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Abstract. We make some remarks concerning the p-semiconvex hulls

of the quasiconformal sets, using a recent significant observation of

T. Iwaniec in the paper [7] on the important relation between the regu-

larity of quasiregular mappings in the theory of geometric functions and

the notion of Morrey’s quasiconvexity in the calculus of variations. We

also point out several partial results on a conjecture in that paper.

1. Introduction

The notion of quasiconvexity was first introduced by C. B. Morrey [11] in

the study of variational integrals of the form

(1.1) I(u) =

∫

Ω
f(Du(x)) dx,

where Ω ⊂ Rn is a bounded domain, u : Ω → Rm is a map with gradient

matrix Du(x) = (∂ui/∂xj), i = 1, · · · , m, j = 1, · · · , n, and f : Mm×n → R

is a given function defined on the space Mm×n of all real m × n matrices.

In the sense of Morrey, function f is said to be quasiconvex on Mm×n if
∫

D
f(ξ + Dϕ(x)) − f(ξ) dx ≥ 0

for all ξ ∈ Mm×n, bounded domains D ⊂ Rn, and smooth maps ϕ : Ω → Rm

with compact support in Ω. This condition is in general difficult to verify

and hence there have been many attempts in replacing it by other easier

conditions; see, e.g., J. M.Ball [3] and B. Dacorogna [5]. Recall that we say

f is rank-one convex if for any given matrices ξ and η with rank η = 1 the

function g(t) = f(ξ + tη) is a convex function of t ∈ R, and f is polyconvex

if f(ξ) can be represented as a convex function of sub-determinants of ξ. It

is well-known that ([3, 5, 11]) for continuous functions on Mm×n one has

(1.2) polyconvexity =⇒ quasiconvexity =⇒ rank-one convexity
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and the converse of each of these implications is known to be false for m ≥

2, n ≥ 2 with the exception of that of the second implication when m = 2

and n ≥ 2; in fact, whether any rank-one convex function on M2×2 must

be quasiconvex remains one of the most challenging open problems in the

vectorial calculus of variations. We refer to Alibert and Dacorogna [1] and

V. Šverák [15] for some counterexamples and refer to S. Müller’s lecture notes

[12] for some recent related developments.

To proceed, we let C∞
0 (Ω;Rm) be the family of all smooth maps with com-

pact support in Ω and let W 1,p(Ω;Rm), W 1,p
0 (Ω;Rm) be the usual Sobolev

spaces of mappings from Ω to Rm. We also define two matrix norms on

Mm×n by

(1.3) |ξ| = max
|h|=1

|ξh|, ‖ξ‖ = (ξ : ξ)1/2 = (tr(ξT ξ))1/2.

In the following, we assume m = n ≥ 2. It is easy to see that |det ξ| ≤

n−n/2‖ξ‖n ≤ |ξ|n for ξ ∈ Mn×n. For each K ≥ 1, using the norm |ξ|, we

define the K-quasiconformal set SK to be the closed cone

(1.4) SK = {ξ ∈ Mn×n | |ξ|n ≤ K det ξ}.

From Hadamard’s inequality [8], we easily have S1 = {λQ |λ ≥ 0, QT Q =

I, det Q = 1}, where I = diag(1, · · · , 1) ∈ Mn×n is identity matrix; the set

S1 is thus called the n-dimensional conformal set. A map u ∈ W 1,p(Ω;Rn),

p ≥ 1, is said to be (weakly if p < n) K-quasiregular in Ω if

(1.5) Du(x) ∈ SK a.e. x ∈ Ω,

and K-quasiconformal maps are those K-quasiregular maps in W 1,n(Ω;Rn)

that are homeomorphisms; see [6, 7, 9, 14].

One could also define K-quasiregular mappings by using the cone

(1.6) CK = {ξ ∈ Mn×n | ‖ξ‖n ≤ nn/2K det ξ}.

Note that SK 6= CK unless K = 1. However, as we shall see later, it is of

great advantage to use the set SK instead of CK .

In connection with the set SK defined above, we consider a function in-

troduced by T. Iwaniec in [7], using the norm | · |; namely,

(1.7) hp(ξ) = |1 −
n

p
| |ξ|p − |ξ|p−n det ξ.

Theorem 1.1 (Iwaniec [7]). hp is rank-one convex for all p ≥ n/2.

Based on this theorem and other properties of function hp, it has been

conjectured in [7] that hp(ξ) is quasiconvex. It is this conjecture that sig-

nifies the relations between the notion of semiconvexity in the calculus of
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variations and the regularity of quasiregular mappings in the theory of geo-

metric functions, and the confirmation of this conjecture, especially in two

dimensional case (n = 2), can make important impact on some open prob-

lems in both areas. For a recent discussion on this conjecture, see also an

article by K. Astala [2].

The purpose of the present paper is using the important observations of

Iwaniec [7] to make some remarks concerning several p-semiconvex hulls of

the quasiconformal sets SK . The p-semiconvex hulls of a set S are the certain

generalization of the closed convex hull of S depending on a power p ≥ 1,

and we shall briefly review in Section 2 the definition of these p-semiconvex

hulls and refer to [16, 19, 20, 21] for their applications in some variational

problems. The main remarks of this paper include a complete description

of the p-rank-one convex hulls of SK for all p ≥ 1 and some partial results

concerning the more important p-quasiconvex hulls of SK . In addition, we

also make some remarks on Iwaniec’s conjecture mentioned above.

2. Semiconvex hulls of quasiconformal sets

Given a closed subset S of Mm×n, for any power p ≥ 1, let C+
p (S) be the

class of continuous functions f on Mm×n satisfying

(2.1) 0 ≤ f(ξ) < c (|ξ|p + 1), f |S = 0,

where c > 0 is a constant depending on f . Let f−1(0) be the zero set of f .

The semiconvex hulls of set S with power p are defined as follows; see, e.g.,

[16, 19, 20, 21] for their applications in some variational problems.

Definition 2.1. p-quasiconvex hull :

(2.2) Qp(S) = ∩{f−1(0) | f ∈ C+
p (S), quasiconvex}.

p-rank-one convex hull :

(2.3) Rp(S) = ∩{f−1(0) | f ∈ C+
p (S), rank-one convex}.

p-polyconvex hull :

(2.4) Pp(S) = ∩{f−1(0) | f ∈ C+
p (S), polyconvex}.

With this definition, it is easily seen that the p-semiconvex hulls are closed

sets and decreasing with respect to the power p; furthermore,

(2.5) S ⊆ Rp(S) ⊆ Qp(S) ⊆ Pp(S).

This paper concerns the p-semiconvex hulls of the K-quasiconformal set

SK defined in the introduction. The following theorem summarizes some

known results proved in [13, 17, 18, 20].
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Theorem 2.1. (a) If 1 ≤ p < nK
K+1 then Rp(SK) = Mn×n.

(b) There exists an ǫ > 0 such that Qp(SK) = SK for all p > n − ǫ.

Moreover, if n is even and K = 1 then Qp(S1) = S1 for p ≥ n/2.

(c) For p ≥ n, Pp(SK) = SK . Moreover, if n is odd then Pp(SK) = Mn×n

for all 1 ≤ p < n; if n is even then Pp(SK) contains the set of all matrices

with rank ≤ n
2 − 1 for all 1 ≤ p < n.

The following result and Theorem 2.1 (a) give a complete description of

p-rank-one convex hulls of SK for all p ≥ 1.

Proposition 2.2. For K ≥ 1 and p ≥ nK
K+1 , Rp(SK) = SK .

Proof. Define

(2.6) fK(ξ) = max{0, K−1|ξ|p − |ξ|p−n det ξ}.

It is easy to see that fK ∈ C+
p (SK) and f−1

K (0) = SK . Note that, by Iwaniec’s

theorem above (Theorem 1.1), the function

K−1|ξ|p − |ξ|p−n det ξ = hp(ξ) + (K−1 − |1 −
n

p
|)|ξ|p

is rank-one convex if K−1 ≥ |1 − n
p | or, equivalently, nK

K+1 ≤ p ≤ nK
K−1 ;

for such values of p, fK is also rank-one convex. By definition, we have

Rp(SK) = SK for all p ≥ nK
K+1 . �

From Theorem 2.1 (c), we have the following result.

Proposition 2.3. Let n ≥ 3. Then the function hp is not polyconvex for

n/2 ≤ p < n. The conclusion also holds when n = 2 and 1 < p < 2.

Proof. Consider f(ξ) = |ξ|p−|ξ|p−n det ξ. We have f ∈ C+
p (S1) and f−1(0) =

S1. For n ≥ 3 and n/2 ≤ p < n, it also follows that

(2.7) f(ξ) = hp(ξ) +
2p − n

p
|ξ|p.

Since 2p − n ≥ 0, f would be polyconvex if hp were polyconvex. However,

for n ≥ 3, by Theorem 2.1 (c), f cannot be polyconvex; this shows that hp

is not polyconvex for all n/2 ≤ p < n. When n = 2, since it is easy to

see that every polyconvex function with subquadratic growth at infinity on

M2×2 must be convex, and since it is easy to see hp(δ + tI) is not convex

function in t > 0, where δ = diag(1, 0), we therefore also have proved hp is

not polyconvex for n = 2 and 1 < p < 2. �

Remark. When n = 2 and p = 1 it turns out

h1(ξ) = |ξ| − |ξ|−1 det ξ = |ξ − (adj ξ)T |,
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where adj ξ is the adjugate matrix given by ξ (adj ξ) = (adj ξ) ξ = (det ξ) I.

Since, when n = 2, adj ξ is linear in ξ and hence h1(ξ) is convex in this

case. �

Since the operator norm |ξ| is not differentiable and thus hp is not a

smooth function, one would expect to use the smooth norm ‖ξ‖ and hence

the set CK instead of the set SK ; however, this replacement would not work

as we can easily prove the following result.

Proposition 2.4. The function

(2.8) gp(ξ) = |1 −
n

p
| ‖ξ‖p − nn/2‖ξ‖p−n det ξ

is not rank-one convex for all n/2 ≤ p < n.

Proof. Let ξ = n−1/2 diag(1, · · · , 1,−1), η = diag(0, · · · , 0, 1) and consider

function g(t) = gp(ξ + tη). A direct computation shows that g′′(0) = p−n <

0, and hence g(t) is not convex in t and gp is not rank-one convex. �

3. Iwaniec’s conjectures

Note that the function hp defined by (1.7) is rank-one convex for all

p ≥ n/2. The following conjectures have been made by T. Iwaniec in [7].

Conjecture 3.1. For each p ≥ n/2, the function hp defined by (1.7) is

quasiconvex; that is, for all ξ ∈ Mn×n and ϕ ∈ C∞
0 (Ω;Rn), we have

(3.1)

∫

Ω
hp(ξ + Dϕ(x)) − hp(ξ) dx ≥ 0.

In particular, for ξ = 0, this suggests a much weaker conjecture.

Conjecture 3.2. For each p > n/2 and all ϕ ∈ W 1,p
0 (Ω;Rn), we have

(3.2)

∫

Ω
|Dϕ(x)|p−n detDϕ(x) dx ≤ |1 −

n

p
|

∫

Ω
|Dϕ(x)|p dx.

There exist other explicit examples of rank-one convex functions which we

don’t know whether are quasiconvex; see for instance [1]. However, Iwaniec’s

functions hp defined above, especially when n = 2, relate directly to an

important conjecture concerning the norm of the so-called Beurling-Ahlfors

transform.

Remark. Let n = 2. Consider point (x, y) ∈ R2 as a complex number z =

x + iy ∈ C and map ϕ(x, y) as a complex function ϕ(z) on z ∈ C. Let ∂z =
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1
2(∂x − i∂y), ∂z̄ = 1

2(∂x + i∂y) be the complex Cauchy-Riemann operators;

then hp(Dϕ) can be expressed in terms of ϕz = ∂zϕ, ϕz̄ = ∂z̄ϕ as

hp(Dϕ) = (1 − |1 −
2

p
|)
[

(p∗ − 1)|ϕz̄| − |ϕz|
]

(|ϕz̄| + |ϕz|)
p−1,

where p∗ − 1 = max{p − 1, (p − 1)−1}. The Beurling-Ahlfors transform is

defined by

(3.3) (Sf)(z) = −
1

2πi

∫

C

f(ζ) dζ ∧ dζ̄

(z − ζ)2

and has an important feature that S(fz̄) = fz. Using the Burkholder-type

inequalities [4], it has been shown in Iwaniec [7] that when n = 2 Conjecture

3.2 is equivalent to a long-standing conjecture that the Lp-operator norm of

the Beurling-Ahlfors transform ‖S‖p = p∗ − 1 for all 1 < p < ∞.

Consequently, in the case of dimension n = 2, the truth of Conjecture

3.1 would confirm the norm conjecture of the Beurling-Ahlfors transform,

while the failure of it would provide a counterexample of a rank-one convex

function on M2×2 which is not quasiconvex, settling another long-standing

open problem in the calculus of variations. �

We would complete the computation of the quasiconvex hulls of the qua-

siconformal set from Iwaniec’s conjectures.

Proposition 3.3. Conjecture 3.2 implies Qp(SK) = SK for all p > nK
K+1 ;

while Conjecture 3.1 implies Qp(SK) = SK for p = nK
K+1 .

Proof. We only prove the first implication; the second one is easy. Let fK be

defined by (2.6). Since fK(ξ) ≥ hp(ξ)+(K−1−|1− n
p |)|ξ|

p, we easily see that

Conjecture 3.2 would imply that fK is Lp-mean coercive for nK
K+1 < p < nK

K−1

in the sense that

(3.4)

∫

Ω
fK(Dϕ(x)) dx ≥ γ

∫

Ω
|Dϕ(x)|p dx

holds for all ϕ ∈ W 1,p
0 (Ω;Rn), where γ > 0 is a constant; in this case,

γ = K−1 − |1 − n
p | > 0. Therefore, by a theorem in Yan and Zhou [20],

Qp(SK) will be constant for nK
K+1 < p < nK

K−1 . In particular, by Theorem

2.1 (b) above, we have Qp(SK) = SK for all p > nK
K+1 . �

The following result could be derived from Conjecture 3.2 and a theorem

in [20]; the conclusion of this result in the case dimension n = 2 has been

proved by K. Astala regardless of Conjecture 3.2, using a different method

of measurable Riemann mapping theorem (see the references given in [2]).
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Proposition 3.4. Conjecture 3.2 implies that any weakly K-quasiregular

maps in W 1,p(Ω;Rn) for some p > nK
K+1 must belong to W 1,q

loc (Ω;Rn) for all
nK

K+1 < q < nK
K−1 .

In particular, if K = 1, this would imply that any weakly conformal

mappings in W 1,p(Ω;Rn) with some p > n/2 must be a restriction of a

Möbius transform on Ω as in a classical Liouville theorem [14]. If dimension

n is even, this generalized Liouville theorem has proved even true with p =

n/2; see Iwaniec and Martin [9].

4. A special case and final remarks

In this final section, we make a few remarks concerning Conjecture 3.1.

We will prove the estimate (3.1) in Conjecture 3.1 for a special class of

radially symmetric test functions; the result is useful in both aspects: it

makes the conjecture more convincing and, on the other hand, it helps in

excluding the possible counterexamples.

Let B be the unit open ball in Rn. A map u : B → Rn is said to be radial

if there exists a function U(r), 0 < r < 1, such that

(4.1) u(x) = U(|x|)x a.e. x ∈ B.

If U is smooth away from r = 0, then u is smooth on B \ {0} and an easy

calculation shows that

(4.2) Du(x) = U(r)I + rU ′(r)ω ⊗ ω, r = |x|, ω = x/|x|.

Let W (ξ) be any finite continuous rank-one convex function. We first assume

W is smooth. Then it follows that (cf. [3])

(4.3) W (ξ + a ⊗ b) ≥ W (ξ) +
n
∑

i,j=1

∂W (ξ)

∂ξij
aibj

for all ξ ∈ Mn×n and a, b ∈ Rn. Therefore, for any given ξ,

W (ξ + Du(x)) = W (ξ + U(r)I + rU ′(r)ω ⊗ ω)

≥ W (ξ + U(r)I) + rU ′(r)
n
∑

i,j=1

∂W

∂ξij
(ξ + U(r)I)ωiωj .

Integrating this over Bρ \ Bǫ (0 < ǫ < ρ < 1) using spherical coordinates,

we obtain (cf. [18])

(4.4)

∫

Bρ\Bǫ

W (ξ + Du) ≥ |B| (ρnW (ξ + U(ρ)I) − ǫnW (ξ + U(ǫ)I)).

A smoothing argument shows that this inequality holds for all finite contin-

uous rank-one convex functions W.
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From the above inequality, we deduce the following result as a consequence

of Theorem 1.1. Let hp be the function defined by (1.7) above.

Proposition 4.1. Let p ≥ n/2. Then, for all ξ ∈ Mn×n and radial maps

ϕ ∈ W 1,p
0 (B;Rn), we have

(4.5)

∫

B
hp(ξ + Dϕ(x)) − hp(ξ) dx ≥ 0.

Proof. We first assume that the radial map ϕ ∈ W 1,p
0 (B;Rn) has support

in Bρ for some ρ < 1. Let ϕ(x) = Φ(|x|)x. Since ϕ ∈ W 1,p(B;Rn) we have

(4.6)

∫ 1

0
|Φ(r)|prn−1 + |Φ′(r)|prp+n−1 dr < ∞.

We claim that there exists a decreasing sequence {ǫj} such that ǫj → 0

and |Φ(ǫj)|
pǫn

j → 0 as j → ∞. If this were not the case, we would have

|Φ(r)|prn ≥ ν for some constant ν > 0 and all 0 < r < 1. This would imply

|Φ(r)|prn−1 ≥ νr−1 and thus

(4.7)

∫ 2ǫ

ǫ
|Φ(r)|prn−1 dr ≥ ν ln 2 > 0

for all 0 < ǫ < 1
2 , which violates (4.6); the claim is proved. Using (4.4) with

W = hp, ǫ = ǫj and ρ → 1, we have

(4.8)

∫

B
hp(ξ + Dϕ(x))χj(x) dx ≥ |B| [hp(ξ) − ǫn

j hp(ξ + Φ(ǫj)I)],

where χj is the characteristic function of B \ Bǫj
. Note that

(4.9) ǫn
j |hp(ξ + Φ(ǫj)I)| ≤ Cp ǫn

j (1 + |Φ(ǫj)|
p) → 0

as j → ∞. Hence, by the Lebesgue dominated convergence theorem, we have

(4.10)

∫

B
hp(ξ + Dϕ(x)) dx ≥ |B|hp(ξ),

as desired. For general radial maps ϕ, this can be proved by a density

argument. �

Remark. The equality in (4.10) can hold for many nontrivial maps ϕ at

certain ξ, but for all these ϕ, ξ + Dϕ(x) lies in the set where hp is smooth

and moreover the first variation of the integral vanishes at ξ + Dϕ. This

supports the conjectures made above; see also [7]. �

As a special case of the function hp defined above, we consider the case

p = n− 1. Let H(ξ) = |ξ|n−2 ξ − (adj ξ)T . Then, using Lemma 2.1 of [7], we

see that

(4.11) |H(ξ)| = |ξ|n−1 − |ξ|−1 det ξ = hn−1(ξ) +
n − 2

n − 1
|ξ|n−1,
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and hence the estimate (3.2) in Conjecture 3.2 is equivalent to

(4.12) ‖Dϕ‖n−1
Ln−1(B)

≤
n − 1

n − 2
‖H(Dϕ)‖L1(B)

for all ϕ ∈ C∞
0 (B;Rn). Since div(adjDϕ)T = 0, we have

(4.13) div |Dϕ|n−2Dϕ = div h,

where h = H(Dϕ(x)); this system is not the usual n-Laplacian system since

the norm |Dϕ| is used. Note that (4.12) would be derived easily from the

following conjecture.

Conjecture 4.2. Let n ≥ 3. For any weak solution ϕ ∈ W 1,n−1
0 (B;Rn) of

system (4.13) with any h ∈ L1(B;Mn×n), one has the estimate

(4.14)

∫

B
|Dϕ(x)|n−1 dx ≤

n − 1

n − 2

∫

B
|h(x)| dx.

Finally, the following result has been proved in [7] in partial support of

Conjecture 3.2.

Theorem 4.3. For each n ≥ 2 there exists a minimal power p0(n) ∈ [n
2 , n)

such that for all p > p0(n) one has a positive number λp(n) < 1 for which
∫

Ω
|Dϕ(x)|p−n detDϕ(x) dx ≤ λp(n)

∫

Ω
|Dϕ(x)|p dx

holds for all ϕ ∈ C∞
0 (Ω;Rn).

Notice that Conjecture 3.2 is equivalent to the assertion that p0(n) = n/2

and λp(n) = |1− n
p | in Theorem 4.3. The minimal power p0(n) is also related

to the Lp-mean coercivity of the conformal set S1 studied in [20] (see also

[8]). It is easy to see that p0(n) is the infimum of powers p such that for all

q ≥ p and ϕ ∈ C∞
0 (B;Rn)

(4.15)

∫

B
g(Dϕ(x)) dx ≥ γg

∫

B
|Dϕ(x)|q dx,

where g is any q-homogeneous nonnegative function vanishing exactly on

S1, γg > 0 is a constant, and |Dϕ| can be in any norm of Mn×n.

Remark. It has been proved that p0(n) = n/2 for even dimensions n; see

[7, 9, 13]. For odd dimensions n, we can relate this power p0(n) to an Lp-type

estimate for q-harmonic systems. Consider the function

(4.16) Fl,δ(ξ) = δ | ∧l (ξ)|
q

l −

(

n

l

)
n
2l

| ∧l (ξ)|
q−n

l det ξ,
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where 1 ≤ l ≤ n is an integer and ∧l(ξ) is the l-th exterior power of ξ as a

linear operator on ∧l(Rn) defined by

∧l(ξ)(eI) = ∧l(ξ)(ei1 ∧ · · · ∧ eil) = ξi1 ∧ · · · ∧ ξil

and | ∧l (ξ)|2 =
∑

I | ∧
l (ξ)(eI)|

2, where I = {1 ≤ i1 < i2 < · · · < il ≤ n}

is taken with all increasing indices and ξi is the i-th row of matrix ξ. From

a conjecture made in [8] after Theorem 7.1 (which would follow from the

estimate of [8, Theorem 8.1] with all r > max{1
q , 1

q′ }), we would obtain

with l = [n
2 ] being the largest integer less than or equal to n

2 that

(4.17)

∫

B
Fl,δ(Dϕ(x)) dx ≥ 0, ∀ ϕ ∈ C∞

0 (B;Rn)

for all q > n − [n
2 ] and some |1 − n

q | ≤ δ < 1; hence a similar argument of

[7, Section 11] would show that p0(n) ≤ n − [n
2 ]. However, it seems unclear

whether the conjecture in [8] mentioned above would imply p0(n) = n/2.

�
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Zürich, 1994,” 1153–1158, (S. D. Chatterji, ed.), Birkhäuser, Basel, 1995.
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