4.15) wk(t)

=



qn(t), t ∈ [0,1] \ [a, b],

q−n(t), t ∈
k⋃
j=1

(
a+ j − 1

k
(b − a),a+ j − 1+ λ

k
(b − a)

)
,

q+n(t), t ∈
k⋃
j=1

(
a+ j − 1+ λ

k
(b − a),a+ j

k
(b − a)

)
.

It is easily seen that uk ∈ W 1,p(0,1) and {uk} is bounded in W 1,p(0,1).
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Lemma 4.11. For all continuous functions Φ(x, ξ), it follows that

lim
k→∞

∫ b
a
Φ(x,u′k(x))dx = ∫ b

a
[λΦ(x, q−n(x))+ (1− λ)Φ(x, q+n(x))]dx.

Proof. It is easy to see

∫ b
a
Φ(x,u′k(x))dx = k∑

j=1

∫ a+(j−1+λ)(b−a)/k

a+(j−1)(b−a)/k
Φ(x, q−n(x))dx(4.16)

+
k∑
j=1

∫ a+j(b−a)/k
a+(j−1+λ)(b−a)/k

Φ(x, q+n(x))dx
= λ

k∑
j=1

Φ(cj, q−n(cj))b − ak + (1− λ)
k∑
j=1

Φ(dj, q+n(dj))b − ak ,(4.17)

where

a+ j − 1
k
(b − a) ≤ cj ≤ a+ j − 1+ λ

k
(b − a) ≤ dj ≤ a+ jk(b − a)

are some points. Hence the sums in (4.16) and (4.17) are Riemann sums; there-
fore, as k→∞, the lemma follows. ❐

Let ū ∈ W 1,p(0,1) be defined by ū(x) =
∫ x

0
w̄(t)dt, where

w̄(t) =
qn(t), t ∈ [0,1] \ [a, b],
λq−n(t)+ (1− λ)q+n(t), t ∈ [a, b].

From the lemma above, it easily follows that uk ⇀ ū in W 1,p(0,1). In particular,
εk = ū(1) − uk(1) → 0 as k → ∞. By the definition of uk it follows easily that
fξ(x,u′k(x)) = θn for almost every x ∈ (0,1); hence I′(uk) = 0 inW−1,p′(0,1).
We now modify uk to a function ũk ∈ W 1,p

β (0,1) with β = ū(1). For 0 < δ <
1 − b to be selected later, we define ũk(x) = uk(x) for x ∈ [0,1 − δ], and
ũk(x) = uk(x) + vk(x) for x ∈ [1 − δ,1], where vk is a linear function on
[1−δ,1] with vk(1−δ) = 0, vk(1) = εk. Hence ũk ∈ W 1,p(0,1) with ũk(0) =
0, ũk(1) = ū(1) = β. Note that v′k(x) = εk/δ. Hence we select δ = δk = |εk|1/2
for all sufficiently large k. For this choice of δ, it is easily shown that the function
ũk ∈ W 1,p

β (0,1) satisfies uk − ũk → 0 in W 1,p(0,1), and hence it follows that
I′(ũk) → 0 in W−1,p′(0,1) and I(uk) − I(ũk) → 0 as k → ∞. In particular,
ũk

ps
⇀ū in W 1,p

β (0,1). Therefore, by the (PS)-weak lower semicontinuity of I on
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W 1,p
β (0,1), we have I(ū) ≤ lim infk I(ũk) = lim infk I(uk). Using Lemma 4.11,

after easy computations, this implies

∫ b
a
f (x, λq−n(x)+ (1− λ)q+n(x))dx

≤
∫ b
a
[λf(x, q−n(x))+ (1− λ)f(x, q+n(x))]dx.

This holds for all intervals [a, b] ⊂ Jn containing x0 and hence, letting [a, b]
shrink to {x0}, we have

f(x0, λq−n(x0)+ (1− λ)q+n(x0)) ≤ λf(x0, q−n(x0))+ (1− λ)f(x0, q+n(x0)).

Finally letting n→∞, by Lemma 4.10, we have

f(x0, λξ1 + (1− λ)ξ2) ≤ λf(x0, ξ1)+ (1− λ)f(x0, ξ2),

as desired by (4.13).
The proof of the theorem is now completed. ❐

5. SPECIAL CASES WITH f = f(ξ)
In this section, we study some special cases with function f = f(ξ), where
f : Mm×n → R is a C1 function satisfying the following growth conditions:

c0|ξ|p ≤ f(ξ) ≤ c1(|ξ|p + 1),(5.1)

|Dξf(ξ)| ≤ c2(|ξ|p−1 + 1),(5.2)

where 1 < p < ∞ and c0 ≥ 0, c1 > 0, c2 > 0 are constants. In this case, we shall
also use the simplified notation Dξf(ξ) = Df(ξ) = f ′(ξ). As before, let I be the
functional associated with f :

I(u) =
∫
Ω f(Du(x))dx, u ∈ W 1,p(Ω;Rm).

We first have the following result when m = 1 (the scalar case), with c0 = 0
in (5.1), which is in contrast to Proposition 4.2 above.

Theorem 5.1. Let m = 1 and let f : Rn → R satisfy the conditions (5.1) and
(5.2) above, with c0 = 0. Then the functional I is (PS)-weakly lower semicontinuous
on the Dirichlet classes W 1,p

A for all A ∈ Rn if and only if f is convex on Rn.

Proof. By Theorem 2.3, we only need to show the necessary part of the theo-
rem. Thus assume I is (PS)-weakly lower semicontinuous on the Dirichlet classes
W 1,p
A for all A ∈ Rn. We prove that f is convex on Rn. To this end, let ξ, η ∈ Rn
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and |η| = 1 be given, and let h(t) = f(ξ + tη). We show that h is a convex
function of t ∈ R; this implies f is convex on Rn. By virtue of Lemma 4.8 above,
to show h is convex, it suffices to establish the inequality (iii) in that lemma for
all a, b ∈ R with a < b and h′(a) = h′(b). Note that h′(t) = f ′(ξ + tη) · η.
Given such a, b, let α = ξ + aη, β = ξ + bη. Then h(a) = f(α), h(b) = f(β)
and hence

(5.3) h′(a)− h′(b) = (f ′(α)− f ′(β)) · η = 0.

Given any λ ∈ (0,1), let θ(t) be the periodic function on R of period 1 satisfying
θ = 0 on [0, λ) and θ = 1 on [λ,1). Let ρ(t) be the Lipschitz function on R
with ρ(0) = 0 and ρ′(t) = θ(t) for almost every t ∈ R. For k = 1, 2, . . . , we
define functions

(5.4) uk(x) = αx + b − ak ρ(kx · η), x ∈ Rn.

Then Duk(x) = α+ (b − a)θ(kx · η)η and hence

(5.5) Duk(x) =


α if x · η ∈

∞⋃
j=−∞

(
j
k
,
j + λ
k

)
,

β if x · η ∈
∞⋃

j=−∞

(
j + λ
k
,
j + 1
k

)
.

Let {η1, η2, . . . , ηn} be an orthonormal basis of Rn, with η1 = η. For each x ∈
Rn, we write x = ∑ni=1 tiηi and define

Ajk =
{
x ∈ Rn | t1 ∈

(
j
k
,
j + λ
k

)}
,

Bjk =
{
x ∈ Rn | t1 ∈

(
j + λ
k
,
j + 1
k

)}
.

Let Ωkα = Ω∩ (⋃j Ajk), Ωkβ = Ω∩ (⋃j Bjk). Then one can easily show that

(5.6) lim
k→∞

|Ωkα| = λ|Ω|, lim
k→∞

|Ωkβ| = (1− λ)|Ω|.
For any 1 ≤ p <∞, the sequence {uk} defined by (5.4) above satisfies uk ⇀ ū in
W 1,p(Ω) as k→ ∞, where ū(x) = [λα+ (1− λ)β]x. In fact, one can show that
uk → ū uniformly on Ω̄. We leave the proof of these facts to the interested reader.

Lemma 5.2. I′(uk) = 0 in W−1,p′(Ω).
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Proof. Given any v ∈ W 1,p
0 (Ω), we extend v to be zero outside Ω. Let QN

be the cube

QN =
{
x ∈ Rn | x =

n∑
i=1

tiηi, |ti| < N, ∀ i = 1,2, . . . , n
}
.

Assume N is large enough so that Ω̄ ⊂ QN . Then∫
Ω f ′(Duk) ·Dv =

∫
QN
f ′(Duk) ·Dv

=
kN−1∑
j=−kN

∫
Qjk
f ′(Duk) ·Dv,

where Qjk = {x ∈ QN | x · η ∈ (j/k, (j + 1)/k)}. We write Qjk = Aj ∪ Bj ∪ Γ j ,
where Aj = Qjk ∩ Ajk, Bj = Qjk ∩ Bjk and Γ j = {x ∈ Qjk | x · η = (j + λ)/k}.
We also define Fj = {x ∈ QN | x · η = j/k}. Note that Duk = α on Aj and
Duk = β on Bj and hence, by the divergence theorem and (5.3) as well, we have∫

Qjk
f ′(Duk) ·Dv =

∫
Aj
f ′(Duk) ·Dv +

∫
Bj
f ′(Duk) ·Dv

= f ′(α) ·
∫
Aj
Dv + f ′(β) ·

∫
Bj
Dv

= f ′(α) ·
(∫

Fj
v dS

)
(−η)+ f ′(α) ·

(∫
Γ j v dS

)
η

+ f ′(β) ·
( ∫Γ j v dS)(−η)+ f ′(β) · ( ∫Fj+1 v dS

)
η

= f ′(α) · η
(∫

Fj+1
v dS −

∫
Fj
v dS

)
.

Hence, since F±kN lies in Rn \ Ω̄, where v = 0, it follows that∫
Ω f ′(Duk(x)) ·Dv(x)dx = f ′(α) · η

(∫
FkN
v dS −

∫
F−kN

v dS
)
= 0.

This proves I′(uk) = 0 in W−1,p′(Ω). ❐

To continue the proof of the theorem, we now modify the sequence {uk}
above into a sequence in W 1,p

A (Ω), where A = λα+ (1− λ)β. For all sufficiently
large j, say j ≥ j0, consider nonempty open sets

Ωj =
{
x ∈ Ω | dist(x, ∂Ω) > 1

j

}
.
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Note that the measure |Ω \ Ωj| → 0 as j → ∞. Let ϕj ∈ C∞0 (Ω) be the cut-off
functions such thatϕj = 1 on Ωj and 0 ≤ϕj ≤ 1 in Ω. Since uk → ū uniformly
on Ω̄, we have that, for each j ≥ j0, there exists kj > j satisfying

(5.7) ‖(ukj − ū)Dϕj‖Lp(Ω) < 1
j
.

Let ũj = ϕjukj + (1 − ϕj)ū. Then ũj ∈ W 1,p
ū (Ω) = W 1,p

A (Ω) and Dũj =
ϕjDukj + (1−ϕj)Dū+ (ukj − ū)Dϕj . Hence, by (5.7) and also since Dukj ,
Dū are bounded; it follows that

(5.8) lim
j→∞

‖Dũj‖Lp(Ω\Ωj) = 0.

Therefore ũj ⇀ ū in W 1,p(Ω) as j →∞. Since ũj = ukj on Ωj , by (5.8) and the
growth conditions (5.1)–(5.2), it easily follows that

lim
j→∞

‖I′(ũj)− I′(ukj )‖W−1,p′(Ω) = 0,

lim
j→∞

|I(ũj)− I(ukj )| = 0.

Hence ũj , ū ∈ W 1,p
A (Ω), and ũj

ps
⇀ū since I′(ukj ) = 0. By the (PS)-weak lower

semicontinuity of I onW 1,p
A (Ω), we have I(ū) ≤ lim infj I(ũj) = lim infj I(ukj ).

Using (5.6), we easily see that this implies

h(λa+ (1− λ)b) ≤ λh(a)+ (1− λ)h(b).

Hence by Lemma 4.8 above, h(t) = f(ξ+ tη) is convex for all ξ, η with |η| = 1.
This proves f is convex on Rn. ❐

Remark 5.3. As we discussed in the introduction, the dimension m = 1 is
critical in the proof. In the casem ≥ 2, one would try to use a similar construction
with a rank-one matrix η = p ⊗ q and to define

uk(x) = αx + b − ak ρ(kx · q)p.

But this sequence {uk} does not verify Lemma 5.2 and hence is not a Palais-Smale
sequence. Thus the method fails to show in this case f is even rank-one convex.
In fact, Theorem 5.8 below shows, for m ≥ 2, f may not be rank-one convex.

We now study the general case with m ≥ 2. Under the coercivity condition
that c0 > 0 in (5.1), we have the following result, which was announced a few years
ago in [15], but has never been published; we include it here for the convenience
of the reader.
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Theorem 5.4. Let n,m ≥ 1 and let f : Mm×n → R satisfy the conditions (5.1)
and (5.2) above with c0 > 0. Then the following statements are equivalent:

(i) I is weakly lower semicontinuous on W 1,p(Ω;Rm).
(ii) I is (PS)-weakly lower semicontinuous on W 1,p(Ω;Rm).

(iii) I is (PS)-weakly lower semicontinuous on all W 1,p
A (Ω;Rm).

(iv) f is quasiconvex.
(v) I(gA) ≤ lim infk→∞ I(uk) whenever A ∈Mm×n, uk ∈ W 1,p

A and I′(uk)→ 0
in W−1,p′(Ω;Rm).

Proof. By the theorem of Acerbi-Fusco (Theorem 2.3), (i) ⇐⇒ (iv) even when
c0 = 0. Moreover, by the definition of quasiconvexity and using approximation,
if f is quasiconvex and only satisfies (5.1) with c0 ∈ R, then it readily follows that
I(gA) ≤ I(u) for all u ∈ W 1,p

A (Ω;Rm); hence (iv) ⇒ (v). It is also obvious that
(i) ⇒ (ii) ⇒ (iii) in general cases.

Therefore, to prove the theorem, it suffices to show that (iii) ⇒ (iv) and that
(v) ⇒ (iv) (in fact if c0 ≥ 0). We prove them as separate results in two lemmas
below. ❐

Lemma 5.5. Under the assumptions (5.1) with c0 ≥ 0 and (5.2), (v) ⇒ (iv).

Proof. The proof uses the Ekeland variational principle as given by Theorem
2.4. Given A ∈ Mm×n, define a functional Φ on X = W 1,p

0 (Ω;Rm) by

Φ(v) = ∫Ω f(A+Dv(x))dx = I(gA + v).
Then Φ : X → R is C1 and bounded below, and Φ′(v) = I′(gA+v). By Theorem
2.4, there exists a sequence {vk} in X such that

Φ(vk) → inf
v∈X

Φ(v), ‖Φ′(vk)‖X∗ → 0.

Let uk = gA + vk ∈ W 1,p
A (Ω;Rm). Then

I(uk) = Φ(vk)→ inf
X
Φ,

‖I′(uk)‖X∗ = ‖Φ′(vk)‖X∗ → 0.

Therefore, by (v), it follows that

f(A)|Ω| = I(gA) ≤ lim inf
k→∞

I(uk) = inf
v∈X

Φ(v) = inf
v∈X

I(gA + v).

This implies

f(A)|Ω| ≤ ∫Ω f(A+Dv(x))dx, ∀v ∈ W 1,p
0 (Ω;Rm),
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and thus f is quasiconvex. ❐

Lemma 5.6. Under the assumptions (5.1) with c0 > 0 and (5.2), (iii) ⇒ (iv).

Proof. Given A ∈Mm×n, by Theorem 3.8 (note that c0 > 0 is needed here),
there exists ū ∈ W 1,p

A (Ω;Rm) which is a minimizer of I(u) on W 1,p
A (Ω;Rm). We

now apply the standard technique of Vitali covering [5] to construct a sequence
{uk} in W 1,p

A (Ω;Rm) satisfying

I(uk) = I(ū) = inf
u∈W 1,p

A

I(u), uk ⇀ gA in W 1,p(Ω;Rm) as k→∞;(5.9)

I′(uk) = 0 in W−1,p′(Ω;Rm).(5.10)

Note that (5.10) will follow from (5.9) since uk ∈ W 1,p
A (Ω;Rm) is also a mini-

mizer of I(u) onW 1,p
A (Ω;Rm). Once we have constructed such a sequence {uk},

which certainly satisfies uk
ps
⇀gA, the (PS)-weak lower semicontinuity condition

(iii) will imply

I(gA) ≤ lim inf
k→∞

I(uk) = I(ū) = inf
u∈W 1,p

A

I(u),

for all A ∈ Mm×n, which is exactly the quasiconvexity condition of f , and hence
the result follows. Assume, without loss of generality, 0 ∈ Ω, and then we use the
Vitali covering theorem to decompose Ω as follows:

Ω = ∞⋃
j=1

Ω̄j ∪N; Ω̄i ∩ Ω̄j = ∅ (i 6= j),

where Ωj = aj + εjΩ ø Ω with aj ∈ Ω, 0 < εj < 1/k, and |N| = 0. Let
ū = gA + v̄, where v̄ ∈ W 1,p

0 (Ω;Rm). We define

(5.11) uk(x) =


Ax + εjv̄

(
x − aj
εj

)
if x ∈ Ωj,

Ax otherwise.

Then one can easily check that uk belongs to W 1,p
A (Ω;Rm) and satisfies∫

Ωψ(Duk(x))dx =
∫
Ωψ(Dū(x))dx,

for all continuous functions ψ : Mm×n → R satisfying |ψ(ξ)| ≤ C(|ξ|p + 1).
Certainly this implies (5.9). Furthermore, it is easy to see

‖uk − gA‖Lp(Ω) ≤ 1
k
‖ū− gA‖Lp(Ω).
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Hence uk ⇀ gA as k → ∞. As mentioned above, Condition (5.10) follows
from (5.9). This completes the construction of {uk} and thus the proof of the
lemma. ❐

Remark 5.7. For any u ∈ W 1,p
A (Ω;Rm), we write u = gA + v with v ∈

W 1,p
0 (Ω;Rm) and define a sequence uk ∈ W 1,p

A (Ω;Rm) as in (5.11) above, with
v̄ = v. Then, if u is not a minimizer of I over W 1,p

A (Ω;Rm), one only has
I′(uk) ⇀ 0, but not strongly, in W−1,p′(Ω;Rm), as k →∞, even when I′(u) = 0;
hence the (PS)-weak lower semicontinuity cannot be applied to this sequence.

Finally, we show that, without the coercivity assumption c0 > 0 in (5.1), the
results of Theorem 5.4 may fail in general; we give an example in the case n = 1,
m = 2.

Theorem 5.8. Let f : R2 → R be a C1 function satisfying the conditions (5.1)
and (5.2) with c0 = 0. Suppose the derivative mapDf = f ′ : R2 → R2 is one-to-one.

Then the functional I(u) =
∫ 1

0
f(u′(x))dx is (PS)-weakly lower semicontinuous on

the Sobolev space X = W 1,p((0,1);R2).

Proof. Let u ∈ X = W 1,p((0,1);R2). Then

〈I′(u), v〉 =
∫ 1

0
[fξ1(u

′(x))(v1)′+fξ2(u
′(x))(v2)′]dx, ∀v = (v1, v2) ∈ X,

and hence it can be shown that

‖I′(u)‖W−1,p′ � ‖fξ1(u
′)− C1(u)‖Lp′ (0,1) + ‖fξ2(u

′)− C2(u)‖Lp′ (0,1),

where C1(u), C2(u) are two constants depending boundedly on u ∈ X. Assume
uk

ps
⇀u in X. We also assume that limk→∞ I(uk) exists. Then there exists a subse-

quence {ukj} such that

‖fξ1(u
′
kj )− C1‖Lp′ (0,1) + ‖fξ2(u

′
kj )− C2‖Lp′ (0,1) → 0

as j → ∞, where C1, C2 are some constants; from this, we also assume there exists
a measurable set E ⊂ (0,1) such that

(5.12) |E| = 1, lim
j→∞

fξν (u
′
kj (x)) = Cν ∀x ∈ E(ν = 1,2).

Note that for all M > 0 the measure |{x ∈ E | |u′k(x)| > M}| ≤ C/Mp for all k,
where C is a constant; hence there exists a sufficiently large M > 0 such that the
measure |Ej| > 1

2 , where Ej = {x ∈ E | |u′kj (x)| ≤ M}. It is then an easy exercise
that there exists a subsequence {Ejs}, with js →∞ as s →∞, of sets {Ej} such that
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the set E∞ =
⋂∞
s=1 Ejs is non-empty; we leave the proof to the interested reader.

Therefore there exists at least one x0 ∈ E∞, for which |u′kjs (x0)| ≤ M for all
s = 1, 2, . . . . By taking a further subsequence, we have u′kjs (x0)→ α ∈ R2 along
a subsequence of s → ∞. Therefore, by (5.12), it follows that f ′(α) = (C1, C2).
Since the map f ′ is one-to-one, from (5.12) it follows that u′kj (x)→ α as j →∞
for all x ∈ E. This implies that u′(x) = α and f(u′kj (x)) → f(α) as j → ∞ for
all x ∈ E. Hence, by Fatou’s lemma,

I(u) = f(α) ≤ lim inf
j→∞

I(ukj ) = lim
k→∞

I(uk),

which proves the (PS)-weak lower semicontinuity of I on X. ❐

Remark 5.9. Note that if f(ξ1, ξ2) =ϕ(ξ1 − ξ2
2) on R2, where ϕ ≥ 0 is any

C1 function with a strictly increasing derivative ϕ′ > 0 on R, then f ′ : R2 → R2

is one-to-one, but f is not convex on R2. An example of such a ϕ is given by

ϕ(t) =
{
et, t ≤ 0;
t2 + t + 1, t > 0.

Note that the corresponding function f(ξ) = f(ξ1, ξ2) = ϕ(ξ1 − ξ2
2) then also

satisfies the conditions (5.1) and (5.2) with c0 = 0 and p = 4. For such a function
h = f , the condition (iii) in Lemma 4.8 above holds automatically, but h is not
convex; this shows that conditions (i) and (iii) in Lemma 4.8 are not equivalent in
general for functions h : R2 → R.
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