SEMICONVEX HULLS OF QUASICONFORMAL SETS

BAISHENG YAN

Department of Mathematics
Michigan State University
East Lansing, MI 48824, USA

ABSTRACT. We make some remarks concerning the p-semiconvex hulls
of the quasiconformal sets, using a recent significant observation of
T. Iwaniec in the paper [7] on the important relation between the regu-
larity of quasiregular mappings in the theory of geometric functions and
the notion of Morrey’s quasiconvexity in the calculus of variations. We
also point out several partial results on a conjecture in that paper.

1. INTRODUCTION

The notion of quasiconvexity was first introduced by C.B. Morrey [11] in
the study of variational integrals of the form

(11) I(u) = /Q f(Du()) dx,

where (2 C R" is a bounded domain, u:  — R™ is a map with gradient
matrix Du(z) = (9u'/dz;),i=1,---,m,j=1,--- ,n,and f: M™" - R
is a given function defined on the space M"™*" of all real m x n matrices.
In the sense of Morrey, function f is said to be quasiconvex on M"™*" if

| #€+ Det@) - f(e)da =0

for all £ € M™*™ bounded domains D C R", and smooth maps ¢: Q@ — R™
with compact support in €2. This condition is in general difficult to verify
and hence there have been many attempts in replacing it by other easier
conditions; see, e.g., J. M. Ball [3] and B. Dacorogna [5]. Recall that we say
f is rank-one convez if for any given matrices £ and 7 with rankn = 1 the
function g(t) = f(& + tn) is a convex function of ¢t € R, and f is polyconvex
if f(£) can be represented as a convex function of sub-determinants of £. It
is well-known that ([3, 5, 11]) for continuous functions on M™*"™ one has

(1.2) polyconvexity = quasiconvexity = rank-one convexity
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and the converse of each of these implications is known to be false for m >
2, n > 2 with the exception of that of the second implication when m = 2
and n > 2; in fact, whether any rank-one convex function on M?*? must
be quasiconvex remains one of the most challenging open problems in the
vectorial calculus of variations. We refer to Alibert and Dacorogna [1] and
V. Sverék [15] for some counterexamples and refer to S. Miiller’s lecture notes
[12] for some recent related developments.

To proceed, we let C§°(2; R™) be the family of all smooth maps with com-
pact support in  and let W1HP(Q; R™), Wol’p(Q; R™) be the usual Sobolev
spaces of mappings from 2 to R™. We also define two matrix norms on
M™*™ by

(1.3) €] = max [¢h], [|€]l = (&: Y2 = (tr(£T€))Y2.

h|=1

In the following, we assume m = n > 2. It is easy to see that |det | <
n="2|E|" < |€" for € € M™*™. For each K > 1, using the norm |£|, we
define the K -quasiconformal set Sk to be the closed cone

(1.4) S ={£eM™"|[¢|" < Kdet&}.

From Hadamard’s inequality [8], we easily have S; = {AQ | X > 0, QTQ =
I, det @ = 1}, where I = diag(1,---,1) € M"™*"™ is identity matrix; the set
S is thus called the n-dimensional conformal set. A map u € WHP(Q; R"),
p > 1, is said to be (weakly if p < n) K-quasiregular in € if

(1.5) Du(z) € Sk a.e. x € Q,

and K -quasiconformal maps are those K-quasiregular maps in W17 (Q; R"?)
that are homeomorphisms; see [6, 7, 9, 14].
One could also define K-quasiregular mappings by using the cone

(L6) Ci = € € MM [ [l¢]" < n"/2K det ).

Note that Sk # Cx unless K = 1. However, as we shall see later, it is of
great advantage to use the set Sk instead of Ck.

In connection with the set Sk defined above, we consider a function in-
troduced by T.Iwaniec in [7], using the norm | - |; namely,

n —n
(17) (€)= 11— 2 gl — e~ dete.
Theorem 1.1 (Iwaniec [7]). hy, is rank-one convez for all p > n/2.

Based on this theorem and other properties of function hj, it has been
conjectured in [7] that h,(£) is quasiconvex. It is this conjecture that sig-
nifies the relations between the notion of semiconvexity in the calculus of
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variations and the regularity of quasiregular mappings in the theory of geo-
metric functions, and the confirmation of this conjecture, especially in two
dimensional case (n = 2), can make important impact on some open prob-
lems in both areas. For a recent discussion on this conjecture, see also an
article by K. Astala [2].

The purpose of the present paper is using the important observations of
Iwaniec [7] to make some remarks concerning several p-semiconvex hulls of
the quasiconformal sets Si. The p-semiconvex hulls of a set S are the certain
generalization of the closed convex hull of S depending on a power p > 1,
and we shall briefly review in Section 2 the definition of these p-semiconvex
hulls and refer to [16, 19, 20, 21] for their applications in some variational
problems. The main remarks of this paper include a complete description
of the p-rank-one convex hulls of Sk for all p > 1 and some partial results
concerning the more important p-quasiconvex hulls of Si. In addition, we
also make some remarks on Iwaniec’s conjecture mentioned above.

2. SEMICONVEX HULLS OF QUASICONFORMAL SETS

Given a closed subset S of M™*™ for any power p > 1, let C;r (S) be the
class of continuous functions f on M™*" satisfying

(2.1) 0<f(&) <c(eff+1), fls=0,

where ¢ > 0 is a constant depending on f. Let f~!(0) be the zero set of f.
The semiconvex hulls of set S with power p are defined as follows; see, e.g.,
[16, 19, 20, 21] for their applications in some variational problems.

Definition 2.1. p-quasiconvex hull:

(2.2) Qp(S) =n{f1(0)| f € C (S), quasiconvex}.
p-rank-one convex hull:

(2.3) R,(S)=n{fY0)|f e Cf(S), rank-one convex}.
p-polyconvex hull:

(2.4) P,(S)=n{fY0)| f € Cr(S), polyconvex}.

With this definition, it is easily seen that the p-semiconvex hulls are closed
sets and decreasing with respect to the power p; furthermore,

(2.5) S C RBy(S) € Qp(S) € Po(S).

This paper concerns the p-semiconvex hulls of the K-quasiconformal set
Sk defined in the introduction. The following theorem summarizes some
known results proved in [13, 17, 18, 20].
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Theorem 2.1. (a) If1<p< K”—fl then R,(Sk) = M"*".

(b) There exists an € > 0 such that Qp(Sk) = Sk for allp > n —e.
Moreover, if n is even and K =1 then Qp(S1) = &1 for p > n/2.

(c) Forp > n, Py(Sk) = Sk. Moreover, if n is odd then P,(Sk) = M"*"
for all 1 < p < n; if n is even then P,(Sk) contains the set of all matrices
with rank < 5 — 1 for all1 <p <mn.

The following result and Theorem 2.1 (a) give a complete description of
p-rank-one convex hulls of Sg for all p > 1.

Proposition 2.2. For K > 1 and p > ;{”—fl, R,(Sk) = Sk.
Proof. Define

(2.6) fr(€) = max{0, K¢ — [¢[P7" det &}

It is easy to see that fx € CJ(SK) and f;(I(O) = Sk . Note that, by Iwaniec’s
theorem above (Theorem 1.1), the function

K [eP — [¢[P™ det € = hy(€) + (K~ — |1 — %\)!f\p

is rank-one convex if K=t > |1 — %| or, equivalently, ;(‘—fl <p< I?—i{l;
for such values of p, fx is also rank-one convex. By definition, we have
Ry(Sk) = Sk for all p > 2. O

From Theorem 2.1 (c), we have the following result.

Proposition 2.3. Let n > 3. Then the function h, is not polyconvex for
n/2 < p < n. The conclusion also holds when n =2 and 1 < p < 2.

Proof. Consider f(£) = [£[P—|¢[P~™ det £. We have f € C;f (S1) and f~1(0) =
S1. For n > 3 and n/2 < p < n, it also follows that
2p—n
(2.7) f(&) = hp(§) + ’ 1P
Since 2p —n > 0, f would be polyconvex if h, were polyconvex. However,

for n > 3, by Theorem 2.1 (c), f cannot be polyconvex; this shows that h,
is not polyconvex for all n/2 < p < n. When n = 2, since it is easy to
see that every polyconvex function with subquadratic growth at infinity on
M?*2 must be convex, and since it is easy to see h,(6 + tI) is not convex
function in ¢ > 0, where 6 = diag(1,0), we therefore also have proved h,, is
not polyconvex forn =2 and 1 < p < 2. O

Remark. When n =2 and p = 1 it turns out
hi(€) = [€] — €] det £ = |€ — (adj&)" |,
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where adj ¢ is the adjugate matrix given by & (adj&) = (adj&) & = (det &) 1.
Since, when n = 2, adj¢ is linear in & and hence hy(§) is convex in this
case. O

Since the operator norm |£| is not differentiable and thus h, is not a
smooth function, one would expect to use the smooth norm ||£|| and hence
the set Cx instead of the set Si; however, this replacement would not work
as we can easily prove the following result.

Proposition 2.4. The function

n _
(2.8) gp(§) = [1 - 5\ I€lP = n™/?€]P det &
is not rank-one convex for alln/2 <p < n.

Proof. Let ¢ = n~'/2diag(1,---,1,—1), n = diag(0,---,0,1) and consider
function g(t) = gp(§+1tn). A direct computation shows that ¢”(0) = p—n <
0, and hence ¢(t) is not convex in ¢t and g, is not rank-one convex. (]

3. IWANIEC’S CONJECTURES

Note that the function h, defined by (1.7) is rank-one convex for all
p > n/2. The following conjectures have been made by T. Iwaniec in [7].

Conjecture 3.1. For each p > n/2, the function h, defined by (1.7) is
quasiconvex; that is, for all £ € M"™ ™ and ¢ € Cg°(Q;R"), we have

(3.1) | holé + Dp(@) =y () 2 0.
In particular, for £ = 0, this suggests a much weaker conjecture.

Conjecture 3.2. For each p > n/2 and all v € Wol’p(Q; R"), we have

(3.2) /Q IDipla) P~ det Do) do < [1- | /Q Dp(a)P da.

There exist other explicit examples of rank-one convex functions which we
don’t know whether are quasiconvex; see for instance [1]. However, Iwaniec’s
functions h, defined above, especially when n = 2, relate directly to an
important conjecture concerning the norm of the so-called Beurling-Ahlfors
transform.

Remark. Let n = 2. Consider point (z,y) € R? as a complex number z =
x +1iy € C and map ¢(z,y) as a complex function ¢(z) on z € C. Let 0, =
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2(0y — 10y), 95 = £(0 + i0y) be the complex Cauchy-Riemann operators;
then h,(Dy) can be expressed in terms of ¢, = 0,p, ¢z = 0zp as

hp(Dp) = (1= [1 - 12)!) (P = Dlpz] = leal] (o=l + | )P,

where p* — 1 = max{p — 1, (p — 1)~'}. The Beurling-Ahlfors transform is
defined by

L1 [ JQdcndC

21 C (Z — C)2
and has an important feature that S(fz) = f,. Using the Burkholder-type
inequalities [4], it has been shown in Iwaniec [7] that when n = 2 Conjecture

(3-3) (Sf)(2) =

3.2 is equivalent to a long-standing conjecture that the LP-operator norm of
the Beurling-Ahlfors transform ||S||, =p* — 1 for all 1 < p < oc.
Consequently, in the case of dimension n = 2, the truth of Conjecture
3.1 would confirm the norm conjecture of the Beurling-Ahlfors transform,
while the failure of it would provide a counterexample of a rank-one convex
function on M?*2 which is not quasiconvex, settling another long-standing
open problem in the calculus of variations. O

We would complete the computation of the quasiconvex hulls of the qua-
siconformal set from Iwaniec’s conjectures.

Proposition 3.3. Conjecture 3.2 implies Q,(Sk) = Sk for all p > K"—fl;

nK

while Conjecture 3.1 implies Q,(Sk) = Sk for p = 5.

Proof. We only prove the first implication; the second one is easy. Let fx be
defined by (2.6). Since fx (&) > hy(&)+ (K11 — 3 DIEP, we easily see that
Conjecture 3.2 would imply that fx is LP-mean coercive for I’(‘—fl <p< K”—fl
in the sense that

(3.4) /ﬂ fre(Dg(x)) dz > /Q Dg(a)P da

holds for all ¢ € Wol’p(Q;R”), where v > 0 is a constant; in this case,
y=K1!-1- 71 > 0. Therefore, by a theorem in Yan and Zhou [20],

Qp(Sk) will be constant for Kn—fl <p< [?—i{l In particular, by Theorem
2.1 (b) above, we have Q,(Sk) = Sk for all p > K”—fl O

The following result could be derived from Conjecture 3.2 and a theorem
in [20]; the conclusion of this result in the case dimension n = 2 has been
proved by K. Astala regardless of Conjecture 3.2, using a different method
of measurable Riemann mapping theorem (see the references given in [2]).
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Proposition 3.4. Conjecture 3.2 implies that any weakly K-quasireqular
maps in WHP(Q; R™) for some p > I?—ffl must belong to VVliCq(Q, R") for all
#5 <q< 25

In particular, if K = 1, this would imply that any weakly conformal
mappings in WP(Q; R") with some p > n/2 must be a restriction of a
Mobius transform on 2 as in a classical Liouville theorem [14]. If dimension
n is even, this generalized Liouville theorem has proved even true with p =
n/2; see Iwaniec and Martin [9].

4. A SPECIAL CASE AND FINAL REMARKS

In this final section, we make a few remarks concerning Conjecture 3.1.
We will prove the estimate (3.1) in Conjecture 3.1 for a special class of
radially symmetric test functions; the result is useful in both aspects: it
makes the conjecture more convincing and, on the other hand, it helps in
excluding the possible counterexamples.

Let B be the unit open ball in R™. A map u: B — R" is said to be radial
if there exists a function U(r), 0 < r < 1, such that

(4.1) u(z) =U(|z])x a.e. z € B.

If U is smooth away from r = 0, then u is smooth on B\ {0} and an easy
calculation shows that

(4.2) Du(z)=UM)I+rU'(rwew, r=|z,w=az/|zl

Let W (£) be any finite continuous rank-one convex function. We first assume
W is smooth. Then it follows that (cf. [3])

(4.3) W(E+a@b) >W(E+ > aggo a;bj
ij=1 v

for all £ € M™*™ and a, b € R™. Therefore, for any given &,
W(+ Du(z)) = W(E+U@I+rU'(r)w@w)

> WE+U@D+rU'(r) Y ZZZ

i,j=1

€+ U] wiw;.

Integrating this over B, \ Be (0 < € < p < 1) using spherical coordinates,
we obtain (cf. [18])

(4.4) /B . W(&+ Du) = [B| (p"W(§ + U(p)I) — "W ( + U(e))).

A smoothing argument shows that this inequality holds for all finite contin-
uous rank-one convex functions W.
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From the above inequality, we deduce the following result as a consequence
of Theorem 1.1. Let k), be the function defined by (1.7) above.

Proposition 4.1. Let p > n/2. Then, for all £ € M™™ and radial maps
@ € Wy P(B; R"), we have

(45) |, ol + Dpla)) = muf€) da >0,

Proof. We first assume that the radial map ¢ € WO1 P(B;R™) has support
in B, for some p < 1. Let p(z) = ®(|z|)z. Since ¢ € WHP(B; R") we have

1
(4.6) / |®(r)[Pr=L | () |PrPT L dr < 0.
0

We claim that there exists a decreasing sequence {¢;} such that ¢; — 0
and |®(e;)[Pef — 0 as j — oo. If this were not the case, we would have
|®(r)|Pr™ > v for some constant v > 0 and all 0 < r < 1. This would imply
|®(r)[Pr"=! > vr~! and thus

2¢
(4.7) / |®(r)Pr"~tdr > vIn2 >0
€

for all 0 < € < , which violates (4.6); the claim is proved. Using (4.4) with
W = hp, e =¢j and p — 1, we have

(4.8) /Bhp(f + Do(z))xj(x) dz = | Bl [hy(§) — €5 hp(€ + () 1)],
where y; is the characteristic function of B\ Bc,. Note that
(4.9) 65 [hp(€ + ®(e) )] < Cpef (1 +[®(ej)[P) — 0

as j — oo. Hence, by the Lebesgue dominated convergence theorem, we have

(4.10) /B ho(€ + Dep(a)) dz > |B| hy(€),

as desired. For general radial maps ¢, this can be proved by a density
argument. O

Remark. The equality in (4.10) can hold for many nontrivial maps ¢ at
certain &, but for all these ¢, £ + Dp(z) lies in the set where h), is smooth
and moreover the first variation of the integral vanishes at & + D¢y. This
supports the conjectures made above; see also [7]. ([l

As a special case of the function h, defined above, we consider the case
p=n—1. Let H() = [£"2¢ — (adjé)T. Then, using Lemma 2.1 of [7], we
see that
n— _ n—2
(4.11) [H(E)] = [¢]"™ — [¢]7! det & = hn—1(€) +

n—1

",
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and hence the estimate (3.2) in Conjecture 3.2 is equivalent to

n— n—1
(4.12) 1Dl 5y < s I (D) 123

for all p € C$°(B; R™). Since div(adj Dy)? = 0, we have
(4.13) div |De|" 2Dy = div h,

where h = H(Dyp(x)); this system is not the usual n-Laplacian system since
the norm | D] is used. Note that (4.12) would be derived easily from the
following conjecture.

Conjecture 4.2. Let n > 3. For any weak solution ¢ € Wol’n_l(B; R") of
system (4.13) with any h € L'(B; M™ ™), one has the estimate

(4.14) /B]Dgo(x)\”_ldx < n_l/Bh(x)]da:.

n—2

Finally, the following result has been proved in [7] in partial support of
Conjecture 3.2.

Theorem 4.3. For each n > 2 there exists a minimal power po(n) € [§, n)
such that for all p > po(n) one has a positive number A\,(n) < 1 for which

/ Dg(a)P" det Dip() dz < Ay(n) / Dy()P da
Q Q
holds for all p € C3°(€; R™).

Notice that Conjecture 3.2 is equivalent to the assertion that po(n) = n/2
and Ap(n) = |1 — 7| in Theorem 4.3. The minimal power po(n) is also related
to the LP-mean coercivity of the conformal set S; studied in [20] (see also
[8]). It is easy to see that pp(n) is the infimum of powers p such that for all
¢ = pand ¢ € Cg°(B;R")

(4.15) /B 9(D()) dr > 7, /B Dg(a)|" de,

where ¢ is any g-homogeneous nonnegative function vanishing exactly on
S1, 74 > 0 is a constant, and |Dy| can be in any norm of M™*".

Remark. It has been proved that pg(n) = n/2 for even dimensions n; see
[7,9, 13]. For odd dimensions n, we can relate this power po(n) to an LP-type
estimate for g-harmonic systems. Consider the function

n

(4.16) Fis(€) =8| A (©IF - (l) [ AT detg,
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where 1 <[ < n is an integer and A'(¢) is the [-th exterior power of ¢ as a
linear operator on A/(R™) defined by

N(E)(er) = N (E) (e Ao Aei) =& A+ A&,

and | AL ()2 = 32| AL (€)(en)]?, where T = {1 < iy < iy < -+ < i <n}
is taken with all increasing indices and &; is the ¢-th row of matrix £. From
a conjecture made in [8] after Theorem 7.1 (which would follow from the
estimate of [8, Theorem 8.1] with all r > max{%, % ), we would obtain
with [ = [§] being the largest integer less than or equal to § that

(4.17) /BFl,é(DSO(@) dx >0, Vel (B;R")

for all ¢ > n — [5] and some |1 — 7| < 6 < 1; hence a similar argument of

[7, Section 11] would show that po(n) < n — [5]. However, it seems unclear
whether the conjecture in [8] mentioned above would imply po(n) = n/2.

O
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