Lecture Notes on Brownian Motion, Continuous Martingale and Stochastic Analysis (Itô's Calculus)

This lecture notes mainly follows Chapter 11, 15, 16 of the book *Foundations of Modern Probability* by Olav Kallenberg.

Throughout, we fix an underlying filtered probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathcal{F} = (\mathcal{F}_t)_{t \geq 0}$ is a filtration. Recall a normal distribution $N(\mu, \sigma^2)$, $\sigma > 0$, is a probability measure on \mathbb{R} with a density function:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

If $X \sim N(\mu, \sigma^2)$, then $\mathbb{E}[X] = \mu$ and $\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}X)^2] = \sigma^2$. This distribution has a characteristic function:

$$\phi(t) = \mathbb{E}[e^{itX}] = e^{i\mu t - \frac{\sigma^2 t^2}{2}}.$$

We also think of $N(\mu, 0) = \delta_{\mu}$ as a normal distribution. It has no density function, but has characteristic function $e^{i\mu t}$. A random variable with normal distribution is called a Gaussian random variable.

We may also define d-dimensional normal distribution $N(\mu, A)$, where $\mu \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d^2}$ is a semi-definite matrix. It has characteristic function:

$$\phi(\underline{t}) = \mathbb{E}[e^{i\sum_{j=1}^{d} t_j X_j}] = e^{i\sum_{j=1}^{d} \mu_j t_j - \frac{1}{2}\sum_{j=1}^{d} \sum_{k=1}^{d} A_{j,k} t_j t_k}.$$

The density function exists whenever A is strictly positive. A random vector with normal distribution is called a Gaussian random vector.

1 Gaussian Processes and Brownian Motion

A family of random variables $(X_t)_{t\in I}$ is said to be jointly Gaussian if for any $t_1, \ldots, t_n \in I$ and any $c_1, \ldots, c_n \in \mathbb{R}$, $\sum_{j=1}^n c_j X_{t_j}$ is Gaussian, and is said to be centered if $\mathbb{E}[X_t] = 0$ for all t. This means that $(X_{t_1}, \ldots, X_{t_n})$ follows a normal distribution on \mathbb{R}^n . This property holds, for example, if X_t are independent Gaussian random variables. In fact, if $X_t \sim N(a_t, \sigma_t^2)$ and are independent, then $\sum_{j=1}^n c_j X_{t_j} \sim N(\sum_{j=1}^n c_j a_{t_j}, \sum_{j=1}^n c_j^2 \sigma_{t_j}^2)$. A random process (X_t) is called a Gaussian process if the random variables are jointly Gaussian.

Lemma 11.1. (Covariance function)

- (i) Suppose $(X_t)_{t\in T}$ and $(Y_t)_{t\in T}$ are both jointly Gaussian. If for any $t \in T$, $\mathbb{E}[X_t] = \mathbb{E}[Y_t]$; and for any $s, t \in T$, $\operatorname{cov}(X_s, X_t) = \operatorname{cov}(Y_s, Y_t)$. Then $(X_t)_{t\in T}$ and $(Y_t)_{t\in T}$ have the same distribution.
- (ii) If the family $(X_t)_{t\in T}$ is jointly Gaussian, then the family is independent if and only if $\operatorname{cov}(X_s, X_t) = 0$ for any $s \neq t \in T$.

Proof. (i) For any $t_1, \ldots, t_n \in T$ and c_1, \ldots, c_n , we have

$$\mathbb{E}[\sum_{j=1}^{n} c_j X_{t_j}] = \sum_{j=1}^{n} c_j \mathbb{E}[X_{t_j}];$$
$$\operatorname{var}[\sum_{j=1}^{n} c_j X_{t_j}] = \mathbb{E}[(\sum_{j=1}^{n} c_j (X_{t_j} - \mathbb{E}[X_{t_j}]))^2] = \sum_{j=1}^{n} \sum_{k=1}^{n} c_j c_k \operatorname{cov}(X_{t_j}, X_{t_k})$$

The same computation holds for $\sum_{j=1}^{n} c_j Y_{t_j}$. From the assumption we know that $\sum_{j=1}^{n} c_j X_{t_j}$ and $\sum_{j=1}^{n} c_j Y_{t_j}$ have the same expectation and variance. Since they are both Gaussian random variables, they must have the same distribution. By Gramér and Wold Theorem (Corollary 4.5), $(X_{t_1}, \ldots, X_{t_n}) \stackrel{d}{=} (Y_{t_1}, \ldots, Y_{t_n})$ for any $t_1, \ldots, t_n \in T$. So by Proposition 2.2, $X \stackrel{d}{=} Y$.

(ii) The only if part is trivial. The if part follows from (i) since if we set Y_t , $t \in T$, to be independent Gaussian random variables such that $Y_t \stackrel{d}{=} X_t$ for every $t \in T$, then by (i), $X \stackrel{d}{=} Y$. So X_t , $t \in T$, must also be independent.

Suppose $(X_t)_{t\in T}$ is jointly centered Gaussian. Let H^0 be the linear space spanned by $(X_t)_{t\in T}$. By definition, every element in H^0 is a Gaussian random variable centered at 0. Assign the L^2 norm to H^0 : $||X|| = \mathbb{E}[X^2]^{1/2}$. Let H be the completion of H^0 . Then H is a Hilbert space. Every element of H is a Gaussian random variable. To see this, note that if $X_n \in H^0$ tends to $X \in H$, then $\phi_{X_n}(t) \to \phi_X(t)$, which implies that $\phi_X(t)$ has the form of $e^{-\frac{\sigma^2 t^2}{2}}$ for some $\sigma \ge 0$. We call H a Gaussian Hilbert space. From the lemma we know that, for $X, Y \in H$, X and Y are independent iff $\operatorname{cov}(X, Y) = 0$. We may construct a infinite dimensional separable Gaussian Hilbert space as follows. First, let $\zeta_n, n \in \mathbb{N}$, be i. i. d. N(0, 1) random variables. Let H^0 be the linear space spanned by (ζ_n) , and let H be the closure of H^0 with respect to the L^2 norm.

Proposition 11.2. Let ζ_1, \ldots, ζ_d be i.i.d. random variables with $d \ge 2$. Then the distribution of $(\zeta_1, \ldots, \zeta_d)$ is spherically symmetric iff they are jointly centered Gaussian.

Proof. If $\zeta_1, \ldots, \zeta_d \stackrel{d}{=} N(0, \sigma^2)$ with $\sigma > 0$, then each ζ_j has a density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

So the random vector $(\zeta_1, \ldots, \zeta_d)$ has a density function

$$f(\underline{x}) = \prod_{j=1}^{d} f(x_j) = \frac{1}{(\sqrt{2\pi}\sigma)^d} e^{-\frac{|x|^2}{2\sigma^2}},$$

which is spherically symmetric. So the distribution of $(\zeta_1, \ldots, \zeta_d)$ is spherically symmetric. If $\sigma = 0$, then $(\zeta_1, \ldots, \zeta_d)$ is a point mass at $(0, \ldots, 0)$.

Now suppose the distribution of $(\zeta_1, \ldots, \zeta_d)$ is spherically symmetric. Let ϕ be the characteristic function of any ζ_j , i.e., $\phi(t) = \mathbb{E}[e^{it\zeta_j}]$. Then by symmetry, $\phi(t) = \phi(-t) = \overline{\phi(t)}, t \in \mathbb{R}$. So ϕ takes real values on \mathbb{R} . For any $s, t \in \mathbb{R}$, by spherical symmetry, $s\zeta_1 + t\zeta_2 \stackrel{d}{=} \sqrt{s^2 + t^2}\zeta_1$. Thus,

$$\phi(s)\phi(t) = \mathbb{E}[e^{is\zeta_1 + it\zeta_2}] = \mathbb{E}[e^{i\sqrt{s^2 + t^2}\zeta_1}] = \phi(\sqrt{s^2 + t^2}).$$

Then we get $\phi(\sqrt{2}t) = \phi(t)^2$. This shows that ϕ is non-negative. By induction, $\phi(\sqrt{n}t) = \phi(t)^n$. Thus, for any $q = n/m \in \mathbb{Q}_+$, $\phi(\sqrt{q}t) = \phi(t)^q$. By continuity, we get $\phi(\sqrt{x}) = \phi(1)^x$ for any $x \ge 0$, i.e., $\phi(x) = \phi(1)^{x^2}$ for x > 0. Since $\phi(-t) = \phi(t)$, we have $\phi(x) = \phi(1)^{x^2}$ for any $x \in \mathbb{R}$. Since $|\phi| \le 1$, $\phi(1) = e^{-\frac{\sigma^2}{2}}$ for some $\sigma \ge 0$. So $\phi(t) = e^{-\frac{\sigma^2 t^2}{2}}$, which means that each ζ_j is a centered Gaussian random variable with variance σ^2 .

We omit Theorems 11.3 and 11.4.

Theorem 11.5, part 1 (Existence of Brownian motion). There exists a Gaussian process B with independent increments such that $B_0 = 0$ and for any $t \ge s$, $B_t - B_s \sim N(0, t - s)$.

Proof. There are several ways to prove the existence. One way is to show that the transition kernel

$$\mu_{s,t}(x,\cdot) = N(x,t-s), \quad t \ge s \ge 0,$$

is a consistent family, and let B be a Markov process with this transition kernel

We now give another proof. First, we construct an infinite dimensional separable Gaussian Hilbert space H using an independent sequence of Gaussian random variables. Then H is isomorphic to $L^2(\mathbb{R}_+, \lambda)$, where λ is the Lebesgue measure on \mathbb{R} . Let $f : L^2(\mathbb{R}_+, \lambda) \to H$ be an isomorphism. Define

$$B_t = f(\mathbf{1}_{[0,t]}) \in H.$$

Then B is a centered Guassian process, and from f(0) = 0 we get a.s. $B_0 = 0$. For t > s, $\operatorname{var}(B_t - B_s) = \|\mathbf{1}_{[0,t]} - \mathbf{1}_{[0,s]}\|^2 = t - s$, so $B_t - B_s \sim N(0, t - s)$. Finally, if $t_0 \leq t_1 \leq \cdots \leq t_n$, then $B_{t_1} - B_{t_0}, \ldots, B_{t_n} - B_{t_{n-1}}$ are f-images of $\mathbf{1}_{(t_0,t_1]}, \ldots, \mathbf{1}_{(t_{n-1},t_n]}$, which are orthogonal in $L^2(\mathbb{R}_+, \lambda)$. So $B_{t_1} - B_{t_0}, \ldots, B_{t_n} - B_{t_{n-1}}$ are orthogonal in H. Thus, they are independent. \Box

Theorem 11.5, part 2 (Continuity of Brownian motion). The B in the previous theorem has a continuous version, which is locally Hölder continuous of any exponent $a \in (0, 1/2)$.

Recall that B' is called a version of B if for every $t \ge 0$, a.s. $B'_t = B_t$. It is weaker than the condition that, a.s. for every $t \ge 0$, $B'_t = B_t$, in which case we say that B' and B are indistinguishable. If B has two continuous versions B' and B'', then B' and B'' are indistinguishable because first, for every $t \in \mathbb{Q}_+$, a.s. $B'_t = B''_t$; second a.s. for every $t \in \mathbb{Q}_+$, $B'_t = B''_t$ because \mathbb{Q}_+ is countable; and finally a.s. $B' \equiv B''$ by continuity of B' and B'', and the denseness of \mathbb{Q}_+ in \mathbb{R}_+ .

A function f is said to be Hölder continuous of exponent a if there is a constant C > 0such that for any x, y in the domain of f, $|f(x) - f(y)| \le C|x - y|^a$. If it called locally Hölder continuous of exponent a if for any x in the domain of f, there is a neighborhood U of xsuch that $f|_U$ is Hölder continuous of exponent a. To prove the theorem, we use the following theorem.

Theorem 2.23. Let X_t , $t \ge 0$, be a real valued process. Assume that there are a, b, C > 0 such that for any $s, t \in \mathbb{R}_+$,

$$\mathbb{E}[|X_t - X_s|^a] \le C|t - s|^{1+b}.$$

Then X has a continuous version, which is a.s. locally Hölder continuous with exponent c for any $c \in (0, b/a)$.

Proof. It suffices to consider $X|_{[0,1]}$. Fix $c \in (0, b/a)$. For $n \in \mathbb{N}$, let D_n be the set of binary points of level n in [0,1], i.e., $\frac{k}{2^n}$, $0 \leq k \leq 2^n$. We first consider the Hölder property of $X|_{D_n}$. Let

$$\zeta_n = \max\{|X_{\frac{k}{2^n}} - X_{\frac{k-1}{2^n}}| : 1 \le k \le 2^n\}.$$

Then we have

$$\mathbb{P}[\zeta_n > (\frac{1}{2^n})^c] \le \sum_{k=1}^{2^n} \mathbb{P}[|X_{\frac{k}{2^n}} - X_{\frac{k-1}{2^n}}|^a > (\frac{1}{2^n})^{ca}]$$
$$\le 2^{can} \sum_{k=1}^{2^n} \mathbb{E}[|X_{\frac{k}{2^n}} - X_{\frac{k-1}{2^n}}|^a] \le 2^{can} 2^n C 2^{-n(1+b)} = C 2^{n(ca-b)}.$$

Since ca < b,

$$\sum_{n=1}^{\infty} \mathbb{P}[\zeta_n > (\frac{1}{2^n})^c] \le \sum_{n=1}^{\infty} C 2^{n(ca-b)} < \infty.$$

By Borel-Cantelli lemma, a.s. there is a random N such that for any n > N, $\zeta_n \leq (\frac{1}{2^n})^c$. So there a.s. exists a random C > 0 such that for any $n \in \mathbb{N}$, and $t, s \in D_n$ with $|t - s| = \frac{1}{2^n}$, $|X_t - X_s| \leq C|t - s|^c$. Let E denote the event that the inequality holds, which has probability 1. Let $D = \bigcup_n D_n$. Then D is dense in [0, 1].

We now show that $X|_D$ is Hölder continuous with exponent c on the event E. Suppose E occurs. Let $x < y \in D$. Let n_0 be the smallest $n \in \mathbb{N}$ such that $D_n \cap [x, y] \neq \emptyset$. Let $z_0 \in D_{n_0} \cap [x, y]$. Then $|x - z_0|, |y - z_0| \leq \frac{1}{2^{n_0}}$. We first estimate $|X_x - X_{z_0}|$. If $x = z_0$, it is trivial. Suppose $x < z_0$. Then $x \in D_m$ for some $m > n_0$. Then we can find $n_0 < n_1 < \cdots < n_k = m$

and $x = x_k < x_{k-1} < \cdots < x_0 = z_0$ such that $x_k \in D_{n_k}$, $0 \le k \le n$ and $|x_k - x_{k-1}| = 2^{-n_k}$. Then we get

$$|X_x - X_{z_0}| \le \sum_{j=1}^k |X_{x_j} - X_{x_{j-1}}| \le C \sum_{j=1}^k C(2^{-n_j})^c \le C 2^{-cn_1} \sum_{s=0}^\infty 2^{-sc} = \frac{C 2^{-cn_1}}{1 - 2^{-c}}.$$

On the other hand, $|x - z_0| \ge |x_1 - x_0| = 2^{-n_1}$. So $|X_x - X_{z_0}| \le \frac{C}{1 - 2^{-c}} |x - z_0|^c \le \frac{C}{1 - 2^{-c}} |x - y|^c$. Symmetrically, $|X_y - X_{z_0}| \le \frac{C}{1 - 2^{-c}} |x - y|^c$. Thus,

$$|X_x - X_y| \le |X_x - X_{z_0}| + |X_y - X_{z_0}| \le \frac{2C}{1 - 2^{-c}} |x - y|^c$$

Since $X|_D$ is Hölder continuous on the event E, it extends to a continuous process Y on [0, 1]by the denseness of D in [0, 1]. We now show that Y is a version of X, i.e., for any $t \in [0, 1]$, a.s. $X_t = Y_t$. Fix $t \in [0, 1]$. Let $t_n \in D_n$, $n \in \mathbb{N}$, be such that $t_n \to t$. Then a.s. $X_{t_n} \to Y_t$. Since $\mathbb{E}[|X_{t_n} - X_t|^a] \leq C|t_n - t|^{1+b}$, we have $X_{t_n} \to X_t$ in L^a , and so $X_{t_n} \xrightarrow{\mathrm{P}} X_t$. So we must have a.s. $X_t = Y_t$.

Proof of Theorem 11.5, part 2. For any t > s, since $X_t - X_s \sim N(0, t-s)$, $(X_t - X_s)/\sqrt{t-s} \sim N(0, 1)$. For a > 2, we have

$$\mathbb{E}[|X_t - X_s|^a] = |t - s|^{a/2} \int_{\mathbb{R}} |x|^a \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = C|t - s|^{a/2}.$$

for some constant C depending on a. Let b = a/2 - 1. By Theorem 2.23, X has a continuous version, which is Hölder continuous with any exponent in $(0, \frac{a/2-1}{a})$. By letting $a \to \infty$, we find that the continuous version of X is Hölder continuous with any exponent in (0, 1/2).

The continuous centered Gaussian process given by Theorem 11.5 is called a (standard) Brownian motion (BM for short) or a Wiener process. For $x \in \mathbb{R}$, x + B is called a Brownian motion started from x. A Brownian motion in \mathbb{R}^d is a process $B_t = (B_t^1, \ldots, B_t^d)$ such that B_t^j , $1 \leq j \leq d$, are independent 1d Brownian motions. For $\underline{x} \in \mathbb{R}^d$, $\underline{x} + B$ is called a Brownian motion in \mathbb{R}^d started from \underline{x} .

Recall that the distribution of a centered Gaussian process X is determined by its covariance function, i.e., $cov(X_t, X_s)$ for $t, s \in T$. Let $t, s \ge 0$. If $t \ge s$, then

$$\operatorname{cov}(B_t, B_s) = \operatorname{cov}(B_t - B_s, B_s) + \operatorname{var}(B_s) = 0 + s = s = t \wedge s.$$

Symmetrically, if $s \ge t$, we also have $cov(B_t, B_s) = t \land s$. For $c \in \mathbb{R}$,

$$\operatorname{cov}(cB_t, cB_s) = c^2 \operatorname{cov}(B_t, B_s) = c^2(t \wedge s) = (c^2 t) \wedge (c^2 s) = \operatorname{cov}(B_{c^2 t}, B_{c^2 s}), \quad t, s \ge 0.$$

So $cB \stackrel{d}{=} B_{c^2t}$, i.e., scaling the space by a factor c is equivalent to scaling the time by a factor c^2 . This is called the Brownian scaling. We call $x + B_{c^2t}$ a Brownian motion started from x with speed c^2 . Taking c = -1, we find the symmetry of BM: $-B \stackrel{d}{=} B$. For any fixed t_0 , consider the process $B_{t_0+t} - B_{t_0}$, $t \ge 0$. Since for $t, s \ge 0$,

$$cov(B_{t_0+t} - B_{t_0}, B_{t_0+s} - B_{t_0}) = cov(B_{t_0+t}, B_{t_0+s}) - cov(B_{t_0}, B_{t_0+s}) - cov(B_{t_0+t}, B_{t_0}) + var(B_{t_0})$$
$$= (t_0 + t) \land (t_0 + s) - t_0 - t_0 + t_0 = t \land s = cov(B_t, B_s),$$

 $(B_{t_0+t} - B_{t_0})_{t \ge 0} \stackrel{\mathrm{d}}{=} B.$

We may use a similar idea to construct Brownian sheet, which is a Gaussian process with two time variables: $X(t_1, t_2), t_1, t_2 \ge 0$. For the construction, consider a isomorphism f : $L^2(\mathbb{R}^2_+, \lambda^2) \to H$, where H is a Gaussian Hilbert space. The Brownian sheet is defined by $X(t_1, t_2) = f(\mathbf{1}_{[0,t_1] \times [0,t_2]}).$

Exercise. Find the covariance function for Brownian sheet.

A Brownian motion is defined on \mathbb{R}_+ . We may extend it to \mathbb{R} as follows. Let B^+ and B^- be two independent BM on \mathbb{R}_+ . Define $B_t^{\mathbb{R}} = B_t^+$ if $t \ge 0$, $B_t^{\mathbb{R}} = B_{-t}^-$ if $t \le 0$. This process is not stationary because $B_0^{\mathbb{R}}$ is constant 0 but other $B_t^{\mathbb{R}}$ is not. But it has the following nice properties.

Exercise. Prove that for any fixed $t_0 \in \mathbb{R}$, $B_{t_0+t}^{\mathbb{R}} - B_{t_0}^{\mathbb{R}}$, $t \in \mathbb{R}$, has the same distribution as $B^{\mathbb{R}}$.

Let \mathcal{F}^0 be the natural filtration generated by B. This means that for every $t \ge 0$, \mathcal{F}^0_t is the σ -algebra generated by B_s , $0 \le s \le t$. Let \mathcal{N} denote the family of subsets N of Ω such that there exists some $A \in \mathcal{F}$ with $\mathbb{P}[A] = 0$ and $N \subset A$. We let \mathcal{F} denote the completion of \mathcal{F}^0 , i.e., for every $t \ge 0$, \mathcal{F}_t is the σ -algebra generated by \mathcal{F}^0_t and \mathcal{N} .

Fix $t_0 \ge 0$. Since for every $t \ge 0$ and $s \in [0, t_0]$, $B_{t_0+t} - B_{t_0}$ is independent of B_s , we see that the process $B_{t_0+t} - B_{t_0}$, $t \ge 0$, is independent of $\mathcal{F}_{t_0}^0$, and so is also independent of \mathcal{F}_{t_0} .

Proposition . \mathcal{F} is right-continuous.

Proof. Fix $t_0 \ge 0$ and let $t_1 > t_2 > \cdots \rightarrow t_0$. For $n \in \mathbb{N}$, let \mathcal{G}_n be the σ -algebra generated by $B_t - B_{t_{n+1}}, t \in [t_{n+1}, t_n]$. By independent increment property of $B, \mathcal{G}_n, n \in \mathbb{N}$, are independent. We also note that

$$\mathcal{F}_{t_n}^0 = \sigma(\mathcal{F}_{t_0}^0, \mathcal{G}_n, \mathcal{G}_{n+1}, \dots), \quad n \in \mathbb{N},$$

since if $t \in (t_0, t_n)$, $B_t - B_{t_0}$ can be expressed as an infinite sum of random variables, each of which is \mathcal{G}_k -measurable for some $k \geq n$. By Corollary 6.25, we then get a.s. $\bigcap_n \mathcal{F}_{t_n}^0 = \mathcal{F}_{t_0}^0$, which implies that $\bigcap_n \mathcal{F}_{t_n} = \mathcal{F}_{t_0}$.

Proposition. B is a martingale and time-homogeneous and space-homogeneous Markov process with transition kernel $\mu_{s,t}(x, A) = N(x, t - s)(A)$ w.r.t. \mathcal{F}^0 or \mathcal{F} .

Proof. We first work on \mathcal{F}^0 . To check the martingale property, fix $t_0, t \geq 0$. Since $N(0,t) \sim B_{t_0+t} - B_{t_0} \perp \mathcal{F}_{t_0}^0$, we have $\mathbb{E}[B_{t_0+t} - B_{t_0}] = \mathbb{E}[B_{t_0+t} - B_{t_0}] = 0$. So *B* is an \mathcal{F}^0 -martingale. The space-homogeneous Markov property of *B* follows from Proposition 7.5 and the fact that *B* has \mathcal{F}^0 -independent increments, i.e., $B_{t_0+t} - B_{t_0} \perp \mathcal{F}_{t_0}^0$ for any $t_0, t \geq 0$. The proposition also tells us that the transition kernels are given by $\mu_{s,t}(x,A) = \mathbb{P}[X_t - X_s \in A - x] = N(0, t - s)(A - x) = N(x, t - s)(A)$. Since $\mu_{s,t}$ depends only on t - s, *B* is time-homogeneous. The above argument also works for \mathcal{F} .

We may use the Brownian motion B to define other continuous Gaussian processes. Let

$$X_t = B_t - tB_1, \quad 0 \le t \le 1.$$

Then $X_0 = X_1 = 0$. Such X is called a Brownian bridge (from 0 to 0 with time span 1). It is a Guassian process with covariance function

$$cov(X_t, X_s) = cov(B_t - tB_1, B_s - sB_1)$$

= cov(B_t, B_s) - t cov(B_1, B_s) - s cov(B_1, B_t) + st cov(B_1, B_1)
= t \land s - ts - ts + ts = t \land s - ts = t(1 - s) \land s(1 - t).

We then immediately see that $(X_{1-t}) \stackrel{d}{=} X$ because

$$\operatorname{cov}(X_{1-t}, X_{1-s}) = ((1-t)s) \wedge ((1-s)t) = \operatorname{cov}(X_t, X_s).$$

Lemma 11.6. If B is a Brownian motion, then $tB_{1/t}$ is also a Brownian motion, and $(1 - t)B_{t/(1-t)}$ and $tB_{(1-t)/t}$ are Brownian bridges. If X is a Brownian bridge, then $(1+t)X_{t/(1+t)}$ and $(1+t)X_{1/(1+t)}$ are Brownian motions.

Proof. All processes are centered Gaussian processes, whose distributions are determined by their covariance functions. To prove that the process $tB_{1/t}$ has the same distribution as B, we note that

$$cov(tB_{1/t}, sB_{1/s}) = ts cov(B_{1/t}, B_{1/s}) = ts((1/t) \land (1/s)) = s \land t.$$

Exercise. Prove other statements in Lemma 11.6.

Lemma. Let H be a Gaussian Hilbert space. Let $\zeta \in H$. Let \mathcal{F}_0 be the σ -algebra generated by a set $S \subset H$. Let H_0 be the closed linear space spanned by S. Let ζ_0 be the orthogonal projection of ζ onto H_0 , and let $\sigma = \operatorname{dist}(\zeta, H_0) = \|\zeta - \zeta_0\|_{L^2}$. Then the conditional law of ζ given \mathcal{F} , i.e., $\operatorname{Law}(\zeta|\mathcal{F}) = N(\zeta_0, \sigma^2)$.

Proof. Since ζ_0 belongs to the closed linear space spanned by S, which generates \mathcal{F}_0 , we have $\zeta_0 \in \mathcal{F}$. Since $\zeta - \zeta_0 \perp H_0$, we have $\zeta - \zeta_0 \perp \mathcal{F}$. Since $\zeta - \zeta_0 \in H$ and $\sigma = \|\zeta - \zeta_0\|_{L^2}$, $\operatorname{Law}(\zeta - \zeta_0) = N(0, \sigma^2)$. Since $\zeta - \zeta_0 \perp \mathcal{F}$, the conditional law $\operatorname{Law}(\zeta - \zeta_0|\mathcal{F})$ is the same as the unconditional law, i.e., $N(0, \sigma^2)$. Since $\zeta_0 \in \mathcal{F}$, $\operatorname{Law}(\zeta|\mathcal{F}) = \zeta_0 + N(0, \sigma^2) = N(\zeta_0, \sigma^2)$.

Proposition 11.7 (Gaussian Markov Processes). Let X_t , $t \in T$, be a centered Gaussian process. Define $r_{s,t} = cov(X_s, X_t)$, $s, t \in T$. Then X is Markov iff for any $s \leq t \leq u$, if $r_{t,t} \neq 0$, then $r_{s,u}r_{t,t} = r_{s,t}r_{t,u}$; if $r_{t,t} \neq 0$, then $r_{s,u} = 0$.

Proof. Fix $t \leq u \in T$. We need to show that $\operatorname{Law}(X_u|\mathcal{F}_t) = \operatorname{Law}(X_u|X_t)$. Let H_t be the closed linear space spanned by X_s , $s \leq t$. Let L_t be the linear space spanned by X_t . By the previous lemma, it suffices to show that the orthogonal projection of X_u to H_t agrees with the orthogonal projection of X_u to L_t . If $r_{t,t} = 0$, then $L_t = \{0\}$, and we need that $X_u \perp H_t$, i.e., $r_{s,u} = 0$ for any $s \leq t$. If $r_{t,t} \neq 0$, then the projection of X_u to L_t can be described as aX_t , where $a = \frac{\operatorname{cov}(X_t, X_u)}{\operatorname{cov}(X_t, X_t)} = \frac{r_{t,u}}{r_{t,t}}$. So we have $X'_u := X_u - aX_t \perp X_s$ for any $s \leq t$, which gives

$$0 = \operatorname{cov}(X'_u, X_s) = \operatorname{cov}(X_u - aX_t, X_s) = r_{s,u} - ar_{s,t} = r_{s,u} - r_{t,u}r_{s,t}/r_{t,t},$$

if $r_{t,t} \neq 0$. The above argument can be reversed. So we get the equivalence.

We note that Brownian Bridge is Markov because for $s \le t \le u$, $r_{s,u} = s - su$, $r_{t,t} = t(1-t)$, $r_{s,t} = s(1-t)$, $r_{t,u} = t(1-u)$.

For a Brownian motion B, we define a centered Gaussian process

$$Y_t = e^{-t}B(\frac{1}{2}e^{2t}), \quad t \in \mathbb{R}.$$

It is called a stationary Ornstein-Uhlenbeck process. It has covariance

$$\operatorname{cov}(Y_t, Y_s) = e^{-t}e^{-s}\frac{1}{2}e^{2t\wedge 2s} = \frac{1}{2}e^{-|t-s|}.$$

Since for $s \leq t \leq u$, $\frac{1}{2}e^{-|t-s|} \cdot \frac{1}{2}e^{-|u-t|} = \frac{1}{2}e^{-|u-s|} \cdot \frac{1}{2}e^{-|t-t|}$, it is a Gaussian Markov process. From the covariance function, we find that Y is stationary and time-reversible, i.e., for any $t_0 \in \mathbb{R}$, $(Y_{t_0+t}) \stackrel{d}{=} Y$ and $(Y_{-t}) \stackrel{d}{=} Y$.

Exercise. Find the Markov transition kernels of a Brownian bridge and a stationary Ornstein-Uhlenbeck process.

There is another important Gaussian process, called fractional Brownian motion (fBM for short). A fBM with Hurst index $H \in (0, 1)$ is a centered Gaussian process B^H indexed by \mathbb{R} with the covariance function

$$\operatorname{cov}(B_t^H, B_s^H) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t - s|^{2H}), \quad t, s \in \mathbb{R}.$$

It may be constructed using an isomorphism from $L^2(\mathbb{R},\lambda)$ to a Gaussian Hilbert space.

Exercise. Prove the following. (i) $B^{1/2}$ agrees with BM on \mathbb{R} . (ii) For any a > 0, $(B_{at}^{H}) \stackrel{d}{=} |a|^{H}B^{H}$. (iii) For any fixed $t_{0} \in \mathbb{R}$, $(B_{t_{0}+t}^{H} - B_{t_{0}}^{H})_{t \in \mathbb{R}} \stackrel{d}{=} B^{H}$. (iv) B^{H} has a continuous version, which is locally Hölder continuous with any exponent less than H.

We omit Lemma 11.8.

We will study sample path properties of Brownian motion.

Theorem 11.9 (quadratic variation). Let B be a Brownian motion. Fix t > 0. Let $\Delta = \{0 = t_0 < \cdots < t_n = t\}$ be a partition of [0, t]. Let $h_{\Delta} := \max\{t_k - t_{k-1} : 1 \le k \le n\}$ be the mesh size of Δ . Let

$$\zeta_{\Delta} = \sum_{k=1}^{n} (B_{t_k} - B_{t_{k-1}})^2.$$

Then as $h_{\Delta} \to 0$, $\zeta_{\Delta} \to t$ in L^2 . Moreover, if $(\Delta_n)_{n \in \mathbb{N}}$ is a nested sequence of partitions of [0, t], i.e., $\Delta_1 \subset \Delta_2 \subset \cdots$, and $h_{\Delta_n} \to 0$, then a.s. $\zeta_{\Delta_n} \to t$.

Proof. Since $B_{t_k} - B_{t_{k-1}}$, $1 \le k \le n$, are independent, and $B_{t_k} - B_{t_{k-1}} \sim N(0, t_k - t_{k-1}) \sim (t_k - t_{k-1})^{1/2} B_1$, we have

$$\mathbb{E}[\zeta_{\Delta}] = \sum_{k=1}^{n} \mathbb{E}[(B_{t_{k}} - B_{t_{k-1}})^{2}] = \sum_{k=1}^{n} (t_{k} - t_{k-1}) = t_{n} - t_{0} = t;$$
$$\|\zeta_{\Delta} - t\|_{L^{2}}^{2} = \mathbb{E}[(\zeta_{\Delta} - t)^{2}] = \operatorname{var}(\zeta_{\Delta}) = \sum_{k=1}^{n} \operatorname{var}((B_{t_{k}} - B_{t_{k-1}})^{2})$$
$$= \sum_{k=1}^{n} (t_{k} - t_{k-1})^{2} \operatorname{var}(B_{1}^{2}) \le t \operatorname{var}(B_{1}^{2}) h_{\Delta}.$$

Thus, as $h_{\Delta} \to 0$, $\zeta_{\Delta} \to t$ in L^2 .

Now suppose $\Delta_1 \subset \Delta_2 \subset \cdots$, and $h_{\Delta_n} \to 0$. By inserting more partitions, we may assume that Δ_{n+1} contains exactly one more point than Δ_n . We now show that (ζ_{Δ_n}) is a reverse martingale. The filtration is $(\mathcal{F}_{-n})_{n\in\mathbb{N}}$, where \mathcal{F}_{-n} is the σ -algebra generated by ζ_k , $k \geq n$. To prove the martingale property, we need to show that, for any $n \in \mathbb{N}$,

 $\mathbb{E}[\zeta_{\Delta_{n-1}}-\zeta_{\Delta_n}|\zeta_{\Delta_n},\zeta_{\Delta_{n+1}},\dots]=0.$

Suppose $\Delta_n \setminus \Delta_{n-1} = \{b\}$, and the partition interval of Δ_{n-1} that contains b is [a, c]. Then

$$\zeta_{\Delta_n} - \zeta_{\Delta_{n+1}} = (B_c - B_a)^2 - ((B_c - B_b)^2 + (B_b - B_a)^2) = 2(B_c - B_b)(B_b - B_a).$$

We now introduce another probability space $\Sigma = \{1, -1\}$ with counting measure. Consider the product space $\Omega' = \Sigma \times \Omega$. On the product space, we have a random variable $\theta(\sigma, \omega) = \sigma$, which is independent of Ω , and has distribution $\mathbb{P}[\theta = \pm 1] = \frac{1}{2}$. Define on Ω' a new process $B'_s = B_s$, if $s \leq b$; $B'_s = B_b + \theta(B_s - B_b)$ if $s \geq b$. Since $B_{b+s} - B_b$, $s \geq 0$, is a BM independent of B_s , $s \leq b$, by the symmetry of BM and the independence between θ and B, $\theta \cdot (B_{b+s} - B_b)$ is also a BM independent of B_s , $s \leq b$. Since B (resp. B') can be recovered from B_s , $s \leq b$ and $B_{b+s} - B_b$, $s \geq 0$ (resp. $\theta \cdot (B_{b+s} - B_b)$, $s \geq 0$), we see that B' has the same distribution as B,

and is also a BM. We define ζ'_{Δ_k} for B' in the same way as ζ_{Δ_k} for B. Then (ζ'_{Δ_k}) has the same distribution as (ζ_{Δ_k}) as two processes. Now it suffices to show that

$$\mathbb{E}[\zeta'_{\Delta_{n-1}} - \zeta'_{\Delta_n} | \zeta'_{\Delta_n}, \zeta'_{\Delta_{n+1}}, \dots] = 0.$$

We observe that $\zeta'_{\Delta_k} = \zeta_{\Delta_k}$ for $k \ge n$ because each partition interval of Δ_k lies either in [0, b] or in [b, t]. But $\zeta'_{\Delta_n} - \zeta'_{\Delta_{n-1}} = 2(B'_c - B'_b)(B'_b - B'_a) = \theta \cdot (\zeta_{\Delta_n} - \zeta_{\Delta_{n-1}})$. So the equality becomes

$$\mathbb{E}[\theta \cdot (\zeta_{\Delta_n} - \zeta_{\Delta_{n-1}}) | \zeta_{\Delta_n}, \zeta_{\Delta_{n+1}}, \dots] = 0$$

which follows from the independence of θ and ζ_k 's.

Recall that for a function f defined on [s, t], the variation of f is defined to be

$$\sup \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|,$$

where the supremum is over all partitions $\{s = t_0 < t_1 < \cdots < t_n = t\}$ of [s, t]. If f is continuous and has bounded variation V on [s, t], and Δ_n , $n \in \mathbb{N}$, is a nested sequence of partitions of [s, t]with $h_{\Delta_n} \to 0$, then for any partition of [s, t],

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|^2 \le \sup_{x,y \in [s,t], |x-y \le h_{\Delta_n}} |f(x) - f(y)| V \to 0, \quad n \to \infty.$$

If f is Brownian motion, this convergence a.s. does not hold. So we have the corollary:

Corollary 11.10. Brownian motion a.s. has unbounded variation on every interval [s, t] with s < t.

Suppose we have a filtration $(\mathcal{F}_t)_{t\geq 0}$. We way that $B_t, t\geq 0$, is an \mathcal{F} -Brownian motion if

- (i) B is \mathcal{F} -adapted;
- (ii) for any $s \ge 0$, $B_{s+t} B_s$, $t \ge 0$, is a Brownian motion, and is independent of \mathcal{F}_s .

For example, if B is a Brownian motion, and \mathcal{F}^0 is the natural filtration generated by B, and \mathcal{F} is the completion of \mathcal{F}^0 , then B is an Brownian motion w.r.t. \mathcal{F}^0 or \mathcal{F} . Here we use the property that B has time-homogeneous independent increments. If B is an \mathcal{F} -Brownian motion, and \mathcal{F}' is the completion of \mathcal{F} , then B is also an \mathcal{F}' -Brownian motion. This holds because the independence property does not care about null sets. If \mathcal{F}^+ is the right-continuous augmentation of \mathcal{F} , then B is also an \mathcal{F}^+ -Brownian motion. To see this, fix $s \geq 0$. Then for any $\delta > 0$, $B_{s+\delta+t} - B_{s+\delta}$ is independent of $\mathcal{F}_{s+\delta}$, which contains \mathcal{F}^+_s . So $B_{s+\delta+t} - B_{s+\delta}$, $t \geq 0$, is independent of \mathcal{F}^+_s . Letting $\delta \downarrow 0$, we see that $B_{s+t} - B_s$, $t \geq 0$, is independent of \mathcal{F}^+_s .

If B is an \mathcal{F} -Brownian motion, then it is a time-homogeneous \mathcal{F} -Markov process because it has \mathcal{F} -independent increments. By Proposition 7.9 (strong Markov property), it τ is a finite stopping time taking countably many values, then conditional on \mathcal{F}_{τ} , $B_{\tau+t}$, ≥ 0 , is a Brownian motion started from B_{τ} , which implies that $B_{\tau+t} - B_{\tau}$, $t \geq 0$, is a Brownian motion independent of \mathcal{F}_{τ} . We now improve this result without assuming that τ takes finitely many values.

Theorem 11.11 (Strong Markov Property). Let B be an \mathcal{F} -Brownian motion. Let τ be a finite weak \mathcal{F} -stopping time. Then $B_{\tau+t} - B_{\tau}$, $t \geq 0$, is a Brownian motion independent of \mathcal{F}_{τ}^+ .

Proof. By Lemma 6.4, we may take a decreasing sequence of finite \mathcal{F} -stopping times τ_n such that each τ_n takes values in $\frac{\mathbb{Z}_+}{2^n}$ and $\tau_n \downarrow \tau$. Then by Lemma 6.3, $\mathcal{F}_{\tau}^+ = \bigcap_n \mathcal{F}_{\tau_n}$.

Since B is time-homogeneous and space-homogeneous Markov, and τ_n takes countably many values, by Proposition 7.9 (Strong Markov Property), $B_{\tau_n+t} - B_{\tau_n}$, $t \ge 0$, is a Brownian motion independent of \mathcal{F}_{τ_n} , and so is also independent of \mathcal{F}_{τ}^+ . Letting $\tau_n \to \tau$, we conclude that $B_{\tau+t} - B_{\tau}$, $t \ge 0$, is a Brownian motion independent of \mathcal{F}_{τ}^+ .

Omit Corollary 11.12.

Proposition 11.13. Let B be a Brownian motion, and define $M_t = \sup_{s \le t} B_s$, $t \ge 0$. Then for any $t \ge 0$,

$$M_t \stackrel{\mathrm{d}}{=} M_t - B_t \stackrel{\mathrm{d}}{=} |B_t|.$$

Here we remark that as processes, M and |B| do not have the same distribution because M is increasing but |B| is not.

Lemma 11.14 (reflection principle). For any stopping time τ , a Brownian motion B has the same distribution as the process

$$B_t = B_{t\wedge\tau} - (B_t - B_{t\wedge\tau}), \quad t \ge 0.$$

Note that $\widetilde{B}_t = B_t$ if $t \leq \tau$; $\widetilde{B}_{\tau+t} - \widetilde{B}_{\tau} = -(B_{\tau+t} - B_{\tau})$ for $t \geq 0$. This means that the increment of \widetilde{B} after τ is a reflection of the increment of B after τ .

Proof. Fix a > 0. It suffices to show that \tilde{B}_t , $0 \le t \le a$, has the same distribution as B_t , $0 \le t \le a$. If we define \hat{B}_t using $\tau \land a$ instead of τ , then $\hat{B}_t = \tilde{B}_t$, $0 \le t \le a$. Now $\tau \land a$ is a bounded stopping time. So we may assume that τ is a bounded stopping time. The rest of the argument is similar to the proof of Theorem 11.9 except that we now use the bounded stopping time τ in place of the deterministic time b, and use the strong Markov property of B, and instead of multiplying the increment by an independent random variable, we now simply multiply it by -1.

Proof of Proposition 11.13. Since $M_0 = B_0 = 0$, the statement is trivial if t = 0. Suppose t > 0. We are going to find the joint distribution of (M_t, B_t) . Note that (M_t, B_t) takes values in $\{(x, y) \in \mathbb{R}^2 : x \ge y \lor 0\}$. It suffices to know $\mathbb{P}[M_t \ge x, B_t \le y]$ for any pair (x, y) such that $x \ge y \lor 0$.

Fix $x, y \in \mathbb{R}$ such that $x \geq y \vee 0$. Let $\tau = \inf\{s : B_s = x\}$. Then τ is a stopping time, and $M_t \geq x$ iff $\tau \leq t$. Define \widetilde{B} as in Lemma 11.14. If $M_t \geq x$ and $B_t \leq y$, then $\widetilde{B}_t = 2x - B_t \geq 2x - y$. On the other hand, if $\widetilde{B}_t \geq 2x - y \geq x$, then we must have $\tau \leq t$ because if $\tau > t$, then $M_t \geq B_t = \widetilde{B}_t \geq x$, a contradiction. Thus, $B_t = 2x - \widetilde{B}_t \leq y$. So we have $\mathbb{P}[M_t \geq x, B_t \leq y] = \mathbb{P}[\widetilde{B}_t \geq 2x - y] = \int_{2x-y}^{\infty} \phi_t(s) ds$, where

$$\phi_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$$

is the density function of $\widetilde{B}_t \sim N(0,t)$. We may rewrite $\mathbb{P}[M_t \ge x, B_t \le y]$ as

$$\int_{2x-y}^{\infty} \phi_t(s)ds = \int_{-\infty}^{y} \phi_t(2x-b)db = \int_{-\infty}^{y} \int_{x}^{\infty} -2\phi_t'(2a-b)dadb$$

So (M_t, B_t) has a joint density in \mathbb{R}^2 , which is $\mathbf{1}_{\{x \ge y \lor 0\}} - 2\phi'_t(2x - y)$. By changing variables, we know that $(M_t, M_t - B_t)$ has density $\mathbf{1}_{\{x, y \ge 0\}} - 2\phi'_t(x + y)$. Thus, both M_t and $M_t - B_t$ have the same density, which is 0 on $(-\infty, 0)$, and equals $\int_0^\infty -2\phi'_t(x + y)dy = 2\phi_t(x)$ at x > 0. This is the density function for $|B_t|$.

Omit Lemma 11.15, Theorem 11.16, Theorem 11.17.

Theorem 11.18 (laws of iterated logarithm). For a Brownian motion B, we have a.s.

$$\limsup_{t \to 0^+} \frac{B_t}{\sqrt{2t \log \log(1/t)}} = \limsup_{t \to \infty} \frac{B_t}{\sqrt{2t \log \log(t)}} = 1.$$

Here $\log \log(t) = \log(\log(t))$, which is positive only when t > e.

Lemma . For any x > 0,

$$\frac{1}{x}e^{-\frac{x^2}{2}} > \int_x^\infty e^{-\frac{u^2}{2}} du > \frac{x}{x^2 + 1}e^{-\frac{x^2}{2}}.$$

Proof. For the first inequality, note that

$$\int_{x}^{\infty} e^{-\frac{u^{2}}{2}} du < \int_{x}^{\infty} \frac{u}{x} e^{-\frac{u^{2}}{2}} du = \frac{1}{x} e^{-\frac{x^{2}}{2}}.$$

For the second inequality, define

$$f(x) = xe^{-x^2/2} - (x^2 + 1)\int_x^\infty e^{-u^2/2} du.$$

Observe that $\lim_{x\to\infty} f(x) = 0$ and for x > 0,

$$f'(x) = e^{-x^2/2} - x^2 e^{-x^2/2} - 2x \int_x^\infty e^{-u^2/2} du + (x^2 + 1)e^{-x^2/2} = -2x (\int_x^\infty e^{-u^2/2} du - \frac{e^{-x^2/2}}{x}) > 0,$$

where we used the first inequality at the last step. So f < 0 on $[0, \infty)$, and we get the second inequality.

Proof. Since $tB_{1/t}$ has the same law as B, the two equalities are equivalent to each other. So it suffices to prove the case $\limsup_{t\to\infty}$. Let $M_t = \sup_{s\leq t} B_s$ be the maximum process. By the above lemma, for any x > 0,

$$\frac{1}{x}\frac{e^{-x^2/2}}{\sqrt{2\pi}} > \mathbb{P}[B_1 > x] > \frac{x}{x^2 + 1}\frac{e^{-x^2/2}}{\sqrt{2\pi}}$$

Since $B_t \stackrel{d}{=} \sqrt{t}B_1$, and $M_t \stackrel{d}{=} |B_t|$, we have

$$\mathbb{P}[M_t > ut^{1/2}] = 2\mathbb{P}[B_t > ut^{1/2}] \le \frac{2e^{-u^2/2}}{\sqrt{2\pi}u}.$$

Let $h(t) = \sqrt{2t \log \log(t)}$. Fix $R, \rho > 1$. We then estimate

$$\mathbb{P}[M_{\rho^n} > Rh(\rho^n)] = \mathbb{P}[M_{\rho^n} > \sqrt{\rho^n} R\sqrt{2\log(n\log\rho)}] \le \frac{2(n\log\rho)^{-R^2}}{\sqrt{2\pi}R\sqrt{2\log(n\log\rho)}}, \quad n \ge 2.$$

Since R > 1, $\sum_{n=2}^{\infty} n^{-R^2} < \infty$. By Borel-Cantelli Lemma, the probability that there exist infinitely many n such that $M_{\rho^n} > Rh(\rho^n)$ is 0, i.e., a.s. there exist N such that for n > N, $M_{\rho^n} \leq Rh(\rho^n)$. So a.s. $\limsup M_{\rho^n}/h(\rho^n) \leq R$. Since this holds for any R > 1, we get a.s. $\limsup M_{\rho^n}/h(\rho^n) \leq 1$. Since $h(\rho^n)/h(\rho^{n-1}) \to \sqrt{\rho}$, we get a.s. $\limsup M_{\rho^n}/h(\rho^{n-1}) \leq \sqrt{\rho}$. Since for any t > 1 there exist n such that $\rho^{n-1} \leq t \leq \rho^n$, we get $M_t/h(t) \leq M_{\rho^n}/h(\rho^{n-1})$. So a.s. $\limsup_{t\to\infty} B_t/h(t) \leq \limsup_{t\to\infty} M_t/h_t \leq \rho$. Since this holds for any $\rho > 1$, we have a.s. $\limsup_{t\to\infty} B_t/h(t) \leq 1$.

To prove the reverse inequality, let R > 1 and $c = \sqrt{(R-1)/R} < 1$. Since $B_{R^n} - B_{R^{n-1}} \sim N(0, R^{n-1}(R-1))$, we have

$$\mathbb{P}[B_{R^n} - B_{R^{n-1}} \ge ch(R^n)] = \mathbb{P}[\sqrt{R^{n-1}(R-1)}B_1 \ge \sqrt{(R-1)/R}\sqrt{2R^n \log\log(R^n)}]$$
$$= \mathbb{P}[B_1 \ge \sqrt{2\log\log(R^n)}] \gtrsim \frac{1}{\log(R^n)\sqrt{\log\log(R^n)}}.$$

Since the sum of the RHS over n is infinity, and $B_{R^n} - B_{R^{n-1}}$, $n \ge 1$, are independent, By Borel-Cantelli Lemma, the event that $B_{R^n} - B_{R^{n-1}} \ge ch(R^n)$ will happen infinitely often. This implies that a.s.

$$\limsup(B_t - B_{t/R})/h_t \ge \sqrt{(R-1)/R}.$$

From the upper bound, we have $\limsup_{t\to\infty} (-B_{t/R}/h_t) \leq R^{-1/2}$. Then we have

$$\limsup B_t / h_t \ge \sqrt{(R-1)/R} - R^{-1/2}.$$

Letting $R \to \infty$, we then get $\limsup B_t/h_t \ge 1$.

Corollary. Almost surely, $\limsup_{t\to\infty} B_t = \infty$, $\liminf_{t\to\infty} B_t = -\infty$, and for any $x \in \mathbb{R}$, the level set $\{t \ge 0 : B_t = x\}$ is unbounded.

Proof. That a.s. $\limsup_{t\to\infty} B_t = \infty$ follows from a.s. $\limsup_{t\to\infty} \frac{B_t}{\sqrt{2t \log \log(t)}} = 1$. Since $-B \sim B$, we have a.s. $\limsup_{t\to\infty} (-B_t) = \infty$, which implies that $\liminf_{t\to\infty} B_t = -\infty$. Then the two equality both hold almost surely. When they both hold, for any $x \in \mathbb{R}$, $\{t \ge 0 : B_t = x\}$ is unbounded by intermediate value theorem for continuous functions.

For example, if we define τ to be the first time that B_t visits some $x \in \mathbb{R}$. Then a.s. τ is finite. If I = [a, b] with a < 0 < b, and τ is the first time that B exits I, then τ is a finite stopping time. We have $B_{\tau} = a$ if B visits a before b, and $B_{\tau} = b$ if otherwise. Since B is a martingale, $B_t^{\tau} := B_{\tau \wedge t}$ is a bounded martingale. By Optional Stopping Theorem (Theorem 6.29), $0 = B_0 = \mathbb{E}[B_{\tau}^{\tau}|\mathcal{F}_0] = \mathbb{E}[B_{\tau}] = a\mathbb{P}[B_{\tau} = a] + b\mathbb{P}[B_{\tau} = b]$. Since $1 = \mathbb{P}[B_{\tau} = a] + \mathbb{P}[B_{\tau} = b]$, we calculate $\mathbb{P}[B_{\tau} = a] = \frac{b}{b-a}$ and $\mathbb{P}[B_{\tau} = b] = \frac{-a}{b-a}$.

Corollary . A Brownian motion B is a.s. NOT locally Hölder continuous of exponent 1/2.

Proof. If B is Hölder continuous of exponent 1/2 in a neighborhood of 0, then $\limsup_{t\to 0^+} |B_t - B_0|/\sqrt{t} < \infty$, which implies that $\limsup_{t\to 0^+} |B_t - B_0|/\sqrt{2t\log\log(t)} = 0$, which a.s. does not happen by Theorem 11.18.

Corollary. For any fixed $t_0 \ge 0$, B is a.s. not differentiable at t_0 .

Proof. We use the fact that $B_{t_0+t} - B_{t_0}$, $t \ge 0$, has the same distribution as B, and B is a.s. not differentiable at 0 by the law of iterated logarithm.

Theorem (Nowhere differentiability). Almost surely B is not differentiable at any $t \ge 0$.

Proof. We may consider $B|_{[0,1]}$. In fact, if we have proved that a.s. B is nowhere differentiable on [0,1], then by scaling, we can conclude that for any $N \in \mathbb{N}$, B is a.s. nowhere differentiable on [0, N]. Since there are countably such N, a.s. B is nowhere differentiable on any [0, N], $N \in \mathbb{N}$, and so is nowhere differentiable on \mathbb{R}_+ . If B is differentiable at $t_0 \in [0, 1)$, then

$$\limsup_{h\downarrow 0} \frac{|B_{t_0+h} - B_{t_0}|}{h} < \infty.$$

This means that there are constants $\delta \in (0,1)$ and $C_1 > 0$ such that if $0 \le h < \delta$, then $|B_{t_0+h} - B_{t_0}| \le C_1 h$. Let R > 0 be an upper bound of B on [0,2]. Let $M \in \mathbb{N}$ be such that $M \ge C_1 \lor (2R/\delta)$. Then for $h \in [\delta,1]$, $|B_{t_0+h} - B_{t_0}| \le 2R \le M\delta \le Mh$. So for any $0 \le h \le 1$, $|B_{t_0+h} - B_{t_0}| \le Mh$. Suppose for a fixed $M \in \mathbb{N}$, there exists $t_0 \in [0,1]$ such that $|B_{t_0+h} - B_{t_0}| \le Mh$ for all $0 \le h \le 1$. Let $n \in \mathbb{N}$ and $n \ge 2$. There is $k \in \{1, 2, \ldots, 2^n\}$ such that $t_0 \in [\frac{k-1}{2^n}, \frac{k}{2^n}]$. Then for $1 \le j \le 3$,

$$|B_{\frac{k+j}{2^n}} - B_{\frac{k+j-1}{2^n}}| \le |B_{\frac{k+j}{2^n}} - B_{t_0}| + |B_{\frac{k+j-1}{2^n}} - B_{t_0}| \le \frac{M(2j+1)}{2^n}.$$

Let E denote the event that B is differentiable at some $t_0 \in [0, 1]$, and define

$$E_{n,k}^{M} = \{ |B_{\frac{k+j}{2^{n}}} - B_{\frac{k+j-1}{2^{n}}}| \le \frac{M(2j+1)}{2^{n}}, \quad 1 \le j \le 3 \}.$$

Then

$$E \subset \bigcup_{M=1}^{\infty} \bigcap_{n=2}^{\infty} \bigcup_{k=1}^{2^n} E_{n,k}^M.$$

We have

$$\mathbb{P}[E_{n,k}^M] = \prod_{j=1}^3 \mathbb{P}[|B_{\frac{1}{2^n}}| \le \frac{M(2j+1)}{2^n}] \le \mathbb{P}[|B_1| \le \frac{7M}{2^{n/2}}]^3 \le C(\frac{7M}{2^{n/2}})^3.$$

Here we used the fact that the density function of B_1 is bounded by $\frac{1}{\sqrt{2\pi}}$. Hence

$$\mathbb{P}[\bigcup_{k=1}^{2^n} E_{n,k}^M] \le 2^n C(\frac{7M}{2^{n/2}})^3 = 7^3 C M^3 2^{-n/2},$$

which then implies that $\mathbb{P}[\bigcap_{n=2}^{\infty} \bigcup_{k=1}^{2^n} E_{n,k}^M] = 0$. So we get $\mathbb{P}[E] = 0$.

In contrast to the law of iterated logarithm, we have the following result.

Theorem (Lévy's modulus of continuity). Almost surely, we have

$$\limsup_{h \downarrow 0} \sup_{0 \le t \le 1-h} \frac{|B_{t+h} - B_t|}{\sqrt{2h \log(1/h)}} = 1.$$

Proof. This is Theorem 1.14 of Brownian motion by Peter Möters and Yuval Peres.Exercise. Prove the lower bound of Lévy's modulus of continuity by showing that

a.s.
$$\limsup_{n \to \infty} \sup_{1 \le k \le 2^n} \frac{|B_{\frac{k}{2^n}} - B_{\frac{k-1}{2^n}}|}{\sqrt{2^{1-n}\log(2^n)}} \ge 1.$$

Omit the part of Chapter 11 after Theorem 11.18.

2 Stochastic Integrals and Quadratic Variation

We first introduce a new object: local martingale. Fix a filtration $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$, which is rightcontinuous and complete. Recall that for an \mathcal{F} -adapted process X and an \mathcal{F} -stopping time τ , we may define a new process X^{τ} by $X_t^{\tau} = X_{t\wedge\tau}$. This is X stopped at τ .

Definition. An \mathcal{F} -adapted process X is called a local martingale if there is a sequence of \mathcal{F} -stopping times τ_n with $\tau_n \uparrow \infty$ such that for each n, $X^{\tau_n} - X_0$ is an \mathcal{F} -martingale. The sequence (τ_n) is called a localizing sequence. If X is sample-wise continuous, then it is called a continuous local martingale.

Remark . We have the following facts.

1. If X_0 is integrable, $X^{\tau_n} - X_0$ is an \mathcal{F} -martingale iff X^{τ_n} is an \mathcal{F} -martingale.

- 2. The condition that $\tau_n \uparrow \infty$ can be slightly weakened to a.s. $\tau_n \to \infty$. First, a null event does not affect the martingale property. Second, if τ_n is a sequence tending to ∞ , then we may define an increasing sequence of stopping times tending to ∞ by $\tau'_n = \inf_{m \ge n} \tau_m$. Here we use the right-continuity of \mathcal{F} to guarantee that τ'_n is a stopping time.
- 3. A martingale is a local martingale. We may simply take all $\tau_n = \infty$
- 4. A local martingale stopped at any stopping time is still a local martingale. In fact, if X is a local martingale with localizing sequence (τ_n) , and if τ is any stopping time, then for any n, $(X^{\tau})^{\tau_n} X_0^{\tau} = (X^{\tau_n})^{\tau} X_0$ is a martingale. So (τ_n) is localizing sequence for X^{τ} .
- 5. A uniformly bounded local martingale is a martingale. This follows from Dominated Convergence Theorem. To see this, suppose X is a uniformly bounded local martingale with localizing sequence (τ_n) , then for any $t \ge s \ge 0$ and $n \in \mathbb{N}$, $\mathbb{E}[X_{t \land \tau_n} | \mathcal{F}_s] = X_{s \land \tau_n}$. Letting $n \to \infty$, we get $\mathbb{E}[X_t | \mathcal{F}_s] = X_s$.
- 6. A local martingale may not be a martingale. A concrete example will be given later. Sometimes we call a martingale a true martingale to emphasize.
- 7. We introduce the notation of local martingale because sometimes it is easier to check that a process is a local martingale.
- 8. If X is \mathcal{F} -adapted, and there exists an increasing sequence of \mathcal{F} -stopping times τ_n with $\tau_n \uparrow \infty$ such that for each n, X^{τ_n} is a local martingale, then X is a local martingale. To see this suppose $X_0 = 0$. For each n, let $(\sigma_k^n)_{k\geq 1}$ be the localizing sequence of X^{τ_n} . For each n, since $\sigma_k^n \to \infty$, we may choose k_n such that $\mathbb{P}[\sigma_{k_n}^n < n] < \frac{1}{2^n}$. By Borel-Cantellie lemma, a.s. $\sigma_{k_n}^n \to \infty$. Let $\tau'_n = \tau_n \land \sigma_{k_n}^n$. Then a.s. $\tau'_n \to \infty$ and for each n, $X^{\tau'_n} = (X^{\tau_n})^{\sigma_{k_n}^n}$ is a true martingale.
- 9. All local martingales form a linear space. In fact, if X and Y are both local martingales with localizing sequences (τ_n) and (σ_n) , then $\tau_n \wedge \sigma_n \uparrow \infty$, and each $\tau_n \wedge \tau_n$ localizes both X and Y, and so also localizes X + Y. Thus, X + Y is also a local martingale.
- 10. We will focus on continuous local martingales. Suppose X is a continuous local martingale with $X_0 = 0$. Then we have a natural choice of localizing sequence: $\tau_n := \inf\{t \ge 0 : |X_t| \ge n\}$. By convention, we set $\inf \emptyset = \infty$. Then $\tau_n \uparrow \infty$, and for each n, $|X^{\tau_n}|$ is bounded by n, and so X^{τ_n} is a true martingale.

Proposition 15.2. If X is a continuous local martingale with locally finite variation, then a.s. $X_t = X_0$ for all $t \ge 0$.

Proof. By considering $X - X_0$, we may assume $X_0 = 0$. We first prove the proposition assuming that X has finite total variation on $[0, \infty)$, which is uniformly bounded by V. Then X itself

is bounded in absolute value by V. So X is a true martingale. Fix t > 0 and a partition $\Delta = \{0 = t_0 < \cdots < t_n = t\}$ of [0, t]. Then

$$X_t^2 = \sum_{k=1}^n (X_{t_k} - X_{t_{k-1}})^2 + 2 \sum_{1 \le j < k \le n} (X_{t_j} - X_{t_{j-1}}) (X_{t_k} - X_{t_{k-1}}).$$

By the martingale property of X, for each $1 \le j < k \le n$,

$$\mathbb{E}[(X_{t_j} - X_{t_{j-1}})(X_{t_k} - X_{t_{k-1}})|\mathcal{F}_{t_{k-1}}] = 0$$

because $\mathbb{E}[X_{t_k} - X_{t_{k-1}} | \mathcal{F}_{t_{k-1}}] = 0$ and $X_{t_j} - X_{t_{j-1}} \in \mathcal{F}_{t_{k-1}}$. So we get $\mathbb{E}[X_t^2] = \mathbb{E}[Q_\Delta]$, where

$$Q_{\Delta} := \sum_{k=1}^{n} (X_{t_k} - X_{t_{k-1}})^2 \le V \cdot \sup_{s_1, s_2 \in [0,t] : |s_1 - s_2| \le |\Delta|} |X_{s_1} - X_{s_2}|,$$

where $|\Delta| = \max_{1 \le k \le n} |t_k - t_{k-1}|$ is the mesh size of Δ . Since X is continuous, if the mesh size of Δ tends to 0, then the RHS of the above formula tends to 0. By Dominated Convergence Theorem, $\mathbb{E}[Q_{\Delta}] \to 0$ as $|\Delta| \to 0$. Since $\mathbb{E}[X_t^2] = \mathbb{E}[Q_{\Delta}]$ holds for any partition Δ on [0, t], we get a.s. $X_t = 0$. Thus, a.s. for every $t \in \mathbb{Q}_+$, $X_t = 0$. By continuity of X, we get a.s. $X \equiv 0$.

For the general case, let V_t be the total variation of X on [0, t]. Then V is continuous, nondecreasing, and adapted. For each $n \in \mathbb{N}$, let τ_n be the first time that $V_t \geq n$. If such time does not exist, then $\tau_n = \infty$. This is a stopping time. Then X^{τ_n} has total variation on $[0, \infty)$ bounded by n, and so itself is also bounded by n, and so is a true martingale. From the last paragraph, we know that a.s. $X_n^{\tau} \equiv 0$. Since $\tau_n \to \infty$, we then get a.s. $X \equiv 0$.

Definition . A predictable step process has the form

$$V_t = \sum_{j=0}^{\infty} \zeta_j \mathbf{1}_{(\tau_j,\infty)}(t) = \sum_{k=0}^n \eta_k \mathbf{1}_{(\tau_k,\tau_{k+1}]}(t), \quad t \ge 0,$$
(2.1)

where (τ_k) is a sequence of stopping times with $\tau_0 = 0$ and $\tau_k \uparrow \infty$, and ζ_k, η_k is \mathcal{F}_{τ_k} -measurable for each k. Note that $\eta_k = \sum_{j=0}^k \zeta_j$. Also note that V is adapted. To see this, fix any $t \ge 0$. For every k, the event $\{\tau_k < t \le \tau_{k+1}\}$ is \mathcal{F}_t -measurable. It suffices to show that V_t restricted to this event is \mathcal{F}_t -measurable, which follows from the facts that $\eta_k \in \mathcal{F}_{\tau_k}$ and $\mathcal{F}_{\tau_k} \cap \{\tau_k < t\} \subset \mathcal{F}_t$.

Definition. Given a predictable step process with the form (2.1) and an adapted process X, we define the elementary integral process $V \cdot X$ as in Chapter 6 by

$$(V \cdot X)_t \equiv \int_0^t V dX = \sum_{k=0}^\infty \eta_k (X_{t \wedge \tau_{k+1}} - X_{t \wedge \tau_k}) = \sum_{j=0}^\infty \zeta_j (X_t - X_{t \wedge \tau_j}).$$

Note that $(V \cdot X)_0 = 0$. To see that the last equality holds, and this is a finite sum, not that if $t \in (\tau_n, \tau_{n+1}]$, then

$$\sum_{k=0}^{\infty} \eta_k (X_{t \wedge \tau_{k+1}} - X_{t \wedge \tau_k}) = \sum_{k=0}^{n-1} \eta_k (X_{\tau_{k+1}} - X_{\tau_k}) + \eta_n (X_t - X_{\tau_n});$$

$$\sum_{j=0}^{\infty} \zeta_j (X_t - X_{t \wedge \tau_j}) = \sum_{j=1}^n \zeta_j (X_t - X_{\tau_j}) = \eta_n X_t - \sum_{j=1}^n (\eta_j - \eta_{j-1}) X_{\tau_j}$$
$$= \eta_n (X_t - X_{\tau_n}) + \sum_{j=0}^{n-1} \eta_j (X_{\tau_{j+1}} - X_{\tau_j}).$$

Moreover, $(V \cdot X)$ is adapted because the RHS of the above formulas restricted to the event $\tau_n < t$ is \mathcal{F}_t -measurable. Also note that if X is continuous, then so is $V \cdot X$ because by definition and the continuity of X, $V \cdot X$ is continuous on $[\tau_n, \tau_{n+1}]$ for each n.

Lemma. If M is a martingale, and (τ_n) is an increasing sequence of stopping times with $\tau_0 = 0$ and $\tau_n \uparrow \infty$, then for for any $t \ge 0$,

$$\mathbb{E}[M_t^2] = \sum_{k=0}^{\infty} \mathbb{E}[(M_{t \wedge \tau_{k+1}} - M_{t \wedge \tau_k})^2].$$

Proof. We may write

$$M_{t\wedge\tau_n} = \sum_{k=0}^{n-1} (M_{t\wedge\tau_{k+1}} - M_{t\wedge\tau_k}).$$

 So

$$M_{t\wedge\tau_n}^2 = \sum_{k=0}^{n-1} (M_{t\wedge\tau_{k+1}} - M_{t\wedge\tau_k})^2 + 2\sum_{0\leq j< k\leq n-1} (M_{t\wedge\tau_{j+1}} - M_{t\wedge\tau_j})(M_{t\wedge\tau_{k+1}} - M_{t\wedge\tau_k}).$$

For each j < k,

$$\mathbb{E}[(M_{t\wedge\tau_{j+1}} - M_{t\wedge\tau_j})(M_{t\wedge\tau_{k+1}} - M_{t\wedge\tau_k})|\mathcal{F}_{\tau_k}] = 0$$

which follows from Optional Stopping Theorem and the fact that $(M_{t \wedge \tau_{j+1}} - M_{t \wedge \tau_j}) \in \mathcal{F}_{\tau_k}$. Here we used the fact that $M_{t \wedge \tau_{j+1}} - M_{t \wedge \tau_j}$ and $M_{t \wedge \tau_{k+1}} - M_{t \wedge \tau_k}$ are in L^2 . So we get

$$\mathbb{E}M_{t\wedge\tau_n}^2 = \sum_{k=0}^{n-1} \mathbb{E}[(M_{t\wedge\tau_{k+1}} - M_{t\wedge\tau_k})^2].$$

Since as $n \to \infty$, $M_{t \wedge \tau_n} \to M_t$, by Corollary 6.22 and Proposition 3.12,

$$\mathbb{E}M_t^2 = \lim_{n \to \infty} \mathbb{E}M_{t \wedge \tau_n}^2 = \sum_{k=0}^{\infty} \mathbb{E}[(M_{t \wedge \tau_{k+1}} - M_{t \wedge \tau_k})^2].$$

Lemma 15.3. Let V be a predictable process with $|V| \leq C$. Let M be a continuous L^2 martingale (i.e., $\mathbb{E}[M_t^2] < \infty$ for every $t \geq 0$) with $M_0 = 0$. Then $V \cdot M$ is still a continuous L^2 martingale; and for any $t \geq 0$, $\mathbb{E}[(V \cdot M)_t^2] \leq C^2 \mathbb{E}[M_t^2]$. Proof. The continuity of $V \cdot M$ follows from the definition and the continuity of M. Recall Corollary 6.14: if M is a martingale, τ is a stopping time that takes countably many values, and η is a bounded \mathcal{F}_{τ} -measurable random variable, then the process $N_t := \eta(M_t - M_{t\wedge\tau})$ is again a martingale. For a continuous martingale M, we can remove the assumption that τ takes countably many values because we may find a sequence of stopping times $\tau^n \downarrow \tau$ such that each τ^n takes countably many values. Then $\mathbb{E}[\eta(M_t - M_{t\wedge\tau^n})|\mathcal{F}_s] = \eta(M_s - M_{s\wedge\tau^n})$ for any $t \ge s \ge 0$. Letting $n \to \infty$ we get $\mathbb{E}[\eta(M_t - M_{t\wedge\tau})] = \eta(M_s - M_{s\wedge\tau})$ using the continuity of M and the uniform integrability of $\{\eta M_{t\wedge\tau^n} : n \in \mathbb{N}\}$. Here we use the fact that $M_{t\wedge\tau^n} = \mathbb{E}[M_t|\mathcal{F}_{t\wedge\tau^n}]$. Suppose V has the form of (2.1). Suppose there are only finitely many k such that $\zeta_k \neq 0$, then $V \cdot M$ is a martingale since it is a finite sum of $\zeta_j(M_t - M_{t\wedge\tau_j})$, each of which is a martingale. Fix any $t \ge 0$, by the above lemma, we have

$$\mathbb{E}[(V \cdot M)_t^2] = \sum_{j=0}^{\infty} \mathbb{E}[((V \cdot M)_{t \wedge \tau_{j+1}} - (V \cdot M)_{t \wedge \tau_j})^2]$$
$$= \sum_{j=0}^{\infty} \mathbb{E}[\eta_j^2 (M_{t \wedge \tau_{j+1}} - M_{t \wedge \tau_j})^2] \le C^2 \sum_{j=0}^{\infty} \mathbb{E}[(M_{t \wedge \tau_{j+1}} - M_{t \wedge \tau_j})^2] = C^2 \mathbb{E}[M_t^2].$$

Thus, $V \cdot M$ is also an L^2 -martingale. Finally, we consider the general case, i.e., there may be infinitely many k such that $\eta_k \neq 0$. We write $V_t^n = \sum_{k=0}^n \zeta_k \mathbf{1}_{(\tau_k,\infty)}(t)$. Then each V^n is a predictable process with finitely many nonzero η_k . So $\mathbb{E}[(V^n \cdot M)_t^2] \leq \mathbb{E}[M_t^2]$. Since $(V^n \cdot M)_t \to (V \cdot M)_t$, by Fatou's lemma, $\mathbb{E}[(V \cdot M)_t^2] \leq C^2 \mathbb{E}[M_t^2]$. Fix $t \geq s \geq 0$. For each $n \in \mathbb{N}, V^n \cdot M$ is a martingale, so $\mathbb{E}[(V^n \cdot M)_t | \mathcal{F}_s] = (V^n \cdot M)_s$. Since the sequence $(V^n \cdot M)_t$ is L^2 -bounded, it is uniformly integrable. So the a.s. convergence implies L^1 -convergence. Letting $n \to \infty$, we get $\mathbb{E}[(V \cdot M)_t | \mathcal{F}_s] = (V \cdot M)_s$. So $V \cdot M$ is a martingale. \Box

Recall the following facts from Theorem 6.18, Theorem 6.21, Corollary 6.22, and Theorem 6.29. If M is a uniformly integrable martingale (i.e., $(M_t)_{t\geq 0}$ is uniformly integrable), then $M_{\infty} := \lim_{t\to\infty} M_t$ converges a.s. and in L^1 , and for any stopping time τ , $\mathbb{E}[M_{\infty}|\mathcal{F}_{\tau}] = M_{\tau}$. In particular, we have $\|M_{\tau}\|_{L^p} \leq \|M_{\infty}\|_{L^p}$ for any $p \geq 1$, and $\mathbb{E}[M_{\infty}] = \mathbb{E}[M_0]$. Also recall that for any p > 1, if M is L^p -bounded, i.e., $\sup_{t\geq 0} \|M_t\|_{L^p} < \infty$, then M is uniformly integrable. In that case, we have $M_t \to M_{\infty}$ in L^p as $t \to \infty$. In particular, if M is uniformly bounded, it is uniformly integrable, and $M_t \to M_{\infty}$ in L^p for every $p \geq 1$.

Let \mathcal{M}^2 denote the space of all L^2 -bounded continuous martingale M with $M_0 = 0$. Equip \mathcal{M}^2 with the norm $\|M\|_{\mathcal{M}^2} = \|M_{\infty}\|_{L^2} = \|\lim_{t\to\infty} M_t\|_{L^2}$. Then \mathcal{M}^2 is clearly an inner product space with $\langle M, N \rangle = \mathbb{E}[M_{\infty}N_{\infty}]$. Recall that by Proposition 6.16, for any $t \geq 0$, $\|\sup_{0\leq s\leq t} |M_t\|_{L^2} \leq 2\|M_t\|_{L^2}$. Since $\|M_t\|_{L^2} \uparrow \|M_{\infty}\|_{L^2} = \|M\|$, we get $\|M^*\|_{L^2} \leq 2\|M\|_{\mathcal{M}^2}$, where $M^* := \sup_{t>0} |M_t|$.

Lemma 15.4. \mathcal{M}^2 is a Hilbert space.

Proof. Let (M^n) be a Cauchy sequence in \mathcal{M}^2 . Since $||(M^n - M^m)^*||_{L^2} \leq 2||M_{\infty}^n - M_{\infty}^m||$, by choosing a subsequence, we may assume that

$$\mathbb{E}[\sup_{t \ge 0} |M_t^n - M_t^{n+1}|^2] < 2^{-3n},$$

which implies that

$$\mathbb{P}[\sup_{t \ge 0} |M_t^n - M_t^{n+1}| > 2^{-n}] < 2^{-n}.$$

By Borel-Cantelli lemma, a.s. there is (a random) N such that for n > N, $\sup_{t \ge 0} |M_t^n - M_t^{n+1}| \le 2^{-n}$. Let E denote the event that such N exists. Then $\mathbb{P}[E] = 1$, and (M^n) is uniformly Cauchy on \mathbb{R}_+ on the event E. Let $M = \lim_{n \to \infty} M^n$ on E, and M = 0 on E^c . Then M is continuous on \mathbb{R}_+ . Since a.s. $M_t^n \to M_t$ for all $t \ge 0$, each M^n is adapted, and \mathcal{F} is complete, M is also adapted. The martingale property of M follows from the martingale property of each M^n , and the uniform integrability of $(M_t^n)_{n \in \mathbb{N}}$ for every fixed t. In fact, for any fixed $t \ge s \ge 0$, $\mathbb{E}[M_t^n | \mathcal{F}_s] = M_s^n$. The sequence M_t^n is uniformly integrable because their L^2 norms are uniformly bounded. Letting $n \to \infty$, we then get $\mathbb{E}[M_t | \mathcal{F}_s] = M_s$. The L^2 -boundedness of M follows from Fatou's lemma: $\mathbb{E}[M_t^2] \le \liminf_{n \to \infty} \mathbb{E}[\mathbb{E}[(M_t^n)^2]] \le \liminf_{n \to \infty} \mathbb{E}[\mathbb{E}[M_t^n - M_t^m]^2] \to 0$, if we fix n, let $m \to \infty$, and use Fatou's lemma, we then get $\lim_{n\to\infty} \mathbb{E}[\sup_{t\ge 0} |M_t^n - M_t^n|^2] \to 0$, and so $M^n \to M$.

Theorem 15.5. For any continuous local martingales M and N, there a.s. exists a unique continuous process [M, N] of locally finite variation and with $[M, N]_0 = 0$ such that NM - [N, M] is a local martingale. The form [M, N] is a.s. symmetric and bilinear with $[M - M_0, N - N_0] = [M, N]$. Furthermore, for any stopping time τ , a.s. $[M, N]^{\tau} = [M^{\tau}, N^{\tau}] = [M^{\tau}, N]$. The process [M] := [M, M] is a.s. nondecreasing; and if M is bounded with $M_0 = 0$, then $M^2 - [M] \in \mathcal{M}^2$.

Lemma. For a continuous local martingale M, a stopping time τ , and an \mathcal{F}_{τ} -measurable random variable ζ , $\zeta(M - M^{\tau})$ is a continuous local martingale.

Proof. The continuity is obvious. We know that $M - M^{\tau}$ is a local martingale. We construct localizing sequence σ_n for $\zeta(M - M^{\tau})$ as follows. If $|\zeta| > n$, then $\sigma_n = \tau$; if $|\zeta| \le n$, then $\sigma_n = \inf\{t \ge \tau : |M_t - M_{\tau}| > n\}$. Then $\sigma_n \uparrow \infty$, and each σ_n is a stopping time because for any $t \ge 0$,

$$\{\sigma_n < t\} = (\{\tau < t\} \cap \{|\zeta| > n\}) \cup \bigcup_{q \in [0,t) \cap \mathbb{Q}} (\{\tau \le q\} \cap \{|M_q - M_\tau| > n\}) \in \mathcal{F}_t.$$

Since $(M - M^{\tau})^{\sigma_n}$ is a bounded local martingale, it is a true martingale, which vanishes on $[0, \tau]$. If $|\zeta| > n$, $\sigma_n = \tau$, and so $(\zeta(M - M^{\tau}))^{\sigma_n} = \zeta(M^{\tau} - M^{\tau}) = 0$. Thus,

$$(\zeta(M - M^{\tau}))^{\sigma_n} = (\mathbf{1}_{|\zeta| \le n} \zeta)(M - M^{\tau})^{\sigma_n}$$

is a martingale by Corollary 6.14 because $\mathbf{1}_{|\zeta| \leq n} \zeta$ is bounded and \mathcal{F}_{τ} -measurable.

Proof. If there are two continuous processes V^1 and V^2 with locally finite variation such that $V_0^j = 0$ and $NM - V^j$ is a local martingale. Then $V^1 - V^2$ is a continuous local martingale with locally finite variation and $(V^1 - V^2)_0 = 0$. By Proposition 15.2, a.s. $V^1 - V^2 \equiv 0$. So we get the uniqueness.

If [M, N] exists, then for any stopping time τ ,

$$(MN - [M, N])^{\tau} = M^{\tau} N^{\tau} - [M, N]^{\tau}$$
(2.2)

is a local martingale. By the uniqueness, we get $[M^{\tau}, N^{\tau}] = [M, N]^{\tau}$. By the lemma, $M^{\tau}N - M^{\tau}N^{\tau} = M^{\tau}(N - N^{\tau}) = M_{\tau}(N - N^{\tau})$ is a local martingale. Combining it with (2.2), we see that $M^{\tau}N - [M, N]^{\tau}$ is a local martingale, which implies that $[M^{\tau}, N] = [M, N]^{\tau}$.

We may assume that $M_0 = N_0 = 0$. In fact, if we know that [M, N] exists whenever $M_0 = N_0 = 0$, then for general $M, N, [M - M_0, N - N_0]$ exists, i.e., $(M - M_0)(N - N_0) - [M - M_0, N - N_0]$ is a local martingale. By the lemma applied to $\tau = 0$, we see that $M_0(N - N_0)$ and $N_0(M - M_0)$ are local martingales, which then implies that $MN - M_0N_0 - [M - M_0, N - N_0]$ is a local martingale. Thus, [M, N] exists and a.s. equals $[M - M_0, N - N_0]$.

To prove the existence and properties of [M, N], by polarization, it suffices to prove the existence, continuity, and monotonicity of [M]. In fact, if $(M + N)^2 - [M + N]$ and $(M - N)^2 - [M - N]$ are local martingales, then 4MN - ([M + N] - [M - N]) is a local martingale, and so [M, N] = ([M + N] - [M - N])/4. Since [M + N] and [M - N] are continuous and nondecreasing, [M, N] is continuous and has locally finite total variation. The symmetry and bilinear property of [M, N] is obvious.

We first assume that |M| is bounded by $C < \infty$. Then M is a true martingale. Fix $n \in \mathbb{N}$. Define a sequence of stopping times $(\tau_k^n)_{k\geq 0}$ such that $\tau_0^n = 0$ and for each $k \in \mathbb{N}$,

$$\tau_k^n = \inf\{t \ge \tau_{k-1}^n : |M_t - M_{\tau_k^n}| \ge 2^{-n}\}.$$

As usual, if such time does not exist, then $\tau_k^n = \infty$, and so are all τ_j^n , $j \ge k$. We have $\tau_k^n \uparrow \infty$. Introduce two processes

$$V_t^n = \sum_{k=0}^{\infty} M_{\tau_k^n} \mathbf{1}_{(\tau_k^n, \tau_{k+1}^n]}(t), \quad Q_t^n = \sum_{k=0}^{\infty} (M_{t \wedge \tau_{k+1}^n} - M_{t \wedge \tau_k^n})^2.$$
(2.3)

This means that if $t \in (\tau_k^n, \tau_{k+1}^n]$, then $V_t^n = M_{\tau_k^n}$ and $Q_t^n = \sum_{j=0}^{k-1} (M_{\tau_{j+1}^n} - M_{\tau_j^n})^2 + (M_t - M_{\tau_k^n})^2$. Note that V^n is a bounded predictable step process. We have

$$M_t^2 = 2(V^n \cdot M)_t + Q_t^n, \quad t \ge 0.$$

To see this, note that if $t \in (\tau_k^n, \tau_{k+1}^n]$,

$$M_{\tau_{k+1}^n}^2 - M_{\tau_k^n}^2 = 2M_{\tau_k^n}(M_{\tau_{k+1}^n} - M_{\tau_k^n}) + (M_{\tau_{k+1}^n} - M_{\tau_k^n})^2;$$

$$M_t^2 - M_{\tau_k^n}^2 = 2M_{\tau_k^n}(M_t - M_{\tau_k^n}) + (M_t - M_{\tau_k^n})^2, \quad t \in (\tau_k^n, \tau_{k+1}^n].$$

By Lemma 15.3, each $V^n \cdot M$ is a continuous L^2 -martingale. Since $|V^n - M| \leq 2^{-n}$ by the definition of (τ_k^n) , we have for $n \geq m$,

$$\|V^n \cdot M - V^m \cdot M\|_{\mathcal{M}^2} = \|(V^n - V^m) \cdot M\|_{\mathcal{M}^2} \le 2^{1-m} \|M\|_{\mathcal{M}^2}.$$

By the completeness of \mathcal{M} , there is $N \in \mathcal{M}$ such that $V^m \cdot M \to N$. So we get

$$\|(V^{n} \cdot M - N)^{*}\|_{L^{2}} \le 2\|V^{n} \cdot M - N\|_{\mathcal{M}^{2}} \to 0.$$

The process $[M] := M^2 - 2N$ is continuous, and $M^2 - [M] = 2N \in \mathcal{M}^2$. We have

$$(Q^n - [M])^* = 2(N - V^n \cdot M)^* \stackrel{\mathrm{P}}{\to} 0$$

Thus, there is a subsequence (Q^{n_k}) of (Q^n) , which a.s. converges uniformly to [M]. We claim that [M] is a.s. nondecreasing. Since [M] is continuous, it suffices to show that a.s. [M] is nondecreasing on \mathbb{Q}_+ , which further follows from the statement that for any $p < q \in \mathbb{Q}_+$, a.s. $[M]_p < [M]_q$. There are two cases: Case (i) M is constant on [p,q]. In this case, for any $n \ge 1$, [p,q] lies in one interval $[\tau_k^n, \tau_{k+1}^n]$, and Q^n is constant on [p,q]. By the a.s. uniform convergence of (Q^{n_k}) to [M], we conclude that a.s. [M] is constant on [p,q]. Case (ii) M is not constant on [p,q]. When n is big enough, we have $2^{-n} < \max M([p,q]) - \min M([p,q])$. Then there exists k such that $\tau_k^n \in [p,q]$. From the definition of Q^n , we see that $Q_p^n \le Q_{\tau_k^n}^n \le Q_q^n$. By the a.s. uniform convergence of (Q^{n_k}) to [M], we conclude that a.s. $[M]_p \le [M]_q$ in Case (ii). So we get a.s. $[M]_p \le [M]_q$ as desired. So [M] is a.s. nondecreasing.

Now we do not assume that M is bounded. Recall that $M_0 = 0$. Let τ_n be the first time that $|M_t| \ge n$. Then $\tau_n \uparrow \infty$, and for each n, M^{τ_n} is a bounded martingale. So there exists a continuous nondecreasing process $[M^{\tau_n}]$ starting from 0 such that $(M^{\tau_n})^2 - [M^{\tau_n}]$ is a martingale. For $n \le m$, since $M^{\tau_n} = (M^{\tau_m})^{\tau_n}$, we have a.s. $[M^{\tau_n}] = [M^{\tau_m}]^{\tau_n}$. So we may define a process [M] such that for any n, a.s. $[M]^{\tau_n} = [M^{\tau_n}]$. In fact, we may define $[M]_t = [M^{\tau_n}]_t$ if $t \le \tau_n$ on the event that $[M^{\tau_n}] = [M^{\tau_m}]^{\tau_n}$ for any $n \le m$, which has probability 1. Then for any n, $(M^2 - [M])^{\tau_n} = (M^{\tau_n})^2 - [M^{\tau_n}]$ is a martingale. So $M^2 - [M]$ is a local martingale. \Box

We call [M] the quadratic variation of M, and [M, N] the quadratic covariation of M and N. The name comes from the following fact (Proposition 15.18): Fix t > 0. For any partition $\Delta = \{0 = t_0 < t_1 < \cdots < t_n = t\}$ of [0, t], define

$$T^{\Delta}(M,N) = \sum_{k=1}^{n} (M_{t_k} - M_{t_{k-1}})(N_{t_k} - N_{t_{k-1}}).$$

Then for any sequence of partitions (Δ_n) of [0, t] with mesh size $|\Delta_n| \to 0$, we have $T^{\Delta}(M, N) \xrightarrow{P} [M, N]_t$. For example, if M is the Brownian motion B, then $[B]_t = t$ for any $t \ge 0$.

One equality we will often use is: if $\sigma \leq \tau$ are two stopping times, then

$$[M^{\tau} - M^{\sigma}] = [M^{\tau}] + [M^{\sigma}] - 2[M^{\sigma}, M^{\tau}] = [M]^{\tau} + [M]^{\sigma} - [M, M]^{\sigma \wedge \tau} = [M]^{\tau} - [M^{\sigma}].$$

Since [M] is nondecreasing, we define $[M]_{\infty} = \lim_{t\to\infty} [M]_t$. From Theorem 15.5, we know that if M is uniformly bounded with $M_0 = 0$, then $M^2 - [M] \in \mathcal{M}^2$. So we get

$$\|M\|_{\mathcal{M}^2}^2 = \mathbb{E}[M_{\infty}^2] = \mathbb{E}[M]_{\infty} = \|[M]_{\infty}\|_{L^1}.$$
(2.4)

We now extend this result to more general case.

Lemma. For a continuous local martingale M with $M_0 = 0$, $M \in \mathcal{M}^2$ iff $[M]_{\infty} \in L^1$, and we have $\|M\|_{\mathcal{M}^2}^2 = \|[M]_{\infty}\|_{L^1}$.

Proof. For $n \in \mathbb{N}$, let τ_n be the first time that $|M_t| \ge n$. Then $\tau_n \uparrow \infty$, and M^{τ_n} is bounded by n. From (2.4), we get

$$\mathbb{E}[M_{\tau_n}^2] = \mathbb{E}[(M^{\tau_n})_{\infty}^2] = \mathbb{E}[M^{\tau_n}]_{\infty} = \mathbb{E}[M]_{\tau_n}.$$
(2.5)

First, suppose $M \in \mathcal{M}^2$. Then $\mathbb{E}[M_{\tau_n}^2] \leq \mathbb{E}[M_{\infty}^2] = \|M\|_{\mathcal{M}^2}^2$. So $\mathbb{E}[M]_{\tau_n} \leq \|M\|_{\mathcal{M}^2}^2$ for any $n \in \mathbb{N}$. Since $[M]_{\tau_n} \uparrow [M]_{\infty}$, we get $[M]_{\infty} \in L^1$, and $\|[M]_{\infty}\|_{L^1} \leq \|M\|_{\mathcal{M}^2}^2$. Second, suppose $[M]_{\infty} \in L^1$. Let $C = \|[M]_{\infty}\|_{L^1}$. Then for any n, by (2.5), $\|M^{\tau_n}\|_{\mathcal{M}^2}^2 \leq C$,

Second, suppose $[M]_{\infty} \in L^1$. Let $C = \|[M]_{\infty}\|_{L^1}$. Then for any n, by (2.5), $\|M^{\tau_n}\|_{\mathcal{M}^2}^2 \leq C$, which implies that for any $t \geq 0$, $\mathbb{E}[M_{t \wedge \tau_n}^2] \leq C$. Letting $n \to \infty$ and using Fatou's lemma, we get $\mathbb{E}[M_t^2] \leq C$ for any $t \geq 0$. To prove the martingale property of M, we fix $t \geq s \geq 0$. For any $n \in \mathbb{N}$, since M^{τ_n} is a true martingale, $\mathbb{E}[M_{t \wedge \tau_n}|\mathcal{F}_s] = M_{s \wedge \tau_n}$. Note that as $n \to \infty$, $M_{t \wedge \tau_n} \to M_t$. Since the family $(M_{t \wedge \tau_n})$ is L^2 -bounded, by letting $n \to \infty$, we get a.s. $\mathbb{E}[M_t|\mathcal{F}_s] =$ M_s . From $\mathbb{E}[M_t^2] \leq C$ for any $t \geq 0$ we get $M \in \mathcal{M}^2$ and $\|M\|_{\mathcal{M}^2}^2 = \lim_{t \to \infty} \mathbb{E}[M_t^2] \leq C =$ $\|[M]_{\infty}\|_{L^1}$.

Corollary. For a continuous local martingale M with $M_0 = 0$, M is a.s. constant 0 iff [M] is a.s. constant 0.

Proposition (Interval of Constancy). For a continuous local martingale M, a.s. M and [M] have the same interval of constancy. This means that, for almost every $\omega \in \Omega$, for any open interval $I \subset \mathbb{R}_+$ such that M is constant, [M] is also constant, and vice versa.

Proof. Since $[M - M_0] = [M]$, we may assume that $M_0 = 0$. We first show that, one the event E_0 that M is constant 0, [M] is a.s. also constant 0, and vice versa. Define the stopping time $\tau = \inf\{t \ge 0 : M_t \ne 0\}$. Then M^{τ} is constant 0. By the last corollary, $[M^{\tau}] = [M]^{\tau}$ is a.s. constant 0. So [M] is a.s. constant on $[0, \tau)$. Since $\tau = \infty$ on the event E_0 , [M] is a.s. 0 on \mathbb{R}_+ on the event E_0 . The reverse direction can be proved similarly by defining the stopping time $\sigma = \inf\{t \ge 0 : [M]_t \ne 0\}$.

We second show that, for any fixed $p < q \in \mathbb{Q}_+$, on the event that M is constant on [p,q], a.s. [M] is constant on [p,q], and vice versa. In fact, one the event $E_{p,q}$ that M is constant on (p,q), the local martingale $M^q - M^p$ is constant 0. From the last paragraph, we know that $[M^q - M^p]$ is a.s. constant 0 on the event $E_{p,q}$. Since

$$[M^{q} - M^{p}] = [M^{q}] + [M^{p}] - 2[M^{p}, M^{q}] = [M]^{q} + [M]^{p} - 2[M]^{p} = [M]^{q} - [M]^{p},$$
(2.6)

we see that $[M]^q - [M]^p$ is a.s. constant 0 on $E_{p,q}$, and so [M] is a.s. constant on [p,q] on the event $E_{p,q}$. On the other hand, let $F_{p,q}$ be the event that [M] is constant on [p,q]. Then by (2.6), $[M^q - M^p]$ is constant 0 on $F_{p,q}$. By the last paragraph, $M^q - M^p$ is a.s. constant 0 on $F_{p,q}$, and so M is a.s. constant on [p,q] on the event $F_{p,q}$.

Let $N_{p,q}$ be the event that M is constant on [p,q], but [M] is not, or [M] is constant on [p,q], but M is not. Let $N = \bigcup_{p < q \in \mathbb{Q}_+} N_{p,q}$. Then $\mathbb{P}[N] = 0$. On the event N^c , M and [M] have the same interval of constancy because if on an interval $I \subset \mathbb{R}_+$ one of M and [M] is constant and the other is not constant, then we can find $p < q \in \mathbb{Q}_+$ such that $[p,q] \subset I$ and one of the two processes are not constant on [p,q], which contradicts the definition of N. \Box

Exercise. For a continuous local martingale M, prove that on the event that $[M]_{\infty} < \infty$, a.s. $\lim_{t\to\infty} M_t$ converges.

Proposition 15.6. For any sequence of continuous local martingales (M^n) with $M_0^n = 0$, $(M^n)^* \xrightarrow{\mathrm{P}} 0$ iff $[M^n]_{\infty} \xrightarrow{\mathrm{P}} 0$, and for any $t \ge 0$, $(M^n)^*_t \xrightarrow{\mathrm{P}} 0$ iff $[M^n]_t \xrightarrow{\mathrm{P}} 0$.

Proof. First, let $(M^n)^* \xrightarrow{\mathrm{P}} 0$. Fix $\varepsilon > 0$. Let τ^n be the first time $|M_t^n| \ge \varepsilon$. Then $(M^n)^{\tau^n}$ is a bounded martingale. So $((M^n)^{\tau^n})^2 - [(M^n)^{\tau^n}]$ is an L^2 -martingale. This implies that $\mathbb{E}[(M_{\tau^n}^n)^2] = \mathbb{E}[[M^n]_{\tau^n}]$. Here if $\tau^n = \infty$, $M_{\tau^n}^n$ is understood as $\lim_{t\to\infty} (M^n)_t^{\tau^n} = \lim_{t\to\infty} M_t^n$, which a.s. converges. In particular, we have $\mathbb{E}[[M^n]_{\tau^n}] \le \varepsilon^2$ since $|M_{\tau^n}^n| \le \varepsilon$. So we get

$$\mathbb{P}[[M^n]_{\infty} > \varepsilon] \le \mathbb{P}[\tau^n < \infty] + \mathbb{P}[[M^n]_{\tau^n} > \varepsilon]$$
$$\le \mathbb{P}[\tau^n < \infty] + \varepsilon^{-1} \mathbb{E}[[M^n]_{\tau^n}] \le \mathbb{P}[\tau^n < \infty] + \varepsilon,$$

where the second inequality follows from Chebyshev's inequality. Since $(M^n)^* \xrightarrow{\mathrm{P}} 0$, $\mathbb{P}[\tau^n < \infty] \to 0$ as $n \to \infty$. So for n big enough, $\mathbb{P}[[M^n]_{\infty} > \varepsilon] < 2\varepsilon$. Then we get $[M^n]_{\infty} \xrightarrow{\mathrm{P}} 0$.

Second, let $[M^n]_{\infty} \xrightarrow{\mathrm{P}} 0$. Now we define τ^n to be the first time that $[M^n]_t \geq \varepsilon^3$. Then $[(M^n)^{\tau^n}] = [M^n]^{\tau^n}$ is bounded by ε^3 . By the previous lemma, $(M^n)^{\tau^n} \in \mathcal{M}$ with $\|(M^n)^{\tau^n}\|^2 = \mathbb{E}[M^n]^{\tau^n}_{\infty} \leq \varepsilon^3$, which implies that $\|((M^n)^{\tau^n})^*\|_{L^2}^2 \leq 4\varepsilon^3$. By Chebyshev's inequality,

$$\mathbb{P}[|(M^n)^*| > \varepsilon] \le \mathbb{P}[\tau^n < \infty] + \mathbb{P}[|((M^n)^{\tau^n})^*|^2 > \varepsilon^2]$$

$$\le \mathbb{P}[\tau^n < \infty] + \varepsilon^{-2} \|((M^n)^{\tau^n})^*\|_{L^2}^2 \le \mathbb{P}[\tau^n < \infty] + 4\varepsilon.$$

Since $[M^n]_{\infty} \xrightarrow{\mathrm{P}} 0$, $\mathbb{P}[\tau^n < \infty] \to 0$ as $n \to \infty$. So for *n* big enough, $\mathbb{P}[|(M^n)^*| > \varepsilon] < 5\varepsilon$. Then we get $(M^n)^* \xrightarrow{\mathrm{P}} 0$.

The statement about $(M^n)_t^*$ and $[M^n]_t$ follows by considering the process $(M^n)^t$.

Skip Proposition 15.7 (BDG inequalities) for now. Will come back later. Also skip Lemma 15.8 and Corollary 15.9.

A continuous adapted process A with locally finite total variation and $A_0 = 0$ will be simply called a finite variation process. For example, [M, N] is a finite variation process. Such A determines a continuous, adapted, and non-decreasing process V such that V_t is the total variation of A over [0, t]. Then $\frac{1}{2}(V + A)$ and $\frac{1}{2}(V - A)$ are continuous non-decreasing, and determine two (positive) measures μ_+ and μ_- on \mathbb{R}_+ , which are locally finite and have no point mass. Since A is the difference of the two processes, dA determines a signed measure $\mu = \mu_+ - \mu_-$. The Stieltjes integral against dA and |dA| are the Lebesgue integral against the signed measure μ and (positive) measure $|\mu| := \mu_+ + \mu_-$, respectively. From $\frac{1}{2}(V \pm A) \ge 0$ we easily see that $|A_t| \le V_t$ for all $t \ge 0$.

Proposition 15.10. For any continuous local martingales M, N, we have a.s.

$$|[M,N]_t| \le \int_0^t |d[M,N]| \le [M]_t^{1/2} [N]_t^{1/2}, \quad t \ge 0,$$
(2.7)

and for any measurable processes U, V, a.s.

$$\int_0^t |UVd[M,N]| \le \left(\int_0^t U^2 d[M]\right)^{1/2} \left(\int_0^t V^2 d[N]\right)^{1/2}, \quad t \ge 0.$$

Proof. For every $a, b \in \mathbb{R}$, a.s.

$$0 \le [aM + b_N]_t = a^2 [M]_t + b^2 [N]_t + 2ab[M, N]_t, \quad t \ge 0.$$

Thus, a.s. for every $a, b \in \mathbb{Q}$, the above formula holds, which then implies $[M, N]_t^2 \leq [M]_t [N]_t$, $t \geq 0$.

Fix $t > s \ge 0$. Since $M - M^s$ and $N - N^s$ are continuous local martingales, we have

$$[M - M^s, N - N^s]_t^2 \le [M - M^s]_t [N - N^s]_t.$$

Recall that $[M^s, N^s]_t = [M, N^s]_t = [M^s, N]_t = [M, N]_t^s = [M, N]_s$. The LHS equals $([M, N]_t - [M, N]_s)^2$. Similarly, the RHS equals $([M]_t - [M]_s)([N]_t - [N]_s)$. Thus, a.s.

$$([M, N]_t - [M, N]_s)^2 \le ([M]_t - [M]_s)([N]_t - [N]_s).$$

Then a.s. the above inequality holds for any $t > s \in \mathbb{Q}_+$. By continuity of $[M, N], [M], [N], the above inequality a.s. holds for any <math>t > s \ge 0$. Thus, a.s. for any t > 0 and any partition $0 = t_0 < \cdots < t_n = t$, we have

$$\sum_{k=1}^{n} |[M,N]_{t_{k}} - [M,N]_{t_{k-1}}| \leq \sum_{k=1}^{n} ([M]_{t_{k}} - [M]_{t_{k-1}})^{1/2} ([M]_{t_{k}} - [M]_{t_{k-1}})^{1/2}$$
$$\leq \left(\sum_{k=1}^{n} ([M]_{t_{k}} - [M]_{t_{k-1}})\right)^{1/2} \left(\sum_{k=1}^{n} ([N]_{t_{k}} - [N]_{t_{k-1}})\right)^{1/2} = [M]_{t}^{1/2} [N]_{t}^{1/2}.$$

Taking supremum over all partitions of [0, t], we conclude that a.s. (2.7) holds.

Next, write $d\mu = d[M]$, $d\nu = d[N]$, and $d\rho = |d[M, N]|$. Then the same argument as above (on I = [s, t] instead of [0, t]) shows that for any interval $I \subset \mathbb{R}_+$, a.s. $(\rho I)^2 \leq (\mu I)(\nu I)$. Then a.s. the inequality holds for any I = [s, t] such that $s, t \in \mathbb{Q}$. By continuity, a.s. the inequality holds for any closed or open interval $I \subset \mathbb{R}_+$. Outside the exceptional event, we have the following. Suppose $G \subset \mathbb{R}_+$ is open. Then G is a disjoint union of open intervals I_k . So by Cauchy inequality

$$\rho G = \sum_{k} \rho I_{k} \leq \sum_{k} (\mu I_{k})^{1/2} (\nu I_{k})^{1/2} \leq \left(\sum_{k} \mu I_{k}\right)^{1/2} \left(\sum_{k} \nu I_{k}\right)^{1/2} = (\mu G)^{1/2} (\nu G)^{1/2}.$$

Since every Borel set B can be approximated by open sets, we get $\rho B \leq (\mu B)^{1/2} (\nu B)^{1/2}$.

Suppose $f = \sum_k a_k \mathbf{1}_{B_k}$ and $g = \sum_k b_k \mathbf{1}_{B_k}$ are simple functions such that B_k 's are mutually disjoint. Then

$$\rho|fg| = \sum_{k} |a_k b_k| \rho B_k \le \sum_{k} |a_k b_k| (\mu B_k)^{1/2} (\nu B_k)^{1/2}$$
$$\le \left(\sum_{k} |a_k|^2 \mu B_k\right)^{1/2} \left(\sum_{k} |b_k|^2 \nu B_k\right)^{1/2} = (\mu f^2)^{1/2} (\nu g)^{1/2}.$$

The inequality then extends to any measurable functions f, g on \mathbb{R}_+ .

Corollary. If M and N are two local martingales that agree (throughout \mathbb{R}_+) on an event E, then [M] and [N] also agree on the event E.

Proof. Since M - N is constant 0 on the event E, by the proposition on intervals of constancy, [M - N] is a.s. constant 0 on E. Since [M] - [N] = [M + N, M - N], by Proposition 15.10, [M] - [N] is a.s. constant 0 on the event E.

Let \mathcal{E} denote the space of uniformly bounded predictable step processes, which change values at finitely many fixed times. This means that each $U \in \mathcal{E}$ can be expressed as

$$U_t = \sum_{j=0}^{n-1} \zeta_j \mathbf{1}_{(t_j,\infty)}(t) = \sum_{k=0}^{n-1} \eta_k \mathbf{1}_{(t_k,t_{k+1}]}(t),$$
(2.8)

where $n \in \mathbb{N}$, $0 = t_0 < t_1 < \cdots < t_n$, and for each k, ζ_k and η_k are bounded \mathcal{F}_{t_k} -measurable random variables.

For every finite variation process A, let L(A) denote the space of progressive processes V such that the Stieltjes integrals $\int_0^t |V| |dA|$ is finite for all $t \ge 0$. Note that L(A) contains all right-continuous or left-continuous adapted processes, which are locally bounded. It is easy to see that $\mathcal{E} \subset L(A)$. For every $V \in L(A)$, we may define the process $V \cdot A$ by $(V \cdot A)_t = \int_0^t V dA$. For $V \in \mathcal{E}$, $V \cdot A$ defined in this way agrees with the elementary integral. Then $V \cdot A$ is also a finite variation process, and $d(V \cdot A)$ is absolutely continuous w.r.t. dA, and the Radon-Nikodym derivative is V. Thus, $U \in L(V \cdot A)$ iff $UV \in L(A)$, and $U \cdot (V \cdot A) = (UV) \cdot A$.

Lemma 15.11. For any continuous local martingales M, N, and any $U \in \mathcal{E}$, the elementary integral $U \cdot M$ is also a continuous local martingales, and a.s.

$$[U \cdot M, N] = U \cdot [M, N]$$

Proof. We may take $M_0 = N_0 = 0$. The fact that $U \cdot M$ is a local martingale follows from localization: we use a sequence of stopping times $\tau_n \uparrow \infty$ to make M^{τ_n} bounded martingales. Then Lemma 15.3 implies that $(U \cdot M)^{\tau_n} = U \cdot M^{\tau_n}$ is a martingale. So $U \cdot M$ is a local martingale. To prove $[U \cdot M, N] = U \cdot [M, N]$, we may assume by localization that M, N, and [M, N] are uniformly bounded. Then M, N, MN - [M, N] are all bounded martingales.

To prove that a.s. $[U \cdot M, N] = U \cdot [M, N]$, it suffices to prove that $(U \cdot M)N - U \cdot [M, N]$ is a martingale. Suppose U has the form of (2.8). Then

$$(U \cdot M)_t N_t = \sum_{j=0}^{n-1} \zeta_j (M_t - M_{t \wedge t_j}) N_t;$$
$$(U \cdot [M, N])_t = \sum_{j=0}^{n-1} \zeta_j ([M, N]_t - [M, N]_{t \wedge t_j}).$$

Then we have

$$(U \cdot M)_t N_t - (U \cdot [M, N])_t = \sum_{j=0}^{n-1} \zeta_j ((M_t N_t - [M, N]_t) - (M_t^{t_j} N_t - [M^{t_j}, N]_t))$$

For each j, MN - [M, N] and $M^{t_j}N - [M, N]^{t_j}$ are martingales, and so is their difference. Since the two processes agree on $[0, t_j]$, there difference vanishes on $[0, t_j]$. By Corollary 6.14, $\zeta_j((M_tN_t - [M, N]_t) - (M_t^{t_j}N_t - [M^{t_j}, N]_t))$ is a martingale. So $(U \cdot M)N - (U \cdot [M, N])$ is a martingale.

Given a continuous local martingale M, let L(M) denote the class of all progressive processes V with $(V^2 \cdot [M])_t < \infty$ for all $t \ge 0$, i.e., $V^2 \in L([M])$.

Theorem 15.12. For every continuous local martingale M and $V \in L(M)$, there exists an a.s. unique continuous local martingale M' with $M'_0 = 0$ such that for any continuous local martingale N, a.s. $[M', N] = V \cdot [M, N]$.

Note that if $V \in L(M)$, then $V \in L([M, N])$ by Proposition 15.10. So $V \cdot [M, N]$ is well defined. We will use $V \cdot M$ or $\int V dM$ to denote the process M', and call it the stochastic integral of V against dM. The equality then reads

$$[V \cdot M, N] = V \cdot [M, N].$$

By Lemma 15.11, this stochastic integral extends the elementary integral in the case that $V \in \mathcal{E}$. By iteration, we find that for two continuous local martingales M and N, and $U \in L(M)$, $V \in L(N)$, a.s.

$$[U \cdot M, V \cdot N] = U \cdot [M, V \cdot N] = U \cdot (V \cdot [M, N]) = UV \cdot [M, N].$$

In particular, $[U \cdot M] = U^2 \cdot [M]$.

Proof. To prove the uniqueness, suppose M' and M'' are two continuous local martingales started from 0 such that for every continuous local martingale N, a.s. $[M', N] = [M'', N] = V \cdot [M, N]$. Taking N = M' - M'', we get a.s. [M' - M''] = 0, which implies that a.s. M' = M''.

For the existence, first assume that $||V||_M^2 := \mathbb{E}(V^2 \cdot [M])_\infty < \infty$. Consider the linear function on \mathcal{M}^2 : $N \mapsto \mathbb{E}(V \cdot [M, N])_\infty$. By Proposition 15.10,

$$|\mathbb{E}(V \cdot [M,N])_{\infty}| \le \mathbb{E}[(V^2 \cdot [M])_{\infty}^{1/2}[N]_{\infty}^{1/2}] \le ||V||_M \mathbb{E}[[N]_{\infty}]^{1/2} = ||V||_M ||N||_{\mathcal{M}^2}.$$

Thus, the linear function is bounded. Since \mathcal{M}^2 is a Hilbert space, by Riesz representation theorem, there is $\mathcal{M}' \in \mathcal{M}^2$ such that for any $N \in \mathcal{M}^2$,

$$\mathbb{E}(V \cdot [M, N])_{\infty} = \langle M', N \rangle = [M', N]_{\infty} = \mathbb{E}M'_{\infty}N_{\infty}.$$

By replacing N by N^{τ} for some stopping time τ , we get

$$\mathbb{E}(V \cdot [M, N])_{\tau} = \mathbb{E}(V \cdot [M, N]^{\tau})_{\infty} = \mathbb{E}(V \cdot [M, N^{\tau}])_{\infty} = \mathbb{E}M'_{\infty}N_{\infty}^{\tau} = \mathbb{E}M'_{\infty}N_{\tau} = \mathbb{E}M'_{\tau}N_{\tau}$$

Since V is progressive, $V \cdot [M, N]$ is adapted. Now $\mathbb{E}[(V \cdot [M, N] - M'N)_{\tau}] = 0$ for any stopping time τ . By Lemma 6.13, $V \cdot [M, N] - M'N$ is a martingale. So we get a.s. $[M', N] = V \cdot [M, N]$ for any $N \in \mathcal{M}^2$. By localization, this extends to any continuous local martingale N.

We may remove the assumption that $||V||_M^2 < \infty$ by localization. More specifically, define $\tau_n = \inf\{t \ge 0 : (V^2 \cdot [M])_t \ge n\}, n \in \mathbb{N}$. Then for every $n, ||V||_{M^{\tau_n}} \le n$. By the previous argument, for each n, there exists a continuous local martingale $\widetilde{M}^{(n)}$ such that for any continuous local martingale N, a.s.

$$[M^{(n)}, N] = V \cdot [M^{\tau_n}, N].$$
 (2.9)

For m < n, we have that for any continuous local martingale N, a.s.

$$[(\widetilde{M}^{(n)})^{\tau_m}, N] = [\widetilde{M}^{(n)}, N]^{\tau_m} = V \cdot [M^{\tau_n}, N]^{\tau_m} = V \cdot [M^{\tau_m}, N] = [\widetilde{M}^{(m)}, N].$$

Taking $N = (\widetilde{M}^{(n)})^{\tau_m} - \widetilde{M}^{(m)}$, we get a.s. $(\widetilde{M}^{(n)})^{\tau_m} = \widetilde{M}^{(m)}$. So there exists a continuous process \widetilde{M} such that $(\widetilde{M})^{\tau_n} = \widetilde{M}^{(n)}$ for any $n \in \mathbb{N}$. Since $\tau_n \uparrow \infty$, and $(\widetilde{M})^{\tau_n}$ is a local martingale for every n, \widetilde{M} is a continuous local martingale. Finally, for any continuous local martingale N, and any $n \in \mathbb{N}$, a.s.

$$[\widetilde{M}, N]^{\tau_n} = [(\widetilde{M})^{\tau_n}, N] = [\widetilde{M}^{(n)}, N] = V \cdot [M^{\tau_n}, N] = (V \cdot [M, N])^{\tau_n}.$$

Since $\tau_n \uparrow \infty$, we get a.s. $[M, N] = V \cdot [M, N]$.

Definition. A process X is called a continuous semimartingale if it can be written as X = M + A, where M is a continuous local martingale, and A is a finite variation process. An \mathbb{R}^d -valued process $X = (X^1, \ldots, X^d)$ is called a continuous vector semimartingale if every X^j is a continuous semimartingale.

The local martingales and semimartingales considered in this course are all continuous. So we will omit the words "continuous".

We call M + A a canonical decomposition of X. If a semimartingale X has two canonical decompositions X = M + A = M' + A', then M - M' = A' - A is a local martingale with locally finite variation starting from 0, which is a.s. 0 by Proposition 15.2. Thus, the canonical decomposition is a.s. unique.

If X is a semimartingale with canonical decomposition M + A, then for any stopping time τ , X^{τ} is a semimartingale with canonical decomposition $M^{\tau} + A^{\tau}$. On the other hand, if there is a sequence of stopping times $\tau_n \uparrow \infty$ such that for every n, X^{τ_n} is a semimartingale, then X is a semimartingale. In fact, if $M^n + A^n$ is the canonical decomposition of X^{τ_n} , then for n < m, $(M^m)^{\tau_n} + (A^m)^{\tau_n}$ is also a canonical decomposition of X^{τ_n} . By the uniqueness, we have a.s. $(M^m)^{\tau_n} = M^n$. Then we may define processes M and A such that on an event E with probability 1, for any n, $M^{\tau_n} = M^n$, $A^{\tau_n} = A^n$; and on E^c , M = X and A = 0. Then A is a finite variation process, and for every n, a.s. $M^{\tau_n} = M^n$, and so M is a local martingale. Since X = M + A, X is a semimartingale.

For two semimartingales X and X' with canonical decompositions X = M + A and X' = M' + A', we define

$$[X] = [M], \quad [X, X'] = [M, M'].$$

For a semimartingale X with canonical decomposition M + A, let $L(X) = L(M) \cap L(A)$. For $V \in L(X)$, we define

$$V \cdot X = \int V dX = V \cdot M + V \cdot A.$$

So $V \cdot X$ is a semimartingale with canonical decomposition $V \cdot M + V \cdot A$.

Exercise. Let X and Y be two continuous adapted process, and $E \in \mathcal{F}_0$. Suppose X = Y on E, and Y is constant on E^c . Show that if X is a martingale, local martingale, or semimartingale, then Y is respectively a martingale, local martingale, or semimartingale.

Exercise. Let X and Y be semimartingales. Prove that (i) For any stopping time τ , $[X^{\tau}, Y^{\tau}] = [X^{\tau}, Y] = [X, Y]^{\tau}$. (ii) On any event such that X = Y, a.s. X and Y have the same decomposition, and so [X] = [Y]. (iii) Almost surely on any interval such that X is constant, [X] is also constant. To prove (ii), we need to improve Proposition 15.2: If M is a local martingale, then on any event E such that M has locally finite variation, M is a.s. constant.

Corollary 15.14 (Stochastic Dominated Convergence). Fix a semimartingale X. Let U, V, $V^1, V^2, \dots \in L(X)$ satisfy a.s. $|V_t^n| \leq U_t$ for all $n \in \mathbb{N}$ and $t \geq 0$, and a.s. $V_t^n \to V_t$ for all $t \geq 0$ with at most countably many possible exceptions. Then for all $t \geq 0$,

$$(V^n \cdot X - V \cdot X)_t^* = \sup_{0 \le s \le t} |(V^n \cdot X)_s - (V \cdot X)_s| \xrightarrow{P} 0$$

Proof. Assume that X = M + A. Since $U \in L(X)$, $U \in L(A)$ and $U^2 \in L([M])$. By DCT for Stieltjes integral and the fact that dA and d[M] have no point mass, we have a.s. for all $t \ge 0$,

 $\int_0^t |V_s^n - V_s| |dA| \to 0 \text{ and } ((V^n - V)^2 \cdot [M])_t \to 0, \text{ where the former convergence further implies that } (V^n \cdot A - V \cdot A)_t^* \xrightarrow{\mathcal{P}} 0. \text{ Since a.s. } ((V^n - V)^2 \cdot [M])_t = [(V^n - V) \cdot M]_t, \text{ by Proposition 15.6, } ((V^n - V) \cdot M)_t^* \xrightarrow{\mathcal{P}} 0 \text{ for all } t \ge 0.$

Exercise. Prove that if two semimartingales X and Y agree on an event E, then for any continuous adapted process V, a.s. $V \cdot X = V \cdot Y$ on E. Hint: Use predictable step processes to approximate V, and apply stochastic dominated convergence theorem.

Proposition 15.15 (Chain Rule). Let X be a semimartingale. Let U and V be two progressive processes such that $V \in L(X)$. Then $U \in L(V \cdot X)$ iff $UV \in L(X)$, in which case, a.s. $U \cdot (V \cdot X) = (UV) \cdot X$.

Proof. Assume X = M + A is the canonical decomposition of X. Then $V \cdot X = V \cdot M + V \cdot A$, and $[V \cdot M] = V^2 \cdot [M]$. Now $U \in L(V \cdot X)$ iff $U \in L(V \cdot A)$ and $U^2 \in L([V \cdot M]) = L(V^2 \cdot [M])$, which is further equivalent to $UV \in L(A)$ and $U^2V^2 \in L([M])$, which is equivalent to $UV \in L(X)$. We know that $U \cdot (V \cdot A) = (UV) \cdot A$. It remains to prove that a.s. $U \cdot (V \cdot M) = (UV) \cdot M$. To see this, note that for any local martingale, a.s. $[U \cdot (V \cdot M), N] = U \cdot [V \cdot M, N] = U \cdot (V \cdot [M, N]) = (UV) \cdot [M, N] = [(UV) \cdot M, N]$. □

Proposition 15.16 (Optional Stopping). Let X be a semimartingale. Let $V \in L(X)$. Let τ be a stopping time. Then a.s.

$$(V \cdot X)^{\tau} = V \cdot X^{\tau} = (\mathbf{1}_{[0,\tau]} \cdot V) \cdot X.$$

Proof. The statement is obvious if X is a finite variation process because in that case $dX^{\tau} = \mathbf{1}_{[0,\tau]} dX$. It suffices to prove the statement in the case that X = M is a local martingale. Now for any local martingale N,

$$[(V \cdot M)^{\tau}, N] = [V \cdot M, N^{\tau}] = V \cdot [M, N^{\tau}] = V \cdot [M^{\tau}, N] = V \cdot M^{\tau} = V \cdot [M, N]^{\tau} = (\mathbf{1}_{[0,\tau]} V \cdot [M, N].$$

This then implies that $(V \cdot M)^{\tau} = V \cdot M^{\tau} = (\mathbf{1}_{[0,\tau]}V) \cdot M.$

We briefly recall some basic definition and results.

- 1. A local martingale is a natural extension of continuous martingale.
- 2. For local martingales M and N, [M, N] is the finite variation process such that MN [M, N] is a local martingale.
- 3. For a finite variation process A, we define $U \cdot A$ using Stieltjes integral.
- 4. For a local martingale M and suitable $U, U \cdot M$ is the local martingale such that for any local martingale $N, [U \cdot M, N] = U \cdot [M, N]$.

- 5. A semimartingale X is the sum of a local martingale M with a finite variation process A. We define [X] = [M] and $U \cdot X = U \cdot M + U \cdot A$ for suitable U.
- 6. We use localization to gain boundedness assumptions on local martingales.

We are going to prove the celebrated Itô's formula, which says, if $X = (X^1, \ldots, X^d)$ is a vector semimartingale, and if $f : \mathbb{R}^d \to \mathbb{R}$ is C^2 differentiable, then Y := f(X) is also a semimartingale, and a.s.

$$Y = Y_0 + \sum_{j=1}^d \partial_j f(X) \cdot X^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X) \cdot [X^j, X^k].$$

We will first prove a simple case: f(x,y) = xy. Note that $\partial_x f = y$, $\partial_y f = x$, $\partial_x^2 f = \partial_y^2 f = 0$, and $\partial_x \partial_y f = \partial_y \partial_x f = 1$. Later we will use the special case to prove the general result.

Theorem 15.17 (Product Formula). For any two semi-martingales X, Y, their product XY is also a semi-martingale, and a.s.

$$XY = X_0Y_0 + X \cdot Y + Y \cdot X + [X, Y].$$

Proof. By polarization, it suffices to consider the case that X = Y. First, suppose $X = M \in \mathcal{M}^2$ and $M_0 = 0$. Fix $n \in \mathbb{N}$. Define V^n and Q^n as in the proof of Theorem 15.5: We first define a sequence of stopping times $\tau_k^n \uparrow 0$ by $\tau_0^n = 0$ and $\tau_k^n = \inf\{t \ge \tau_{k-1}^n : |M_t - M_{\tau_{k-1}^n}| = 2^{-n}\}, k \in \mathbb{N}$. Then define V^n and Q^n by (2.3), i.e.,

$$V_t^n = \sum_{k=0}^{\infty} M_{\tau_k^n} \mathbf{1}_{(\tau_k^n, \tau_{k+1}^n]}(t), \quad Q_t^n = \sum_{k=0}^{\infty} (M_{t \wedge \tau_{k+1}^n} - M_{t \wedge \tau_k^n})^2.$$

Recall that we have

$$M^2 = 2(V^n \cdot M) + Q^n.$$

Since $|V^n|_t \leq M_t^*$ for all $n \in \mathbb{N}$ and $t \geq 0$, and $V^n \to M$, by stochastic dominated convergence, $(V^n \cdot M)_t \xrightarrow{\mathrm{P}} (M \cdot M)_t$ for every $t \geq 0$. From the proof of Theorem 15.5, for every $t \geq 0$, $Q_t^n \xrightarrow{\mathrm{P}} [M]_t$. So for any $t \geq 0$, a.s. $M_t^2 = 2(M \cdot M)_t + [M]_t$. By continuity, we get a.s. $M^2 = 2(M \cdot M) + [M]$.

Next, assume that X = M is a local martingale and $M_0 = 0$. Let $\tau_n = \inf\{t \ge 0 : |M_t| \ge n\}$, $n \in \mathbb{N}$. Then $M^{\tau_n} \in \mathcal{M}^2$. So a.s. for any $n \in \mathbb{N}$,

$$(M^2)^{\tau_n} = (M^{\tau_n})^2 = 2(M^{\tau_n} \cdot M^{\tau_n}) + [M^{\tau_n}] = (2(M \cdot M) + [M])^{\tau_n},$$

which implies that a.s. $M^2 = 2(M \cdot M) + [M]$.

If X = A is a finite variation process, then we need to show that $A^2 = 2A \cdot A$. To see this, suppose $\mu = dA$. Then by Fubini Theorem,

$$A_t^2 = \iint \mathbf{1}_{[0,t]^2} \mu^2(ds_1 \otimes ds_2) = \iint \mathbf{1}_{\Delta_1} \mu^2(ds_1 \otimes ds_2) + \iint \mathbf{1}_{\Delta_2} \mu^2(ds_1 \otimes ds_2)$$

$$= \int_0^t A_{s_2} \mu(ds_2) + \int_0^t A_{s_1} \mu(ds_1) = 2(A \cdot A)_t,$$

where $\Delta_1 = \{(s_1, s_2) \in \mathbb{R}^2 : 0 \le s_1 \le s_2 \le t\}$, and $\Delta_2 = \{(s_1, s_2) \in \mathbb{R}^2 : 0 \le s_2 < s_1 \le t\}$.

Suppose X is a semi-martingale with canonical decomposition M + A, and satisfies $X_0 = M_0 = 0$. We already have a.s. $M^2 = 2M \cdot M + [M]$ and $A^2 = 2A \cdot A$. To prove that a.s. $X^2 = 2X \cdot X + [X]$, it suffices to show that a.s. $AM = A \cdot M + M \cdot A$. Fix $t \ge 0$. For $n \in \mathbb{N}$, define processes A^n and M^n by

$$A^{n} = \sum_{k \in \mathbb{N}} A_{(k-1)t/n} \mathbf{1}_{((k-1)t/n, kt/n]}, \quad M^{n} = \sum_{k \in \mathbb{N}} M_{kt/n} \mathbf{1}_{((k-1)t/n, kt/n]}.$$

Note that A^n is adapted, but M^n is not. We have

$$A_t M_t = (A^n \cdot M)_t + (M^n \cdot A)_t, \quad n \in \mathbb{N}.$$

To see this, note that

$$(A^{n} \cdot M)_{t} = \sum_{k=1}^{n} A_{(k-1)t/n} (M_{kt/n} - M_{(k-1)t/n}), \quad (M^{n} \cdot A)_{t} = \sum_{k=1}^{n} M_{kt/n} (A_{kt/n} - A_{(k-1)t/n}).$$

Since $|A_s^n| \leq (A)_s^*$ and $A_s^n \to A_s$, we get a.s. $(A^n \cdot M)_t \to (A \cdot M)_t$ by stochastic dominated convergence. Since $|M_s^n| \leq M_t^*$ for $0 \leq s \leq t$, we get $(M^n \cdot A)_t \to (M \cdot A)_t$ by ordinary dominated convergence. Thus, a.s. $(MA)_t = (A \cdot M)_t + (M \cdot A)_t$. By continuity, we then get a.s. $(MA)_t = (A \cdot M)_t + (M \cdot A)_t$ for any $t \geq 0$.

Finally, we may remove the assumption that $X_0 = 0$ because from above we have a.s.

$$(X - X_0)^2 = 2(X - X_0) \cdot (X - X_0) + [X - X_0] = 2X \cdot X - 2X_0(X - X_0) + [X],$$

which implies that $X^2 = X_0^2 + 2X \cdot X + [X]$.

Remark. The theorem justifies the definition of semimartingales because semimartingales are closed under multiplication, but local martingales are not. We may rewrite the formula in the above theorem as d(XY) = XdY + YdX + d[X, Y]. If X and Y are positive, then we may write the formula as

$$\frac{d(XY)}{XY} = \frac{dX}{X} + \frac{dY}{Y} + \frac{d[X,Y]}{XY}.$$

By induction, this extends to the product of finitely many positive semimartingales:

$$\frac{d\prod_{j=1}^{n} X^{j}}{\prod_{j=1}^{n} X^{j}} = \sum_{j=1}^{n} \frac{dX^{j}}{X^{j}} + \sum_{1 \le j < k \le n} \frac{d[X^{j}, X^{k}]}{X^{j} X^{k}}.$$

If we move the denominator on the LHS to the right, then the formula holds without assuming that the X^{j} are positive or do not take value zero.

Proposition 15.18. Let X, Y be two semimartingales. Let t > 0. Let Δ^n be a sequence of partitions of [0,t]. For each $\Delta^n = \{0 = t_0^n < \cdots < t_{k_n}^n\}$, we define

$$T^{\Delta^n} = \zeta^{\Delta^n}(X, Y) = \sum_{k=1}^{k_n} (X_{t_k^n} - X_{t_{k-1}^n})(Y_{t_k^n} - Y_{t_{k-1}^n}).$$
 (2.10)

Suppose the mesh size $|\Delta^n| \to 0$. Then $T^{\Delta^n} \xrightarrow{\mathcal{P}} [X, Y]_t$.

Proof. We may assume that $X_0 = Y_0 = 0$. Introduce the predictable step process

$$X^{n} = \sum_{k=1}^{n} X_{t_{k-1}^{n}} \mathbf{1}_{(t_{k-1}^{n}, t_{k}^{n}]}, \quad Y^{n} = \sum_{k=1}^{n} Y_{t_{k-1}^{n}} \mathbf{1}_{(t_{k-1}^{n}, t_{k}^{n}]}.$$

Then we have

$$X_t Y_t = (X^n \cdot Y)_t + (Y^n \cdot X)_t + T^{\Delta^n}, \quad n \in \mathbb{N}.$$

Since $X^n \to X$, $Y^n \to Y$, and $|X_s^n| \le X_t^*$, $|Y_s^n| \le Y_t^*$, $0 \le s \le t$, by the stochastic dominated convergence, we get $(X^n \cdot Y)_t \xrightarrow{\mathcal{P}} (X \cdot Y)_t$ and $(Y^n \cdot X)_t \xrightarrow{\mathcal{P}} (Y \cdot X)_t$. Since by Theorem 15.17, a.s. $X_t Y_t = (X \cdot Y)_t + (Y \cdot X)_t + [X, Y]_t$, we get $T^{\Delta^n} \xrightarrow{\mathcal{P}} [X, Y]_t$.

Remark. This proposition shows that the quadratic variation a.s. does not depend on the underlying filtration. If \mathcal{F}' is another filtration w.r.t. which X is also a semimartingale, then a.s. $[X]^{\mathcal{F}'} = [X]^{\mathcal{F}}$. This proposition also implies that if under a new measure $\mathbb{P}' \ll \mathbb{P}$, X is also a semimartingale, then the quadratic variation of X a.s. does not change. However, the canonical decomposition of X may be different. See Girsanov Theorem later.

Example. If B is a Brownian motion, then $[B]_t = t$ for all $t \ge 0$. This follows from Proposition 15.18 and the quadratic variation of Brownian motion. If B' is another Brownian motion independent of B, then [B, B'] = 0. To see this, by computing covariance function, we find that B + B' equals $\sqrt{2}$ times a Brownian motion. $[B + B']_t = 2t$ for all $t \ge 0$. So [B, B'] = ([B + B'] - [B] - [B'])/2 = 0. Below is a more general statement.

Exercise. Suppose that X and Y are two \mathcal{F} -continuous local martingale, which are independent of each other. Prove that a.s. [X, Y] = 0, and so XY is also an \mathcal{F} -local martingale.

Hint: Since [X, Y] does not depend on the filtration, it suffices to show that a.s. [X, Y] = 0 if the filtration is the natural filtration $\mathcal{F}^{(X,Y)}$ generated by (X, Y). By localization, we may assume that X and Y are bounded martingales. Then a.s. [X, Y] = 0 is equivalent to that XY is a martingale w.r.t. $\mathcal{F}^{(X,Y)}$, which further follows from a monotone class argument.

Remark: It is not easy to prove directly that XY is an \mathcal{F} -local martingale. In fact, if X and Y are independent non-continuous \mathcal{F} -martingales, then XY may not be an \mathcal{F} -martingale.

Theorem 15.19 (Itô's Formula). Let $X = (X^1, \ldots, X^d)$ be a vector semimartingale. Let $f \in C^2(\mathbb{R}^d, \mathbb{R})$. Then f(X) is a semimartingale, and a.s.

$$f(X) = f(X_0) + \sum_{j=1}^d \partial_j f(X) \cdot X^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X) \cdot [X^j, X^k].$$
(2.11)

We will often express the Itô's formula as a differential form:

$$df(X) = \sum_{j=1}^d \partial_j f(X) dX^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X) d[X^j, X^k].$$

In the case that d = 1, the formula becomes

$$df(X) = f'(X)dX + \frac{1}{2}f''(X)d[X].$$

Proof. Let Σ denote the set of all $f \in C^2(\mathbb{R}^d \to \mathbb{R})$ such that a.s. (2.11) holds. Then Σ is a vector space, and contains all constant functions and coordinate functions: $f_j(x) = x_j$, $1 \leq j \leq d$. Suppose $f, g \in \Sigma$. By Theorem 15.17, a.s.

$$\begin{split} f(X)g(X) &= f(X_0)g(X_0) + f(X) \cdot g(X) + g(X) \cdot f(X) + [f(X), g(X)] \\ &= (fg)(X_0) + \sum_{j=1}^d f(X)\partial_j g(X) \cdot X^j + \sum_{j=1}^d g(X)\partial_j f(X) \cdot X^j + \\ &+ \frac{1}{2}\sum_{j=1}^d \sum_{k=1}^d f(X)\partial_j \partial_k g'(X)d[X_j, X_k] + \frac{1}{2}\sum_{j=1}^d \sum_{k=1}^d g(X)\partial_j \partial_k f(X)d[X_j, X_k] \\ &+ [\sum_{j=1}^d \partial_j f(X)dX^j, \sum_{k=1}^d \partial_k g(X)dX^k] \\ &= (fg)(X_0) + \sum_{j=1}^d (f(X)\partial_j g(X) + g(X)\partial_j f(X)) \cdot X^j \\ &+ \frac{1}{2}\sum_{j=1}^d \sum_{k=1}^d (f(X)\partial_j \partial_k g(X) + g(X)\partial_j \partial_k f(X) + \partial_j f(X)\partial_k g(X) + \partial_k g(X)\partial_j g(X))d[X_j, X_k] \\ &= (fg)(X_0) + \sum_{j=1}^d \partial_j (fg)(X) \cdot X^j + \frac{1}{2}\sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k (fg)(X)d[X_j, X_k]. \end{split}$$

Thus, $fg \in \Sigma$. This means that Σ is closed under multiplication. So Σ contains all polynomials in x_1, \ldots, x_d . We now prove that if X is uniformly bounded, i.e., there is a constant $R < \infty$ such that $|X_t| \leq R$ for all $t \geq 0$, then for any $f \in C^2(\mathbb{R}^d, \mathbb{R})$, (2.11) holds. Recall the (higherorder) Weierstrass Approximation Theorem: There is a sequence of polynomials q_n such that q_n and its up to second order partial derivatives converge to f and its corresponding partial derivatives, respectively, uniformly on $\{x \in \mathbb{R}^d : |x| \leq R\}$. For each $n \in \mathbb{N}$, since $q_n \in \Sigma$, we have

$$q_n(X) = q_n(X_0) + \sum_{j=1}^d \partial_j q_n(X) \cdot X^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k q_n(X) [X^j, X^k].$$

Letting $n \to \infty$ and using the ordinary and stochastic dominated convergence theorems, we then conclude that (2.11) holds.

We intend to use localization to remove the boundedness assumption on X, and define for each $n \in \mathbb{N}$, $\tau_n = \inf\{t \ge 0 : |X_t| \ge n\}$. However, since we did not assume that $|X_0| \le n$, we do not have $|X^{\tau_n}| \le n$. In fact, if $|X_0| > n$, then $\tau_n = 0$, and X^{τ_n} is a constant value outside $\{x : |x| \le n\}$. We observe that X^{τ_n} is uniformly bounded on the event $\{|X_0| \le n\} \in \mathcal{F}_0$, and is constant on $\{|X_0| > n\}$. This motivates us to slightly relax the boundedness assumption on X. We claim that, if there is an \mathcal{F}_0 -measurable event E, such that X is uniformly bounded on the event E, and is constant on the event E^c , then (2.11) holds for any $f \in C^2(\mathbb{R}^d, \mathbb{R})$. To see this, we may define another process \widetilde{X} such that $\widetilde{X} = X$ on E and $\widetilde{X} = 0$ on E^c . By an exercise, \widetilde{X} is also a semimartingale. Let $f \in C^2(\mathbb{R}^d, \mathbb{R})$. Since \widetilde{X} is uniformly bounded, from the last paragraph, we see that $f(\widetilde{X})$ is a semimartingale, and (2.11) holds for \widetilde{X} . Now $f(X) = f(\widetilde{X})$ on E, and f(X) is constant on E^c . By the same exercise again f(X) is also a semimartingale. On the event E, since $X = \widetilde{X}$, by another exercise the RHS of (2.11) for \widetilde{X} agrees with the RHS of (2.11) for X. So (2.11) holds for X a.s. on E. Since X is constant on E^c , (2.11) also holds for X on E^c . Thus, (2.11) holds a.s. for X.

Finally, we consider the general case. For every $n \in \mathbb{N}$, let $\tau_n = \inf\{t \ge 0 : |X_t| \ge n\}$. Then X^{τ_n} is uniformly bounded on the event $E_n = \{|X_0| < n\} \in \mathcal{F}_0$, and is constant on E_n^c . From the last paragraph, we know that (2.11) holds for X^{τ_n} . So (2.11) holds for X up to τ_n . Since $\tau_n \uparrow \infty$, we get (2.11) throughout \mathbb{R}_+ .

- **Remark**. 1. Itô's formula is a very powerful tool. The rest of this course can be viewed as a non-ending series of applications of Itô's formula.
 - 2. The differentiability assumption of f can be relaxed. If some component X^j of X is of locally finite total variation, then we only need that f is C^1 in the *j*-th coordinate. The proof goes through just the same.
 - 3. Itô's formula shows that the class of semimartingales is invariant under composition with C^2 -functions, which gives a reason for the introduction of semimartingales. If M is a local martingale, or even a martingale, f(M) is usually not a local martingale, but only a semimartingale.

Example. We use (t) to denote the process, which equals t at time t. Let B be a Brownian motion. Then [B] = (t). Let σ and μ be two continuous adapted processes. Let $A = \mu \cdot (t)$, i.e.,

 $A_t = \int_0^t \mu_s ds$. Then A is an adapted C^1 process with $A'_t = \mu_t$. Then we write $dA = \mu dt$ Let $M = \sigma \cdot B$. Then M is a local martingale with $[M] = \sigma^2 \cdot [B] = \sigma^2 \cdot (t)$. We write $dM = \sigma dB$. If a semimartingale $X = X_0 + \sigma \cdot B + \mu \cdot (t)$, then we write $dX = \sigma dB + \mu dt$. It satisfies $[X] = [\sigma \cdot B] = \sigma^2 \cdot (t)$. So we write $d[X] = \sigma^2 dt$. If $f \in C^2(\mathbb{R}, \mathbb{R})$, then Y = f(X) is a semimartingale that satisfies

$$\begin{aligned} Y - Y_0 &= f'(X) \cdot X + \frac{1}{2} f''(X) \cdot [X] = f'(X) \cdot (\sigma \cdot B + \mu \cdot (t)) + \frac{1}{2} f''(X) \cdot (\sigma^2 \cdot (t)) \\ &= (f'(X)\sigma) \cdot B + (f'(X)\mu) \cdot (t) + \frac{1}{2} f''(X)\sigma^2 \cdot (t) = (f'(X)\sigma) \cdot B + (f'(X)\mu + \frac{1}{2} f''(X)\sigma^2) \cdot (t). \end{aligned}$$

So $dY = f'(X)\mu dB + (f'(X)\mu + \frac{1}{2} f''(X)\sigma^2) dt.$

Example. If $X = B = (B^1, \ldots, B^d)$ is a *d*-dimensional Brownian motion, and $f \in C^2(\mathbb{R}^d, \mathbb{R})$, then since $[B^j, B^k]_t = \delta_{i,k} t$,

$$df(B) = \sum_{j=1}^{d} \partial_j f(B) dB_j + \frac{1}{2} \Delta f(B) dt.$$

Thus, if f is harmonic, then f(B) is a local martingale.

=

Example (Complex Itô's Formula). A complex semimartingale is of the form Z = X + iY, where X and Y are real semimartingales. Its quadratic variation is [Z] = [X + iY, X + iY] =[X] - [Y] + 2i[X, Y]. Suppose $f : \mathbb{C} \to \mathbb{C}$ is analytic. Then f(Z) is a complex semimartingale, and satisfies

$$df(Z) = f'(Z)dZ + \frac{1}{2}f''(Z)d[Z].$$

This also extends to complex vector semimartingales. The details are left as an exercise.

Example. We define the stochastic exponential of a semimartingale M as

$$\mathscr{E}(M) = \exp(M - \frac{1}{2}[M]).$$

Then $\mathscr{E}(M)$ satisfies $\mathscr{E}(M) = e^{M_0} + \mathscr{E}(M) \cdot M$, which may be also written as

$$\frac{d\mathscr{E}(M)}{\mathscr{E}(M)} = dM$$

If M is a local martingale, then $\mathscr{E}(M)$ is also a local martingale. To derive the formula, let $f = e^x$ and $X = M - \frac{1}{2}[M]$, then by Itô's formula and that f'' = f' = f,

$$d\mathscr{E}(M) = f'(X)dX + \frac{1}{2}f''(X)d[X] = f(X)(dM - \frac{1}{2}d[X]) + \frac{1}{2}f(X)d[X] = f(X)dM.$$

For $\lambda \in \mathbb{C}$, we write $\mathscr{E}^{\lambda}(M)$ for the stochastic exponential of λM , then

$$\mathscr{E}^{\lambda}(M) = \exp(\lambda M - \frac{\lambda^2}{2}[M]), \quad \mathscr{E}^{\lambda}(M) = e^{\lambda M_0} + \lambda \mathscr{E}^{\lambda}(M) \cdot M.$$
So far, all local martingales or semimartingales are defined on \mathbb{R}_+ . We will relax this assumption and study continuous processes with (possibly finite) random lifetime. Let

$$\Sigma = \bigcup_{T \in (0,\infty]} C([0,T),\mathbb{R}).$$

For every $f \in \Sigma$, let $T(f) \in [0, \infty]$ be the lifetime of f, i.e., the domain of f is [0, T(f)). A continuous stochastic process with a random lifetime is a map $X : \Omega \to \Sigma$. We may also write X as $X_t, 0 \leq t < T(X)$. Note that for each $t \geq 0$, X_t is only defined on the event $\{T(X) > t\}$. We say that X is \mathcal{F} -adapted if for every $t \geq 0$, $\{T(X) > t\} \in \mathcal{F}_t$, and X_t restricted to $\{T(X) > t\}$ is \mathcal{F}_t -measurable. In this case, T(X) is a stopping time.

Definition. A random map $\tau : \Omega \to [0, \infty]$ is called a predictable time if there exists a sequence of stopping times $\tau_n \uparrow \tau$ such that $\tau_n < \tau$ when $\tau > 0$. The stopping times τ_n are said to announce τ .

As an increasing limit of stopping times, a predictable time must be a stopping time. If τ and σ are predictable times, then so are $\tau \wedge \sigma$ and $\tau \vee \sigma$ because if τ_n announce τ and σ_n announce σ , then $\tau_n \wedge \sigma_n$ and $\tau_n \vee \sigma_n$ announce $\tau \wedge \sigma$ and $\tau \vee \sigma$, respectively.

Example. Let X be a continuous process from \mathbb{R}_+ to \mathbb{R}^d , and F be a closed subset of \mathbb{R}^d . Then $\tau_F := \inf\{t \ge 0 : X_t \in F\}$ is a predictable time because there is a sequence of open sets $G_n \downarrow F$, and so the stopping times $\tau_{G_n} := \inf\{t \ge 0 : X_t \in G_n\}$ announce τ_F .

Definition. Suppose τ is a positive predictable time. Let X be a continuous stochastic process with lifetime τ . We say that X is a local martingale (resp. semimartingale) with lifetime τ , if there is a sequence of stopping times τ_n announcing τ such that for every n, $X_t^{\tau_n} = X_{\tau_n \wedge t}, \ 0 \leq t < \infty$, is a local martingale (resp. semimartingale) defined on $[0, \infty)$. A vector semimartingale with lifetime τ is defined similarly.

A continuous process X with lifetime τ is a local martingale (resp. semimartingale) iff for any stopping time $\sigma < \tau$, X^{σ} is a local martingale (resp. semimartingale). The "if" part is obvious. For the "only if" part, let σ be a stopping time with $\sigma < \tau$. Suppose τ_n is a sequence of stopping times announcing τ such that for every n, X^{τ_n} is a local martingale (resp. semimartingale). Define $\hat{\tau}_n = \tau_n$ if $\tau_n < \sigma$, and $\hat{\tau}_n = \infty$ if $\tau_n \ge \sigma$. Then for any $t \ge 0$, $\{\hat{\tau}_n < t\} = \{\tau_n < \sigma\} \cap \{\tau_n < t\} = \{\tau_n < \sigma \land t\} \in \mathcal{F}_{\sigma \land t} \subset \mathcal{F}_t$. Thus, $\hat{\tau}_n$ is a stopping time. Since $\tau_n \ge \sigma$ for n big enough, we have $\hat{\tau} \uparrow \infty$. Since for every $n, (X^{\sigma})^{\hat{\tau}_n} = X^{\sigma \land \hat{\tau}_n} = (X^{\tau}_n)^{\sigma}$ is a local martingale (resp. semimartingale), X^{σ} is a local martingale (resp. semimartingale).

Thus, the definition of local martingale or semimartingale with lifetime τ does not depend on the choice of the sequence τ_n that announce τ ; and the set of local martingales (resp. semimartingales) with the same lifetime τ form a linear space.

Example. Let τ be a positive predictable time. Let X be a local martingale (resp. semimartingale) on \mathbb{R}_+ . Then $X|_{[0,\tau)}$ is a local martingale (resp. semimartingale) with lifetime τ because for any stopping time $\sigma < \tau$, $(X|_{[0,\tau)})^{\sigma} = X^{\sigma}$ is a local martingale (resp. semimartingale). A lifetime- τ -local martingale M with locally finite total variation must be a.s. constant because for any stopping time $\sigma < \tau$, M^{σ} is a.s. constant by Proposition 15.2.

An adapted stochastic process A with lifetime τ will be simply called a finite variation process if $A_0 = 0$ and for each $t \in [0, \tau)$, A has finite total variation on [0, t].

If X is a semimartingale with lifetime τ , then it has an a.s. unique canonical decomposition X = M + A such that M is a local martingale with lifetime τ , and A is a finite variation process with lifetime τ . For the existence, suppose τ_n announce τ . Then for every n, X^{τ_n} is a semimartingale on \mathbb{R}_+ with canonical decomposition $M^n + A^n$. Let $n < m \in \mathbb{N}$. By the a.s. uniqueness of the decomposition of semimartingales on \mathbb{R}_+ , we have a.s. $M^n = (M^m)^{\tau_n}$ and $A^n = (A^m)^{\tau_n}$. Thus, we may define M and A with lifetime τ such that on an event E with probability 1, for each $n, M^{\tau_n} = M^n, A^{\tau_n} = A^n$; and on $E^c, M = X$ and A = 0. Then X = M + A, where M is a local martingale with lifetime τ , and A is a finite variation process with lifetime τ .

If M is a local martingale with lifetime τ , then M^2 is a semimartingale because for each stopping time $\sigma < \tau$, $(M^2)^{\sigma} = (M^{\sigma})^2$ is a semimartingale. Let N + A be a canonical decomposition of M^2 . Then we call A the quadratic variation of M, and denote it by [M]. For any stopping time $\sigma < \tau$, $N^{\sigma} + [M]^{\sigma}$ is a canonical decomposition of $(M^{\sigma})^2$. So we have a.s. $[M]^{\sigma} = [M^{\sigma}]$, which is nondecreasing. Thus, [M] is nondecreasing on $[0, \tau)$. For two local martingales M and N with lifetime τ , we define [M, N] = ([M + N] - [M - N])/4. If X and Yare lifetime- τ -semimartingales with canonical decomposition M + A and N + B, then we define [X] = [M] and [X, Y] = [M, N].

For a finite variation process A with lifetime τ , we define L(A) to be the set of progressive stochastic processes U with lifetime τ , such that for any $t \in [0, \tau)$, $\int_0^t |U_s| |dA_s| < \infty$. Here by saying that U is progressive, we man that for any fixed $t_0 \ge 0$, the set $D_{t_0} := \{(\omega, t) \in$ $\Omega \times [0, t_0] : t < T(U(\omega))\} \in \mathcal{F}_{t_0} \times \mathcal{B}_{[0, t_0]}$, and $U|_{D_{t_0}}$ is $\mathcal{F}_{t_0} \times \mathcal{B}_{[0, t_0]}$ -measurable. This is the case if U is adapted and continuous. For every $U \in L(A)$, we may define $(U \cdot A)_t = \int_0^t U_s dA_s$, $0 \le t < \tau$, which is a finite variation process with lifetime τ . Note that for every stopping time $\sigma < \tau, U^{\sigma} \in L(A^{\sigma})$, and $U^{\sigma} \cdot A^{\sigma} = (U \cdot A)^{\sigma}$.

For a local martingale M with lifetime τ , we define L(M) to be the set of progressive processes U with lifetime τ such that $U^2 \in L([M])$. If $U \in L(M)$, then for every stopping time $\sigma < \tau$, $(U^{\sigma})^2 = (U^2)^{\sigma} \in L([M]^{\sigma})$. So $U^{\sigma} \in L(M^{\sigma})$, and we may define $U^{\sigma} \cdot M^{\sigma}$. Suppose τ_n announce τ . Then the family $U^{\tau_n} \cdot M^{\tau_n}$, $n \in \mathbb{N}$, is consistent, i.e., for any n < m, a.s. $U^{\tau_n} \cdot M^{\tau_n} = (U^{\tau_m} \cdot M^{\tau_m})^{\tau_n}$. So we may define the local martingale $U \cdot M$ with lifetime τ such that for each n, a.s. $(U \cdot M)^{\tau_n} = U^{\tau_n} \cdot M^{\tau_n}$. If $\sigma < \tau$ is a stopping time, then a.s. for any n, $((U \cdot M)^{\sigma})^{\tau_n} = (U^{\tau_n} \cdot M^{\tau_n})^{\sigma} = (U^{\sigma} \cdot M^{\sigma})^{\tau_n}$. Since $\tau = \lim \tau_n > \sigma$, we get a.s. $(U \cdot M)^{\sigma} = (U^{\sigma}) \cdot M^{\sigma}$. If N is another local martingale with lifetime τ , a similar argument shows that a.s. $[U \cdot M, N] = U \cdot [M, N]$.

For a lifetime- τ -semimartingale X with the canonical decomposition M + A, let $L(X) = L(M) \cap L(A)$. For $U \in L(X)$, we define $U \cdot X = U \cdot M + U \cdot A$. Then $U \cdot X$ is a lifetime- τ -semimartingale with canonical decomposition $U \cdot M + U \cdot A$. It is the a.s. unique process with lifetime τ that satisfies the property that for any stopping time $\sigma < \tau$, $(U \cdot X)^{\sigma} = U^{\sigma} \cdot X^{\sigma}$.

Corollary 15.20 (Local Itô's Formula). Fix an open set $D \subset \mathbb{R}^d$. Let $f \in C^2(D, \mathbb{R})$. Let X be a vector semimartingale with random lifetime τ such that $X_t \in D$ for all $t \in [0, \tau)$. Then f(X)is a semimartingale with lifetime τ , and Itô's formula holds up to τ , i.e., a.s.

$$f(X) = f(X_0) + \sum_{j=1}^d \partial_j f(X) \cdot X^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X) \cdot [X^j, X^k], \quad on \ [0, \tau).$$
(2.12)

Here the meaning of "local" is twofold: first, X is defined not on $[0, \infty)$, but on $[0, \tau)$; second, f is not defined on \mathbb{R}^d , but on $D \subset \mathbb{R}^d$.

Proof. Suppose τ_n is a sequence of stopping times announcing τ . Let G_n be an increasing sequence of bounded open subsets of D such that $D = \bigcup G_n$, and $\overline{G}_n \subset D$ for each $n \in \mathbb{N}$. Let $\tau_{G_n} = \inf(\{\tau\} \cup \{t \ge 0 : X_t \notin G_n\}), n \in \mathbb{N}$. Let $\sigma_n = \tau_n \wedge \tau_{G_n}, n \in \mathbb{N}$. Then σ_n also announce τ . For each n, X^{σ_n} is contained in \overline{G}_n on the event $E_n := \{X_0 \in G_n\} \in \mathcal{F}_0$, and is constant on E_n^c . Pick $x_0 \in G_0$. For each n, define Y^n such that $Y^n = X^{\sigma_n}$ on E_n , and $Y^n \equiv x_0$ on E_n^c . Then Y^n is contained in \overline{G}_n . By an exercise, Y^n is also a vector semimartingale. We may define a function $f_n \in C^2(\mathbb{R}^d, \mathbb{R})$ such that f_n agrees with f in a neighborhood of \overline{G}_n . Applying the usual Itô's formula to Y^n and f_n and using the fact that f and f_n agree in an open set containing the range of Y^n , we find that $f_n(Y^n) = f(Y^n)$ is a semimartingale, and a.s.

$$f(Y^n) = f(Y_0^n) + \sum_{j=1}^d \partial_j f(Y^n) \cdot (Y^n)^j + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(Y^n) \cdot [(Y^n)^j, (Y^n)^k].$$
(2.13)

Since $f(Y^n)$ agrees with $f(X^{\sigma_n})$ on E_n , and $f(X^{\sigma_n})$ is constant on E_n^c . By the exercise again, $f(X^{\sigma_n})$ is also a semimartingale. Since X^{σ_n} agrees with Y^n on the event E_n , by another exercise, the RHS of (2.13) agrees a.s. on E_n with the same formula with X^{σ_n} in place of Y^n . Thus, a.s. on E_n ,

$$f(X)^{\sigma_n} = f(X_0) + \sum_{j=1}^d (\partial_j f(X) \cdot X^j)^{\sigma_n} + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X) \cdot [X^j, X^k]^{\sigma_n}.$$
 (2.14)

Since X^{σ_n} is constant on E_n^c , (2.12) also holds on E_n^c . Thus, for any n, (2.14) a.s. holds. This means that (2.12) a.s. holds on $[0, \sigma_n)$. Since σ_n announce τ , we see that (2.12) a.s. holds throughout $[0, \tau)$.

From now on, a local martingale or semimartingale may have infinite or finite (and random) lifetime.

Example. The quotient of two semimartingales X/Y is a semimartingale (assuming that Y does not take value 0). To see this, write X/Y = f(X,Y), where f(x,y) := x/y is C^2 on $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$.

Example. Suppose X is a positive semimartingale, and $\alpha \in \mathbb{R}$. Then X^{α} is a semimartingale. To see this, we apply the above corollary with $f(x) = x^{\alpha}$ and $D = (0, \infty)$. Since $f'(x) = \frac{\alpha}{x}f(x)$ and $f''(x) = \frac{\alpha(\alpha-1)}{x^2}f(x)$, we get

$$dX^{\alpha} = f'(X)dX + \frac{1}{2}f''(X)d[X] = \frac{\alpha}{X}X^{\alpha}dX + \frac{1}{2}\frac{\alpha(\alpha-1)}{X^2}X^{\alpha}d[X].$$

We may rewrite this formula as

$$\frac{dX^{\alpha}}{X^{\alpha}} = \alpha \frac{dX}{X} + \frac{1}{2}\alpha(\alpha - 1)\frac{d[X]}{X^2}.$$

Example. Let D be a domain in \mathbb{R}^d . Let B be a Brownian motion in \mathbb{R}^d (started from $x \in \mathbb{R}^d$). Let τ be the first time that B exits D. Let $f : D \to \mathbb{R}$ be harmonic. Then $f(B|_{[0,\tau)}$ is a local martingale with lifetime τ .

There is another important extension of Itô's formula. For simplicity, we only state the one-dimensional case, and omit its proof. See the book "Continuous martingales and Brownian motion" by Revuz-Yor: Exercise (3.12) of Chapter IV.

Theorem (Itô's Formula: Semimartingales Composed by Random Functions). Let X be a one-dimensional vector semimartingale with lifetime T. Let $f = f(\omega, t, x)$ be a function defined on a subset S of $\Omega \times \mathbb{R}_+ \times \mathbb{R}$ such that

- (i) For any $\omega \in \Omega$, the domain of $f(\omega, \cdot, \cdot)$, i.e., the section $S(\omega) := \{(t, x) \in \mathbb{R}_+ \times \mathbb{R} : (\omega, t, x) \in S\}$ contains $\{(t, X_t(\omega)) : 0 \le t < T\}$, and $(t, x) \mapsto f(\omega, t, x)$ is $C^{1,2}$ on $S(\omega)$. This assumption guarantee that the process $f(\omega, t, X_t(\omega))$ is well defined up to T.
- (ii) For every fixed $t \ge 0$ and $x \in \mathbb{R}$, the set $S_{t,x} = \{\omega \in \Omega : (\omega, t, x) \in S\} \in \mathcal{F}_t$, and the map $\omega \mapsto f(\omega, t, x)$ is \mathcal{F}_t -measurable. This is the adaptedness assumption on f.

Then $Y_t(\omega) := f(\omega, t, X_t(\omega)), \ 0 \le t < T(\omega)$, is a semimartingale with lifetime T, and satisfies the SDE:

$$dY_t = \partial_t f(t, X_t) dt + \partial_x f(t, X_t) dX_t + \frac{1}{2} \partial_x^2 f(t, X_t) d[X]_t$$

Note that if f is a deterministic function, i.e., does not depend on ω , then this formula follows simply from the traditional Itô's formula applied to the vector semimartingale (t, X_t) . Here we allow that f to be random, but must be adapted.

We now study time-changes. Let T be a positive predictable time. Suppose u is an adapted, continuous, and strictly increasing process with lifetime T and $u_0 = 0$. Let $S = \sup\{u_t : t \in [0,T)\}$. We define

$$v_s = \inf\{t \in [0, T) : u_t > s\}, \quad s \ge 0.$$
(2.15)

Then v is continuous and strictly increasing on [0, S), and equals ∞ on $[S, \infty)$. In fact, $v|_{[0,S)}$ is the inverse of u. For each $s \ge 0$, v_s is a stopping time because for every t > 0, $\{v_s < t\} = \{T > t\} \cap \{u_t > s\} \in \mathcal{F}_t$. We call the v a time-change.

For each $s \geq 0$, since v_s is a stopping time, we have a σ -algebra \mathcal{F}_{v_s} . Since v_s is increasing in s, we get a new filtration $\widehat{\mathcal{F}} := (\mathcal{F}_{v_s})_{s\geq 0}$, called the filtration induced by the time-change v. Since \mathcal{F} is right-continuous, and $v_{s_n} \downarrow v_{s_0}$ if $s_n \downarrow s$, $\widehat{\mathcal{F}}$ is also right-continuous. If τ is an \mathcal{F} -stopping time with $\tau < T$, then u_{τ} is an $\widehat{\mathcal{F}}$ -stopping time. To see this, note that for any $a, b \geq 0$,

$$\{u_{\tau} < a\} \cap \{v_a < b\} = \{u_{\tau} < a\} \cap \{\tau < b\} \cap \{a < u_b\} \cap \{b < T\} \in \mathcal{F}_b.$$

If τ_n is a sequence of \mathcal{F} -stopping times announcing T, then u_{τ_n} is a sequence of $\widehat{\mathcal{F}}$ -stopping times announcing S. So S is a positive $\widehat{\mathcal{F}}$ -predictable time.

Suppose X is a left- or right- continuous \mathcal{F} -adapted process with lifetime T. Then X is progressive. By Lemma 6.5, for any $s \geq 0$, X_{v_s} is \mathcal{F}_{v_s} -measurable. So $X \circ v$ is $\hat{\mathcal{F}}$ -adapted. We then define the $\hat{\mathcal{F}}$ -adapted process \hat{X} with lifetime S by $\hat{X}_s = X_{v_s}$, $0 \leq s < S$, and call it the time-change of X via v. Since v is continuous, $\hat{X} = X \circ v$ is also a left- or right-continuous process. On the other hand, now v_s , $0 \leq s < S$, is a continuous and strictly increasing $\hat{\mathcal{F}}$ adapted process with v(0) = 0, and we may use it to construct a time-change by

$$\widetilde{u}_t = \inf\{s \in [0, S) : v_s > t\}, \quad t \ge 0.$$

Then \tilde{u} is an extension of u such that $\tilde{u} = \infty$ on $[T, \infty)$. We will write \tilde{u} as u. The time-change of \hat{X} via u is just the original X. Moreover, we have $\hat{\mathcal{F}}_{u(t)} = \mathcal{F}_t, t \ge 0$. So the status of the two triples (X, T, \mathcal{F}) and $(\hat{X}, S, \hat{\mathcal{F}})$ are symmetric.

Exercise. Check that $\widehat{F}_{u(t)} = \mathcal{F}_t$ for any $t \ge 0$.

Theorem 15.25 (A modified version). Let X be a semimartingale with lifetime T with canonical decomposition M + A. Let $\hat{X}, \widehat{M}, \widehat{A}, \widehat{[X]}$ be the time-changes of X, M, A, [X], respectively, via v. Then \hat{X} is a semimartingale with lifetime S with canonical decomposition $\widehat{M} + \widehat{A}$, and the quadratic variation of \hat{X} is $\widehat{[X]}$. Moreover, if U is a right- or left- continuous \mathcal{F} -adapted process with lifetime T and $U \in L(X)$, then $\widehat{U} := U \circ v \in L(\widehat{X})$, and a.s. $\widehat{U} \cdot \widehat{X}$ is the time-change of $U \cdot X$ though v.

Proof. If A is non-decreasing, then \widehat{A} is also non-decreasing. Since A can be expressed as the difference of two non-decreasing functions, so can \widehat{A} . Thus, \widehat{A} is a finite variation process. To prove that \widehat{M} is a local martingale, we may assume $M_0 = \widehat{M}_0 = 0$. Then we can find a sequence τ_n announcing T such that for each n, M^{τ_n} is uniformly bounded. By Optional Stopping Theorem (for uniformly integrable martingale), $(\widehat{M})_s^{u_{\tau_n}} = (M^{\tau_n})_{v_s}$ is an $\widehat{\mathcal{F}}$ -martingale. Since u_{τ_n} announce S, \widehat{M} is a local martingale. Since $\widehat{X} = \widehat{M} + \widehat{A}$, \widehat{X} is a semimartingale with canonical decomposition $\widehat{M} + \widehat{A}$. Since $[\widehat{X}]$ is the finite variation component of \widehat{M}^2 , we see that a.s. $[\widehat{X}]$ is the time-change of [M] = [X] via v. Then we immediately get that if X and Y are semimartingales with lifetime T, and $\widehat{X} = X \circ v$ and $\widehat{Y} = Y \circ v$, then $[\widehat{X}, \widehat{Y}] = [X, Y] \circ v$.

Let U be a right- or left- continuous \mathcal{F} -adapted process with lifetime T. Then \widehat{U} is rightor left- continuous $\widehat{\mathcal{F}}$ -adapted process. For any $0 \leq s < S$, $\int_0^s |\widehat{U}| |d\widehat{A}| = \int_0^{v(s)} |U| |dA|$ since the signed measure $\hat{\mu}$ on [0, S) determined by \hat{A} is related to the signed measure μ on [0, T) determined by A by $\hat{\mu} = \mu \circ v$. Thus, if $U \in L(A)$, then $\hat{U} \in L(\hat{A})$ and $\hat{U} \cdot \hat{A} = (U \cdot A) \circ v$.

If $U \in L(M)$, then $U^2 \in L([M])$, and so $\widehat{U}^2 \in L([\widehat{M}]) = L([\widehat{M}])$. So $\widehat{U} \in L(\widehat{M})$. Moreover, if \widehat{N} is a local martingale with lifetime S, then $N := \widehat{N} \circ u$ is a local martingale with lifetime T, and

$$[(U \cdot M) \circ v, \widehat{N}] = [U \cdot M, N] \circ v = (U \cdot [M, N]) \circ v = \widehat{U} \cdot ([M, N] \circ v) = \widehat{U} \cdot ([\widehat{M}, \widehat{N}]).$$

Thus, a.s. $\widehat{U} \cdot \widehat{M} = (U \cdot M) \circ v$. So if $U \in L(X) = L(A) \cap L(M)$, then $\widehat{U} \in L(\widehat{A}) \cap L(\widehat{M}) = L(\widehat{X})$, and a.s. $\widehat{U} \cdot \widehat{X} = (U \cdot X) \circ v$.

3 Continuous Martingales and Brownian Motion

Theorem 16.3 (Lévy's Characterization of Brownian Motion). For a continuous d-dimensional adapted process $X = (X^1, \ldots, X^d)$ with $X_0 = 0$, the following are equivalent.

- (i) X is a d-dimensional \mathcal{F} -Brownian motion.
- (ii) X is a local martingale, and $[X^j, X^k]_t = \delta_{j,k}t, t \ge 0$, for every $1 \le j, k \le d$.

Proof. We already know that (i) implies (ii). Suppose (ii) is true. Fix $v = (v_1, \ldots, v_d) \in \mathbb{R}^d$ and $t_1 \geq 0$. Let $X^v = (v, X) = \sum_{j=1}^d v_j X^j$. Then X^v is a local martingale, and $[X^v]_t = \sum_{j=1}^d v_j^2 [X^j, X^j]_t = |v|^2 t$. Let

$$M_t = \mathcal{E}^i(X_t^v) = \exp\left(iX_t^v + \frac{1}{2}|v|^2t\right), \quad t \ge 0.$$

Then M is the stochastic exponential of iX^v , and so is also a local martingale. We have $|M_t| = e^{\frac{1}{2}|v|^2t}$. So for any $t_1 \ge 0$, M is uniformly bounded on $[0, t_1]$. So M is a true martingale. Let $t_0 \in [0, t_1]$ and $A \in \mathcal{F}_{t_0}$. From $\mathbb{E}[M_{t_1}|\mathcal{F}_{t_0}] = M_{t_0}$, we see that

$$\mathbb{E}[\mathbf{1}_A \exp(-i(v, X_{t_0}) \exp(i(v, X_{t_1}) + \frac{1}{2}|v|^2 t_1)] = \mathbb{E}[\mathbf{1}_A \exp(-i(v, X_{t_0}) \exp(i(v, X_{t_0}) + \frac{1}{2}|v|^2 t_0)],$$

which implies that

$$\mathbb{E}[\mathbf{1}_{A}\exp(i(v, X_{t_{1}} - X_{t_{0}}))] = \exp\left(-\frac{1}{2}|v|^{2}(t_{1} - t_{0})\right)\mathbb{P}[A]$$

Since this holds for any $v \in \mathbb{R}^d$ and $A \in \mathcal{F}_{t_0}$, $(v, X_{t_1} - X_{t_0})$ is independent of \mathcal{F}_{t_0} , and has a Gaussian distribution $N(0, |v|^2(t_1 - t_0))$. This implies that $X_{t_1} - X_{t_0}$ is a Gaussian vector with covariation matrix $(t_1 - t_0)I_d$ independent of \mathcal{F}_{t_0} . Since this holds for any $t_1 \geq t_0 \geq 0$, X is a d-dimensional \mathcal{F} -Brownian motion.

Remark. If we do not assume that $X_0 = 0$, then (ii) is equivalent to that X is an \mathcal{F} -Brownian motion started from some point.

If B is a d-dimensional Brownian motion, and T is a positive predictable time, then $X := B|_{[0,T)}$ is a vector local martingale with lifetime T, and for any $1 \leq j, k \leq d$, $[X^j, X^k]_t = \delta_{j,k}t$, $0 \leq t < T$. On the other hand, if $X = (X^1, \ldots, X^d)$ is a d-dimensional local martingale with lifetime T such that for any $1 \leq j, k \leq d$, $[X^j, X^k]_t = \delta_{j,k}t$, $0 \leq t < T$. A natural question to ask is whether X a.s. extends to a d-dimensional Brownian motion. In general, the answer is no. It is simply because the probability space may not be big enough to support a Brownian motion with full range. However, we may overcome the issue by expanding the probability space and filtration.

Recall that we have been working on the filtered probability space $(\Omega, \mathcal{F}, \mathbb{P})$ throughout, where $\mathcal{F} = (\mathcal{F}_t)_{t\geq 0}$ is a filtration. By an enlargement of $(\Omega, \mathcal{F}, \mathbb{P})$, we mean another filtered probability space $(\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathbb{P}})$ together with a map $\pi : \widehat{\Omega} \to \Omega$ such that $\mathbb{P} = \widehat{\mathbb{P}} \circ \pi^{-1}$, and for any $t, \pi^{-1}(\mathcal{F}_t) \subset \widehat{\mathcal{F}}_t$. A process X defined on Ω may be viewed as defined on $\widehat{\Omega}$ by setting $\widehat{X}(\widehat{\omega}) = X(\pi(\omega))$. Since π is $(\widehat{\mathcal{F}}_t, \mathcal{F}_t)$ -measurable, if X is \mathcal{F} -adapted, then \widehat{X} is $\widehat{\mathcal{F}}$ -adapted. For any event E,

$$\widehat{\mathbb{P}} \circ \widehat{X}^{-1} = \widehat{\mathbb{P}} \circ (X \circ \pi)^{-1}(E) = \widehat{\mathbb{P}} \circ \pi^{-1} \circ X^{-1}(E) = \mathbb{P} \circ X^{-1}(E).$$

So \widehat{X} (with underlying measure $\widehat{\mathbb{P}}$) has the same law as X (with underlying measure \mathbb{P}).

Theorem. For the above vector local martingale X with $[X^j, X^k]_t = \delta_{j,k}t, 0 \le t < T$, there is an enlargement $(\widehat{\Omega}, \widehat{\mathcal{F}}, \widehat{\mathbb{P}})$ of $(\Omega, \mathcal{F}, \mathbb{P})$, and a d-dimensional $\widehat{\mathcal{F}}$ -Brownian motion B defined on $\widehat{\Omega}$ such that a.s. $X_t = X_0 + B_t, 0 \le t < T$.

Proof. We may assume that $X_0 = 0$. First, we show that X a.s. extends to a continuous martingale Y with lifetime ∞ without enlarging the probability space. We will show that on the event $T < \infty$, a.s. $\lim_{t\uparrow T} X_t$ converges, and if we define $Y_t = X_t$ on [0, T), and $Y_t = \lim_{t\uparrow T} X_t$ on $[T, \infty)$, then Y is a continuous vector martingale.

There is a sequence of stopping times τ_n that announce T such that for each n, $|X^{\tau_n}|$ is bounded by n. Fix $j \in \{1, \ldots, d\}$ and $m \in \mathbb{N}$. For any $n_1 < n_2 \in \mathbb{N}$,

$$[(X^{j})^{m\wedge\tau_{n_{2}}} - (X^{j})^{m\wedge\tau_{n_{1}}}]_{t} = [(X^{j})^{m\wedge\tau_{n_{2}}}]_{t} - [(X^{j})^{m\wedge\tau_{n_{1}}}]_{t} = m \wedge \tau_{n_{2}} \wedge t - m \wedge \tau_{n_{1}} \wedge t.$$

Thus, $[(X^j)^{m\wedge\tau_{n_2}} - (X^j)^{m\wedge\tau_{n_1}}]_{\infty} \leq m \wedge \tau_{n_2} - m \wedge \tau_{n_1}$. As $n_1, n_2 \to \infty, \tau_{n_1}, \tau_{n_2} \to T$. By Dominated Convergence Theorem, $\mathbb{E}[(X^j)^{m\wedge\tau_{n_2}} - (X^j)^{m\wedge\tau_{n_1}}]_{\infty} \to 0$ as $n_1, n_2 \to \infty$. Since for $M \in \mathcal{M}^2$, $\|M\|_{\mathcal{M}^2}^2 = \mathbb{E}[M_{\infty}^2] = \mathbb{E}[M]_{\infty}, (X^j)^{m\wedge\tau_n}, n \in \mathbb{N}$, form a Cauchy sequence in \mathcal{M}^2 . Let $Y^{j,m} \in \mathcal{M}^2$ be its limit. Then for each $t \geq 0, (X^j)^{m\wedge\tau_n} \xrightarrow{\mathrm{P}} Y_t^{j,m}$ as $n \to \infty$. We see that $Y^{j,m}$ a.s. agrees with X^j on $[0, T \wedge m)$ since for $t \in [0, T \wedge m)$, if n is big enough, then $m \wedge \tau_n > t$, and so $(X^j)_t^{m\wedge\tau_n} = X_t^j$. Since for each $n \in \mathbb{N}, (X^j)^{m\wedge\tau_n}, n \in \mathbb{N}$, takes (random) constant value on $[T, \infty)$, the same is true a.s. for $Y^{j,m}$.

Now we still fix j, but let m vary. For $m_1 \leq m_2$, from $(X^j)^{m_1 \wedge \tau_n} = ((X^j)^{m_2 \wedge \tau_n})^{m_1}$ we get a.s. $Y^{j,m_1} = (Y^{j,m_2})^{m_1}$. This means that the family $Y^{j,m}$, $m \in \mathbb{N}$, are consistent, and we may define a process Y^j on \mathbb{R}_+ such that for any $m \in \mathbb{N}$, $Y^j|_{[0,m]}$ a.s. agrees with $Y^{j,m}|_{[0,m]}$. Since each $Y^{j,m}$ is a continuous martingale on \mathbb{R}_+ , Y^j is also a continuous martingale on \mathbb{R}_+ . Since each $Y^{j,m}$ a.s. takes constant value on $[T, \infty)$, so does Y^j . Since for every $m, Y^{j,m}$ a.s. agrees with X^j on $[0, T \wedge m)$, we see that Y^j a.s. agrees with X^j on [0, T). Then $Y = (Y^1, \ldots, Y^d)$ is the extension that we want. Since a.s. Y agrees with X on [0, T), and is constant on $[T, \infty)$, we have

$$[Y^{j}, Y^{k}]_{t} = \delta_{j,k} t \wedge T, \quad 1 \le j, k \le d, \quad t \ge 0.$$
 (3.1)

Let $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ be a filtered probability space that supports a *d*-dimensional Brownian motion $\widetilde{\beta} = (\widetilde{\beta}^1, \dots, \widetilde{\beta}^d)$. Consider the product space

$$\widehat{\Omega} = \Omega \times \widetilde{\Omega}, \quad \widehat{F}_t = \mathcal{F}_t \times \widetilde{\mathcal{F}}_t, \quad \widehat{\mathbb{P}} = \mathbb{P} \times \widetilde{\mathbb{P}}.$$

Then $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{\mathbb{P}})$ with the map $\pi(\omega, \widetilde{\omega}) = \omega$ is the enlargement of $(\Omega, \mathcal{F}, \mathbb{P})$ that we need. The process Y on Ω is then viewed as a process defined on $\widehat{\Omega}$ by $Y_t(\omega, \widetilde{\omega}) = Y_t(\omega)$. By the independence of \mathcal{F} and $\widetilde{\mathcal{F}}$, we see that the new Y is a still a martingale. By Proposition 15.18, the new Y also satisfies (3.1). Define $\widehat{\beta}$ on $\widehat{\Omega}$ by $\widehat{\beta}(\omega, \widetilde{\omega}) = \widetilde{\beta}(\widetilde{\omega})$. Then $\widehat{\beta}$ is an $\widehat{\mathcal{F}}$ -Brownian motion on $\widehat{\Omega}$ independent of Y. So for any $1 \leq j, k \leq d$,

$$[\widehat{\beta}^j, \widehat{\beta}^k]_t = \delta_{j,k} t, \quad [\widehat{\beta}^j, Y^k]_t = 0, \quad t \ge 0.$$

Since T is an \mathcal{F} -stopping time, it is also an $\widehat{\mathcal{F}}$ -stopping time. So for $1 \leq j, k \leq d$ and $t \geq 0$, $(\widehat{\beta}^k)^T$ is a local martingale, and

$$[\widehat{\beta}^j, (\widehat{\beta}^k)^T] = [(\widehat{\beta}^j)^T, (\widehat{\beta}^k)^T] = \delta_{j,k} t \wedge T, \quad [(\widehat{\beta}^j)^T, Y^k]_t = [\widehat{\beta}^j, Y^k]_t^T = 0,$$

which implies that

$$[\widehat{\beta}^j - (\widehat{\beta}^j)^T, \widehat{\beta}^k - (\widehat{\beta}^k)^T]_t = \delta_{j,k}(t - t \wedge T), \quad [\widehat{\beta}^j - (\widehat{\beta}^j)^T, Y^k] = 0.$$

Define $B = Y + (\hat{\beta} - \hat{\beta}^T)$. Then B is an $\hat{\mathcal{F}}$ -vector local martingale with lifetime ∞ , and for $1 \leq j, k \leq d$,

$$[B^j, B^k]_t = [Y^j, Y^k]_t + [\widehat{\beta}^j - (\widehat{\beta}^j)^T, \widehat{\beta}^k - (\widehat{\beta}^k)^T]_t = \delta_{j,k}t, \quad t \ge 0$$

By Lévy's Characterization of Brownian Motion, B is an $\widehat{\mathcal{F}}$ -Brownian motion. Since $\widehat{\beta} - \widehat{\beta}^T = 0$ on [0, T), B agrees with Y on [0, T), which a.s. agrees with X on [0, T).

Because of this theorem, we may call a vector local martingale X_t , $0 \le t < T$, that satisfies $[X^j, X^k]_t = \delta_{j,k}t$, $0 \le t < T$, for any $1 \le j, k \le d$, a stopped *d*-dimensional Brownian motion.

Suppose now M is a (one-dimensional) local martingale with lifetime T such that [M] is strictly increasing, i.e., M does not take constant value on any time interval. Let $u_t = [M]_t$. Then u is a continuous and strictly increasing adapted process. Let v be the inverse of u, and let \widehat{M} be the time-change of M via v. Then \widehat{M} is a local martingale with lifetime S := $\sup_{0 \le t < T} [M]_t$, and $[\widehat{M}]_s = [M]_{v_s} = u_{v_s} = s$, $0 \le s < S$. By the above theorem, we know that in an enlarged probability space, \widehat{M} extends to a Brownian motion. So we may view the original M as a time-change of a stopped Brownian motion. Since a Brownian motion B is continuous on $[0, \infty)$ and satisfies that a.s. $\limsup_{t\to\infty} B_t = \infty$ and $\liminf_{t\to\infty} B_t = -\infty$, we can then conclude that a.s. on the event that $\sup_{0 \le t < T} [M]_t = \infty$, $\limsup_{t\uparrow T} M_t = \infty$ and $\liminf_{t\uparrow T} M_t = -\infty$, and on the event that $\sup_{0 \le t < T} [M]_t < \infty$, $\lim_{t\uparrow T} M(t)$ converges to a finite number. Thus, on the event that M is bounded from either above or below, a.s. $\lim_{t\uparrow T} M(t)$ converges.

The above result also holds if M does take constant values on some intervals. In that case, we still define $u_t = [M]_t$, and define v_s by $v_s = \inf\{t : u_t > s\}$ Now v may not be continuous. However, since every discontinuity of v corresponds to an interval of constancy of u = [M], on which M is constant. So $\widehat{M}_s := M_{v_s}$ is still a continuous local martingale. We then still have $[\widehat{M}]_s = s, 0 \le s < S$, and so \widehat{M} is a stopped Brownian motion. Then the original M is a time-change of a stopped Brownian motion with pauses. The last sentence of the previous paragraph still holds. We also note that even if the lifetime of M is ∞ , after a time-change, the new process \widehat{M} has a random lifetime. This is the reason why we need local martingales with random lifetime. We can not always transform a vector local martingale to a stopped (multi-dimensional) Brownian motion using a time-change.

Suppose that M is a local martingale such that [M] is C^1 with positive derivative. Besides time-change, there is another way to obtain a (stopped) Brownian motion from M, which is a stochastic integral against M. Let $\sigma_t = \sqrt{[M]'_t} > 0$, and define $B_t = \int_0^t \sigma_s^{-1} dM_s$. Then we have $d[B]_t = \sigma_t^{-2} d[M]_t = 1$ (up to its lifetime). So B is a stopped Brownian motion, and $M = M_0 + \sigma \cdot B$. We may then write $dM = \sigma dB$.

We are interested in the kind of semimartingales X (with lifetime T) with canonical decomposition M + A such that there are continuous adapted processes σ and μ such that $M = M_0 + \sigma \cdot B$ and $A = \mu \cdot (t)$. Then we may express X in the following form:

$$dX_t = \sigma_t dB_t + \mu_t dt.$$

If X takes values in an open set $U \subset \mathbb{R}$, and $f \in C^2(\mathbb{R}, \mathbb{R})$, then by Itô's formula, $Y_t := f(X_t)$ satisfies the equation

$$dY_t = f'(X_t)\sigma_t dB_t + (f'(X_t)\mu_t + \frac{1}{2}f''(X_t)\sigma_t^2)dt$$

Let u_t , $0 \leq t < T$, be a continuous and strictly increasing adapted process with $u_0 = 0$, and we define the time-change v as the inverse of u. Suppose u is C^1 , and u' is positive. Then the same is true for v. Let $\widehat{X}, \widehat{M}, \widehat{A}$ be the time-changes of X, M, A via v. Then from $\widehat{A} = A \circ v$, we find that $d\widehat{A}_s = \mu_{v_s} v'_s ds$. From $\widehat{M} = M \circ v$, we find that $[\widehat{M}] = [M] \circ v$, and so $d[\widehat{M}]_s = d[M]_{v_s} v'_s ds = \sigma^2_{v_s} v'_s ds$. So there is **another** Brownian motion \widehat{B} such that \widehat{X} satisfies the SDE:

$$d\widehat{X}_s = \sigma_{v_s} \sqrt{v_s'} d\widehat{B}_s + \mu_{v_s} v_s' ds.$$

Note the factor before $d\hat{B}_s$ is $\sqrt{v'_s}$, while the factor before ds is v'_s .

A two-dimensional Brownian motion $B = (B^1, B^2)$ may also be viewed as a complex Brownian motion: $B_t = B_t^1 + iB_t^2$.

Theorem (Conformal Invariance of Complex Brownian Motion). Let $U \subset \mathbb{C}$ be open, and let $f : U \to \mathbb{C}$ be analytic and injective. Let B be a complex Brownian motion started from some point in $z_0 \in U$. Let τ_U be the first time that B exits U. Then $f(B_t)$, $0 \leq t < \tau_U$, is a time-change of a complex Brownian motion started from $f(z_0)$, and killed when it exits f(U).

Proof. Write f = a + ib and $X = f(B) = a(B^1, B^2) + ib(B^1, B^2)$. By Itô's formula, a(B) and b(B) satisfy the SDEs: (We write a_x for $\partial_x a(B)$)

$$da(B_t) = (a_x dB_t^1 + a_y dB_t^2) + \frac{1}{2}a_{xx} d[B^1]_t + \frac{1}{2}a_{yy} d[B^2]_t + a_{xy} d[B^1, B^2]_t = a_x dB_t^1 + a_y dB_t^2;$$

$$db(B_t) = (b_x dB_t^1 + b_y dB_t^2) + \frac{1}{2} b_{xx} d[B^1]_t + \frac{1}{2} b_{yy} d[B^2]_t + b_{xy} d[B^1, B^2]_t = b_x dB_t^1 + b_y dB_t^2.$$

Here we used the fact that $[B^1] = [B^2]$, $[B^1, B^2] = 0$, and $a_{xx} + a_{yy} = b_{xx} + b_{yy} = 0$. So we have

$$d[a(B_t)] = a_x(B)^2 dt + a_y(B)^2 dt = |f'(B)|^2 dt, \quad d[b(B_t)] = b_x(B)^2 dt + b_y(B)^2 dt = |f'(B)|^2 dt,$$

$$d[a(B_t), b(B_t)] = (a_x(B)b_x(B) + a_y(B)b_y(B))dt = 0.$$

Here we use that $[B^1]_t = [B^2]_t = t$, $[B^1, B^2] = 0$, $a_x^2 + a_y^2 = b_x^2 + b_y^2 = |f'|^2$, and $a_x b_x + a_y b_y = 0$. If we define $u_t = \int_0^t |f'(B_s)|^2 ds$, $0 \le t < \tau_U$, and let the time-change v be its inverse, then the time-change of X = f(B) = a(B) + ib(B) via v, i.e., $f(B_{v_s}) = a(B_{v_s}) + ib(B_{v_s})$ satisfies $[a(B_{v_s})]_t = [b(B_{v_s})]_t = dt$, and $[a(B_{v_s}), b(b_{v_s})] = 0$. So $f(B_{v_s}), 0 \le s < \tau_U$, is a stopped complex Brownian motion. Since $B_t \to \partial D$ as $t \to \tau_U$, we have $f(B_{v_s}) \to \partial f(D)$ as $s \to S = u(\tau_U)$. So $v(\tau_U)$ corresponds to the time that the complex Brownian motion in f(D) exits f(D). Then we get the conclusion.

Corollary. For an open set $U \subset \mathbb{C}$ and $z \in U$, we use $S_{D,z}$ to denote the image of a complex Brownian motion B^z started from z up to the time that it exits U, i.e., $S_{D,z} = \{B_t^z : 0 \leq t < \tau_U\}$. This is a random set, whose law satisfies conformal invariance. If f maps U conformally onto U', and f(z) = z', then $f(S_{D,z})$ has the same law as $S_{D',z'}$.

Example. Brownian bridge is a semimartingale. This is not obvious from the original definition: $X_t = B_t - tB_1$, $0 \le t \le 1$, where B is a Brownian motion. However, we know that X_t , $0 \le t < 1$, has the same distribution as the process $X_t := (1 - t)B_{t/(1-t)}$, $0 \le t < 1$, for a Brownian motion B. We know that $B_{t/(1-t)}$ is a local martingale since it is a time-change of Brownian motion. Then its product with 1 - t is a semimartingale. We write $Y_t = B_{t/(1-t)}$. Then $[Y]_t = t/(1-t)$, $0 \le t < 1$, and by Itô's formula,

$$dX_t = (1-t)dY_t - Y_t dt = d\widetilde{B}_t - \frac{X_t}{1-t}dt,$$

where $\widetilde{B} := (1-t) \cdot Y$ is a local martingale with $[\widetilde{B}]_t = \int_0^t (1-s)^2 [Y]'_s ds = t, 0 \le t < 1$. So \widetilde{B} is a stopped Brownian motion

Example (Bessel Processes). Let $B = (B^1, \ldots, B^{\delta})$ be a Brownian motion in \mathbb{R}^{δ} started from some $x_0 \neq 0$. Let τ be the first time that B reaches 0. Then $|B| = \sqrt{(B^1)^2 + \cdots + (B^{\delta})^2}$ restricted to $[0, \tau)$ is a semimartingale.

We now do the calculation. Write $f(x_1, \ldots, x_{\delta}) = \sqrt{x_1^2 + \cdots + x_{\delta}^2}$. Then

$$\partial_j f = \frac{x_j}{(x_1^2 + \dots + x_{\delta}^2)^{1/2}}, \quad \partial_j^2 f = \frac{1}{(x_1^2 + \dots + x_{\delta}^2)^{1/2}} - \frac{x_j^2}{(x_1^2 + \dots + x_{\delta}^2)^{3/2}}, \quad \Delta f = \frac{\delta - 1}{|x|}.$$

So

$$d|B| = \sum_{j=1}^{\delta} \partial_j f(B) dB^j + \frac{1}{2} \Delta f(B) dt = \sum_{j=1}^{\delta} \frac{B^j dB^j}{|B|} + \frac{1}{2} \frac{\delta - 1}{|B|} dt$$

Since $[\sum_{j=1}^{\delta} \frac{B^j \cdot B^j}{|B|}]_t = \sum_{j=1}^{\delta} (\frac{B^j}{|B|})^2 [B^j]_t = t$, by Lévy's characterization of Brownian motion, $\sum_{j=1}^{\delta} \frac{B^j \cdot B^j}{|B|}$ is a one-dimensional Brownian motion. Denote it by \widetilde{B} . Then X = |B| satisfies the stochastic differential equation:

$$dX_t = d\widetilde{B}_t + \frac{(\delta - 1)/2}{X_t}dt, \quad X_0 = |x_0|.$$

The lifetime of X is $\tau = \inf\{t \ge 0 : X_t = 0\}.$

Definition. Let B be a (one-dimensional) Brownian motion, $x_0 > 0$, and $\delta \in \mathbb{R}$. The semimartingale X that satisfies the stochastic differential equation (SDE)

$$dX_t = dB_t + \frac{(\delta - 1)/2}{X_t} dt, \quad X_0 = x_0,$$
(3.2)

is called a Bessel process of dimension δ started from x_0 .

We may transform this SDE into an ODE. We let $Y_t = X_t - B_t$. Then Y_t satisfies

$$Y'_t = \frac{(\delta - 1)/2}{Y_t + B_t}, \quad Y_0 = x_0.$$

The solution exists and is unique. Suppose [0, T) is the maximal interval of solution. Then during [0, T), $Y_t + B_t > 0$, and so Y is monotone increasing or decreasing depending on the sign of $\delta - 1$. If $T < \infty$, it can not happen that $Y_t \to \infty$ or $Y_t \to -\infty$ as $t \uparrow T$. If that is the case, since $\lim_{t\uparrow T} B(t)$ converges to B(T), we see that for some $\varepsilon > 0$, $1/(Y_t + B_t)$ is bounded on $(T - \varepsilon, T)$. Then from the ODE, we get that Y is bounded on $(T - \varepsilon, T)$, a contradiction. Since the solution of the ODE blows up at the time T, we must have $Y_t + B_t \to 0$ as $t \uparrow T$. By the ODE theory, we also know that the solution Y depends continuously on B. So Y is adapted to B. Let $X_t = Y_t + B_t$, $0 \le t < T$. Then X is a semimartingale that solves the Bessel SDE. We also know that, if $T < \infty$, then $\lim_{t\uparrow T} X_t = 0$.

We claim that when $T = \infty$, a.s. X is unbounded on $[0, \infty)$. If $\delta \ge 1$ and $X \le R$ for some $R < \infty$, then from $X_t = x_0 + B_t + \int_0^t \frac{(\delta - 1)/2}{X_s} ds \ge X_0 + B_t$ we get $B_t \le X_t - x_0 \le R$, which

contradicts that a.s. $\limsup_{t\to\infty} B_t = \infty$. If $\delta < 1$ and $X \leq R$ for some $R < \infty$, then we have $X_t \leq X_0 + B_t$, which implies that $B_t \geq X_t - x_0 \geq -x_0$, $t \geq 0$, which contradicts that a.s. $\liminf_{t\to\infty} B_t = -\infty$. So on the event $T = \infty$, X is a.s. not bounded.

From the strong Markov property of Brownian motion and the property of solutions of ODE, we see that a Bessel process also satisfies strong Markov property: if X is a Bessel process of dimension δ , and τ is a stopping time less than the lifetime of X, then conditionally on \mathcal{F}_{τ} , the law of $X_{\tau+}$ is a Bessel process started from X_{τ} . To see this, note that if X solves (3.2), then

$$X_{\tau+t} = X_{\tau} + (B_{\tau+t} - B_{\tau}) + \int_0^t \frac{(\delta - 1)/2}{X_{\tau+s}} \, ds, \quad t \ge 0,$$

and recall that the conditional law of $\widetilde{B}_{\tau+\cdot} - \widetilde{B}_{\tau}$ given \mathcal{F}_{τ} is that of a Brownian motion.

Theorem (Transience and Recurrence of Bessel Processes). Let X be a Bessel process of dimension δ started from x > 0. Let T be its lifetime. Then

- (i) If $\delta \geq 2$, then a.s. $T = \infty$.
- (ii) If $\delta < 2$, then a.s. $T < \infty$ and $\lim_{t \to T} X_t = 0$.
- (iii) If $\delta > 2$, then a.s. $\lim_{t\to\infty} X_t = \infty$.
- (iv) If $\delta = 2$, then a.s. $\limsup_{t\to\infty} X_t = \infty$ and $\liminf_{t\to\infty} X_t = 0$.

Remark. The strategy of the proof will be used many times later. First, we construct a local martingale using Itô's formula. Second, we obtain a true martingale from the local martingale using stopping and boundedness. Third, we use the martingale to derive some equality or inequality about the probability of some event.

Proof. Using Itô's formula, we may construct a function f defined on \mathbb{R}_+ such that $f(X_t)$ is a local martingale. Since

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)dt = f'(X_t)dB_t + (f'(X_t)\frac{(\delta-1)/2}{X_t} + \frac{1}{2}f''(X_t))dt,$$

we need f to make the drift term vanish, i.e., $f'(x)\frac{(\delta-1)/2}{x} + \frac{1}{2}f''(x) = 0$. Solving this ODE, we may choose $f'(x) = x^{1-\delta}$. For $\delta = 2$, we let $f(x) = \log(x)$; for $\delta \neq 2$, let $f(x) = x^{2-\delta}$.

We use \mathbb{P}^x to denote the law of a Bessel process of dimension δ started from x, and use \mathbb{E}^x to denote the corresponding expectation. Fix R > x > r. Let $\tau_r = \inf\{t \ge 0 : X_t \le r\}$ and $\sigma_R = \inf\{t \ge 0 : X_t \ge R\}$. Then \mathbb{P}^x -a.s. $\tau_r \wedge \sigma_R < T$, i.e., X does exit the interval (r, R). This is because if $T < \infty$, then $X_t \to 0$ as $t \uparrow T$, which implies that $\tau_r < \infty$; and if $T = \infty$, then X is a.s. unbounded, which implies that $\sigma_R < \infty$.

Since $Y_t := f(X_t)$ is a local martingale, and is bounded before $\tau_r \wedge \sigma_R$, $Y_t^{\tau_r \wedge \sigma_R}$ is a bounded martingale. At the time $\tau_r \wedge \sigma_R$, X_t equals either r or R. So

$$f(r)\mathbb{P}^x[\tau_r < \sigma_R] + f(R)\mathbb{P}^x[\sigma_R < \tau_r] = \mathbb{E}^x[f(X_{\tau_r \land \sigma_R})] = f(X_0) = f(x).$$

Combining this formula with $\mathbb{P}^{x}[\tau_{r} < \sigma_{R}] + \mathbb{P}^{x}[\sigma_{R} < \tau_{r}] = 1$, we get

$$\mathbb{P}^{x}[\tau_{r} < \sigma_{R}] = \frac{f(R) - f(x)}{f(R) - f(r)}, \quad \mathbb{P}^{x}[\sigma_{R} < \tau_{r}] = \frac{f(x) - f(r)}{f(R) - f(r)}.$$
(3.3)

If $\delta \ge 2$, $|f(r)| = r^{2-\delta}$ or $|\log(r)| \to \infty$ as $r \to 0^+$. So

$$\mathbb{P}^{x}\left[\bigcap_{r\in(0,x)}\{\tau_{r}<\sigma_{R}\}\right] = \lim_{r\downarrow 0}\mathbb{P}^{x}[\tau_{r}<\sigma_{R}] = 0.$$

If $T < \infty$, then $\lim_{t\uparrow T} X_t = 0$, and X([0,T)) is bounded. So there is $R \in \mathbb{N}$ with R > x such that $\tau_r < \sigma_R$ for any $r \in (0,x)$. This means that

$$\{T < \infty\} \subset \bigcup_{R \in \mathbb{N}: R > x} \bigcap_{r \in (0,x)} \{\tau_r < \sigma_R\}.$$

Thus, $\mathbb{P}^{x}[T < \infty] \leq \mathbb{P}[\bigcup_{R \in \mathbb{N}: R > x} \bigcap_{r \in (0,x)} \{\tau_r < \sigma_R\}] = 0$. So we get (i). If $\delta < 2$, then $f(r) = r^{2-\delta} \to 0$ as $r \to 0^+$ and $f(R) \to \infty$ as $R \to \infty$. So

$$\mathbb{P}^x[\bigcap_{r\in(0,x)}\{\tau_r<\sigma_R\}] = \lim_{r\downarrow 0}\mathbb{P}^x[\tau_r<\sigma_R] = \frac{f(R) - f(x)}{f(R)},$$

and

$$\mathbb{P}^{x}\left[\bigcup_{R>x}\bigcap_{r\in(0,x)}\left\{\tau_{r}<\sigma_{R}\right\}\right]=\lim_{R\to\infty}\frac{f(R)-f(x)}{f(R)}=1.$$

This means that a.s. there is R > x such that for any $r \in (0, x)$, $\tau_r < \sigma_R$. This means that X is bounded. So we get \mathbb{P}^x -a.s. $T < \infty$ and $\lim_{t\to\infty} X_t = 0$. This means that (ii) holds.

(iii) If $\delta > 2$, then we already know that a.s. $T = \infty$ and X is unbounded on $[0, \infty)$, i.e., $\limsup_{t\to\infty} X_t = \infty$. Since $Y = X^{2-\delta}$ is a positive local martingale, we have a.s. $\lim_{t\to\infty} Y_t$ converges. From $2 - \delta < 0$ and that a.s. $\limsup_{t\to\infty} X_t = \infty$ we get a.s. $\liminf_{t\to\infty} Y_t = 0$. So a.s. $\lim_{t\to\infty} Y_t = 0$, which implies that $\lim_{t\to\infty} X_t = \infty$.

(iv) Let $\delta = 2$. We know that $Y = \log(X)$ is a local martingale. If it does not hold that $\limsup_{t\to\infty} X_t = \infty$ and $\liminf_{t\to\infty} X_t = 0$, then it does not hold that $\limsup_{t\to\infty} Y_t = \infty$ and $\liminf_{t\to\infty} Y_t = -\infty$. Since Y is a time-change of a Brownian motion up to some stopping time, we then have a.s. $\lim_{t\to\infty} Y_t$ converges. So $\lim_{t\to\infty} X_t$ converges, which contradicts that X is unbounded because $T = \infty$.

Theorem (Transience and Recurrence of Multidimensional Brownian Motion). Let $B = (B^1, \ldots, B^d)$ be a Brownian motion in \mathbb{R}^d , with $d \ge 2$, started from some x_0 . For each $x \in \mathbb{R}^d$ and r > 0, let $\tau_x = \inf\{t \ge 0 : B_t = x\}$ and $\tau_{x,r} = \inf\{t \ge 0 : |B_t - x| \le r\}$. Then

(i) For all $d \ge 2$, if $x \ne x_0$, then a.s. $\tau_x = \infty$.

- (ii) If $d \ge 3$, a.s. $|B_t| \to \infty$; and for any $x \in \mathbb{R}^d$ and r > 0 such that $|x x_0| > r$, the probability that $\tau_{x,r} = \infty$ is positive.
- (ii) If d = 2, for any $x \in \mathbb{R}^d$, a.s. $\liminf_{t \to \infty} |B_t x| = 0$.

Proof. This follows from the previous theorem and the fact that for any $x \neq x_0$, |B - x| is a Bessel process of dimension d started from $|x - x_0|$. Note that $\{\tau_x < \infty\}$ is the event that |B - x| reaches 0, $\{\tau_{x,r} < \infty\}$ is the event that |B - x| reaches r, and $|B_t| \to \infty$ iff $|B_t - x| \to \infty$. \Box

Because of this theorem, we say that Brownian motions of dimensions ≥ 3 are transient, and the Brownian motion of dimension 2 is neighborhood recurrent (but not actually recurrent). By Fubini Theorem, we see that for $d \geq 2$, a.s. the range of a Brownian motion of dimension dhas Lebesgue measure zero.

Example. We may now construct a positive local martingale X, which is not a true martingale, and for any $t \ge 0$, X_t is integrable. Let B be a Brownian motion in \mathbb{R}^3 started from 0. Let v = (1, 0, 0). We know that B a.s. does not pass through v. Since |B - v| is a Bessel process of dimension 3, $X := |B - v|^{-1}$ is a local martingale. We may show that $\mathbb{E}[X_t] < 1 = X_0$ by calculation using the density of B_t . Note that the density of B_t is spherically symmetric. We then use the fact that the average of 1/|x - v| over the surface |x| = R equals 1/|v| = 1 is R < |v|; and equals 1/R if R > |v|. The first statement follows from that f(x) := 1/|x - v| is harmonic on $\mathbb{R}^3 \setminus \{v\}$; the second statement follows from the harmonicity of the same f and the fact that $1/|x - v| = R/|x - \hat{v}|$, if |x| = R, where $\hat{v} = (R^2, 0, 0)$.

Exercise Provide details of the above example.

Exercise Let X_t , $0 \le t < \infty$, be a nonnegative local martingale with $\mathbb{E}[X_0] < \infty$. Prove the following. (i) X is a supermartingale. Hint: Use Fatou's lemma. (ii) If $\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$, then X is a uniformly integrable martingale. (iii) If for some stopping time T, $\mathbb{E}[X_T] = \mathbb{E}[X_0]$, then X^T is a uniformly integrable martingale.

Example (Brownian motion with a linear drift). Let *B* be a one-dimensional Brownian motion. Let a > 0 and $X_t = B_t - at$. By the law of iterated logarithm, we have $\lim_{t\to\infty} X_t/t = -a < 0$. So $\lim_{t\to\infty} X_t = -\infty$. Since $X_0 = 0$, $\zeta := \sup_{t\geq 0} X_t$ is a positive finite random number. We wish to find the distribution of ζ . For b > 0, let τ_b denote the first time that $X_t \geq b$. Then $\zeta \geq b$ iff $\tau_b < \infty$. We now compute $\mathbb{P}[\tau_b < \infty]$. The X satisfies the SDE:

$$dX_t = dB_t - adt.$$

We may find f such that f(X) is a local martingale. Since

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)dt = f'(X_t)dB_t + (\frac{1}{2}f''(X_t) - af'(X_t))dt,$$

we need f that satisfies $\frac{1}{2}f''(x) - af'(x) = 0$. Then $f(x) = e^{2ax}$ is a solution. Thus, $Y := e^{2aX}$ is a local martingale. For $t \leq \tau_b$, we have $X_t \leq b$, which implies that $0 < Y_t \leq e^{2ab}$. Thus, Y^{τ_b} is uniformly integrable, and we have $1 = Y_0 = \mathbb{E}[Y_{\tau_b}]$. Note that on the event $\tau_b < \infty$, $Y_{\tau_b} = e^{2ab}$, and on the event $\tau_b = \infty$, from $\lim_{t\to\infty} X_t = -\infty$, we get $Y_\infty = 0$. Thus, $1 = e^{2ab}\mathbb{P}[\tau_b < \infty] + 0 \cdot \mathbb{P}[\tau_b = \infty]$, which implies that $\mathbb{P}[\tau_b < \infty] = e^{-2ab}$. Then we get $\mathbb{P}[\zeta \geq b] = e^{-2ab}$. So ζ has an exponential distribution with rate 2a.

Actually, we proved the following probability: for any a, b > 0,

$$\mathbb{P}[B_t < at + b, \forall t \ge 0] = 1 - e^{-2ab}.$$

4 Girsanov's Theorem and Applications

At the beginning of the lecture, we fixed a space Ω , a right-continuous filtration \mathcal{F} , and a probability measure \mathbb{P} . We also assumed that \mathcal{F} is \mathbb{P} -complete. When we did a time-change, we changed the filtration. We now fix Ω and \mathcal{F} , but change the probability measure using a Girsanov transformation.

Consider two different probability measures P and Q on (Ω, \mathcal{F}) . Suppose for each $t \geq 0$, $Q \ll P$ on \mathcal{F}_t , i.e., $A \in \mathcal{F}_t$ and P[A] = 0 implies Q[A] = 0. We assume that \mathcal{F} is P-complete. Then it is also Q-complete. By Radon-Nikodym Theorem, there is a positive \mathcal{F}_t -measurable random variable Z_t such that $Q = Z_t \cdot P$, i.e., $Q[A] = \int_A Z_t dP$ for any $A \in \mathcal{F}_t$. Such Z_t is P-a.s. unique, and we call it the RN process from P to Q.

The next lemma describes the relation between P-martingales and Q-martingales.

Lemma 16.15. Suppose $Q = Z_t \cdot P$ on \mathcal{F}_t for each $t \geq 0$. Then Z is a P-martingale. It is further P-uniformly integrable iff $Q \ll P$ on $\mathcal{F}_{\infty} := \bigvee_{t \geq 0} \mathcal{F}_t$. Any adapted process X is a Q-martingale iff XZ is a P-martingale.

Proof. For any adapted process X, we note that X_t is Q-integrable iff X_tZ_t is P-integrable. If this holds for all $t \ge 0$, then X is a Q-martingale iff for any $t > s \ge 0$ and $A \in \mathcal{F}_s$, $\int_A X_t dQ = \int_A X_s dQ$. Since $A \in \mathcal{F}_s \subset \mathcal{F}_t$, this equality becomes

$$\int_A X_t Z_t dP = \int_A X_s Z_s dP,$$

which is equivalent to that XZ is a *P*-martingale. Taking $X \equiv 1$, we see that Z is a *P*-martingale.

If $Q \ll P$ on \mathcal{F}_{∞} , let $Z_{\infty} \in \mathcal{F}_{\infty}$ be the RN derivative. For any $t \geq 0$ and $A \in \mathcal{F}_t \subset \mathcal{F}_{\infty}$, from $Q = Z_t \cdot P$ on \mathcal{F}_t and $Q = Z_{\infty} \cdot P$ on \mathcal{F}_{∞} , we get $Q(A) = \int_A Z_t dP = \int_A Z_{\infty} dP$. So we have $Z_t = \mathbb{E}_P[Z_{\infty}|\mathcal{F}_t], t \geq 0$, which implies that Z is uniformly integrable.

Now suppose Z is uniformly integrable. Then $Z_t \to Z_\infty$ as $t \to \infty$ in L^1 , and $Z_t = \mathbb{E}_P[Z_\infty|\mathcal{F}_t]$ for all $t \ge 0$. Especially, $\mathbb{E}_P[Z_\infty] = \mathbb{E}_P[Z_t] = 1$. So we may define a probability measure \widetilde{Q} on \mathcal{F}_∞ by $\widetilde{Q} = Z_\infty \cdot P$. For any $t \ge 0$ and $A \in \mathcal{F}_t$, since $\mathbb{E}_P[Z_\infty] = Z_t$, $\widetilde{Q}[A] = \int_A Z_\infty dP = \int_A Z_t dP = Q[A]$. So \widetilde{Q} agrees with Q on \mathcal{F}_t for each $t \ge 0$. By a monotone class argument, we conclude that $\widetilde{Q} = Q$ on \mathcal{F}_∞ . So $Q \ll P$ on \mathcal{F}_∞ .

By Theorem 6.27, every martingale on \mathcal{F} has an rcll version. We now assume that Z is rcll.

Lemma 16.16. Suppose $Q = Z_t \cdot P$ on \mathcal{F}_t for each $t \ge 0$, and Z is rell. Then for any stopping time τ , $Q = Z_\tau \cdot P$ on $\mathcal{F}_\tau \cap \{\tau < \infty\}$, i.e., if $A \in \mathcal{F}_\tau$ and $A \subset \{\tau < \infty\}$, then $Q[A] = \int_A Z_\tau dP$. Furthermore, an rell process X is a Q-local martingale iff XZ is a P-local martingale.

Proof. By Optional Stopping Theorem, $\mathbb{E}_P[Z_t|\mathcal{F}_{\tau \wedge t}] = Z_{\tau \wedge t}$ for any $t \geq 0$. Fix $t \geq 0$ and $A \in F_{\tau \wedge t} \subset \mathcal{F}_t$. We have

$$Q[A] = \int_A Z_t dP = \int_A Z_{\tau \wedge t} dP.$$

Let $A \in \mathcal{F}_{\tau}$. For $t \geq 0$, let $A_t = A \cap \{\tau \leq t\} \in \mathcal{F}_{\tau \wedge t}$. Here we used that $\mathcal{F}_{\tau} \cap \{\tau \leq t\} = \mathcal{F}_{\tau} \cap \{\tau \leq \tau \wedge t\} \subset \mathcal{F}_{\tau \wedge t}$. So we have

$$Q[A_t] = \int_{A_t} Z_{\tau \wedge t} dP = \int_{A_t} Z_{\tau} dP,$$

where in the last equality we used that $\tau = \tau \wedge t$ on $A_t \subset \{\tau \leq t\}$. If $A \subset \{\tau < \infty\}$, then $A = \bigcup_{t>0} A_t$. By Monotone Convergence Theorem, we get $Q[A] = \int_A Z_\tau dP$.

To prove the last assertion, it suffices to show that for any stopping time τ , X^{τ} is a Q-martingale iff $(XZ)^{\tau}$ is a P-martingale. By the last paragraph, for any $t \ge 0$, $Q = Z_{\tau \wedge t} \cdot P$ on $\mathcal{F}_{\tau \wedge t}$. We also note that, under P, X^{τ} is an \mathcal{F} -martingale iff X^{τ} is an \mathcal{F}^{τ} -martingale, where $\mathcal{F}_{t}^{\tau} = \mathcal{F}_{\tau \wedge t}, t \ge 0$. To see this, note that since X is roll and \mathcal{F} -adapted, X^{τ} is both \mathcal{F}^{τ} and \mathcal{F} -adapted. Now suppose X^{τ} is an \mathcal{F} -martingale. Let $t \ge s \ge 0$ and $A \in \mathcal{F}_{\tau \wedge s}$. Then $A \in \mathcal{F}_s$, and so $\int_A X_t^{\tau} dP = \int_A X_s^{\tau} dP$. Thus, X^{τ} is also an \mathcal{F}^{τ} -martingale. Next, suppose X^{τ} is an \mathcal{F}^{τ} -martingale. Let $t \ge s \ge 0$ and $A \in \mathcal{F}_{\tau \wedge s}$. So

$$\int_{A \cap \{s \le \tau\}} X_t^{\tau} dP = \int_{A \cap \{s \le \tau\}} X_s^{\tau} dP$$

Since $X_t^{\tau} = X_s^{\tau} = X_{\tau}$ on the event $\{\tau < s\}$, we have

$$\int_{A \cap \{\tau < s\}} X_t^{\tau} dP = \int_{A \cap \{\tau < s\}} X_s^{\tau} dP$$

Combining the last two displayed formulas, we get $\int_A X_t^{\tau} dP = \int_A X_s^{\tau} dP$. Thus, X^{τ} is also an \mathcal{F} -martingale. Similarly, under $Q, X^{\tau} Z^{\tau} = (XZ)^{\tau}$ is an \mathcal{F} -martingale iff it is an \mathcal{F}^{τ} -martingale. Applying Lemma 16.15 to \mathcal{F}^{τ} in place of \mathcal{F} , we then get the desired statement.

Lemma 16.17. For every $t \ge 0$, Q-a.s. $\inf_{s \in [0,t]} Z_s > 0$.

Proof. For any $t \ge 0$, $Q[\{Z_t = 0\}] = \int_{\{Z_t=0\}} Z_t dP = 0$. So Q-a.s. $Z_t > 0$. Let $\tau_n = \inf\{t \ge 0 : Z_t < 1/n\}$, $n \in \mathbb{N}$. Then each τ_n is a stopping time. By right-continuity of $Z, Z_{\tau_n} \le 1/n$ on the event $\tau_n < \infty$. Moreover, we have $\inf_{s \in [0,t]} Z_s = 0$ iff $\tau_n \le t$ for each n. By Optional Stopping Theorem,

$$Q[\tau_n \le t] = \mathbb{E}_Q[\mathbf{1}_{\{\tau_n \le t\}}] = \mathbb{E}_P[\mathbf{1}_{\{\tau_n \le t\}} Z_t] = \mathbb{E}_P[\mathbf{1}_{\{\tau_n \le t\}} Z_{\tau_n}] \le 1/n.$$

So we get $Q[\{\inf_{s \in [0,t]} Z_s = 0\}] = \lim_{n \to \infty} Q[\tau_n \le t] = 0.$

Theorem 16.19 (Girsanov Theorem). Suppose $Q = Z_t \cdot P$ on \mathcal{F}_t for each $t \ge 0$, and Z is continuous. Then for any continuous local P-martingale M, the process $\widetilde{M} = M - Z^{-1} \cdot [M, Z]^P$ is a continuous Q-local martingale.

Proof. First assume that Z > 0 and Z^{-1} is bounded. Then \overline{M} is a continuous *P*-semimartingale, and by Proposition 15.15 (Chain Rule) and Theorem 15.17 (Product Formula),

$$\widetilde{M}Z - \widetilde{M}_0 Z_0 = \widetilde{M} \cdot Z + Z \cdot \widetilde{M} + [\widetilde{M}, Z]^P$$
$$= \widetilde{M} \cdot Z + Z \cdot M - [M, Z]^P + [\widetilde{M}, Z]^P = \widetilde{M} \cdot Z + Z \cdot M.$$

So \widetilde{MZ} is a continuous *P*-local martingale. By Lemma 16.16, \widetilde{M} is a continuous local *Q*-martingale.

For general case, define $\tau_n = \inf\{t \ge 0 : Z_t \le 1/n\}$. Then $Z^{\tau_n} > 0$ and $(Z^{\tau_n})^{-1}$ is bounded. Since $\widetilde{M}^{\tau_n} = M^{\tau_n} - (Z^{\tau_n})^{-1} \cdot [M^{\tau_n}, Z^{\tau_n}]^P$, by the last paragraph, \widetilde{M}^{τ_n} is a *Q*-local martingale. By Lemma 16.17, *Q*-a.s. $\tau_n \uparrow \infty$. So by Lemma 15.1, \widetilde{M} is a *Q*-local martingale.

From now on, we assume that Z is continuous. We add superscript P or Q to [X], L(X) and $V \cdot X$ to indicate the dependence on P or Q.

Proposition 16.20. Any *P*-semimartingale *X* is also a *Q*-semimartingale, and for any semimartingales *X* and *Y*, *Q*-a.s. $[X]^P = [X]^Q$ and $[X,Y]^P = [X,Y]^Q$. Furthermore, for any $V \in L^p(X)$, *Q*-a.s. $V \in L^Q(X)$, and $(V \cdot X)^P = (V \cdot X)^Q$. Finally, if *M* is a *P*-local martingale, then *Q*-a.s. $(V \cdot M) = V \cdot \widetilde{M}$ whenever either side exists.

Proof. Let M + A be the *P*-decomposition of *X*. Since $M = \widetilde{M} + Z^{-1} \cdot [M, Z]^P$, \widetilde{M} is a *Q*-local martingale, and $Z^{-1} \cdot [M, Z]^P$ is a finite variation process, we see that $X = \widetilde{M} + Z^{-1} \cdot [M, Z]^P + A$ is a *Q*-semimartingale. From Proposition 15.18, we see that *Q*-a.s., $[X]^P = [X]^Q$. In fact, for any fixed $t_0 > 0$ and a sequence $\Delta_n = \{0 = t_0^n < \cdots < t_{k_n}^n = t_0\}$ of partitions of $[0, t_0]$ with mesh size tending to 0, we have $T_X^{\Delta_n} := \sum_{j=1}^{k_n} |X_{t_j^n} - X_{t_{j-1}^n}|^2$ tends to $[X]_{t_0}^P$ in probability w.r.t. *P*. Since $Q \ll P$ on \mathcal{F}_{t_0} , the convergence also holds w.r.t. *Q*. By polarization, we then have Q-a.s. $[X, Y]^P = [X, Y]^Q$. From now on, we drop the superscript *P* or *Q* after $[\cdot]$.

Let $V \in L^P(X)$. Then $V \in L^P(A)$ and $V^2 \in L^P([M]) = L^P([\widetilde{M}])$. For a finite variation process A, L(A) does not depend on the underlying probability. So $L^P(A) = L^Q(A)$ and $L^P([\widetilde{M}]) = L^Q([\widetilde{M}])$. Thus, $V \in L^Q(A) \cap L^Q(\widetilde{M})$. To prove that $V \in L^Q(X)$, it remains to show that Q-a.s. $V \in L(Z^{-1} \cdot [M, Z])$. This is true because Q-a.s. Z > 0, $V^2 \in L([\widetilde{M}]) = L([M])$, and by Proposition 15.10,

$$\int_0^t |V_s Z_s^{-1}| |d[M, Z]_s| \le \left(\int_0^t V_s^2 d[M]_s\right) \cdot \left(\int_0^t Z_s^{-2} d[Z]_s\right) < \infty, \quad \forall t \ge 0.$$

We now prove that Q-a.s., $(V \cdot X)^P = (V \cdot X)^Q$. The equality is trivial if X is a finite variation process. It remains to prove the case that X is the local martingale M. Recall

that (under any measure) if M is a local martingale, then $V \cdot M$ is the local martingale such that for any local martingale N, $[V \cdot M, N] = V \cdot [M, N]$. The statement is also true if N is any semimartingale since the finite variation part of N does not contribute to the quadratic covariation. Now $\widetilde{M} = M - Z^{-1} \cdot [M, Z]$ is a Q-local martingale. To prove $(V \cdot M)^Q = (V \cdot M)^P$, it suffices to show that $(V \cdot \widetilde{M})^Q = (V \cdot M)^P - V \cdot (Z^{-1} \cdot [M, Z])$. Since \widetilde{M} is a Q-local martingale, for that purpose, we need to show (i) $(V \cdot M)^P - V \cdot (Z^{-1} \cdot [M, Z])$ is a Q-local martingale; and (ii) for any semimartingale N,

$$[(V \cdot M)^P - V \cdot (Z^{-1} \cdot [M, Z]), N] = V \cdot [\widetilde{M}, N].$$

For (i), by Lemma 16.16 we need to show that $Z((V \cdot M)^P - V \cdot (Z^{-1} \cdot [M, Z]))$ is a *P*-local martingale. This follows from a straightforward Itô's calculation. The finite variation part comes from the first term is $[Z, V \cdot M] = V \cdot [Z, M]$, while the finite variation part comes from the second term is $-Z \cdot (V \cdot (Z^{-1} \cdot [M, Z])) = -V \cdot [M, Z]$. So (i) is proved. Part (ii) also follows from a straightforward calculation:

$$[(V \cdot M)^{P} - V \cdot (Z^{-1} \cdot [M, Z]), N] = [(V \cdot M)^{P}, N] = V \cdot [M, N] = V \cdot [\widetilde{M}, N].$$

From now on, we drop superscripts P and Q after stochastic integral.

Suppose M is a P-local martingale. Then \widetilde{M} is a Q-local martingale, and so is $V \cdot \widetilde{M}$. We know that $V \cdot M - V \cdot \widetilde{M} = VZ^{-1} \cdot [M, Z]$ is a finite variation process. We also know that $V \cdot M - \widetilde{V \cdot M}$ is a finite variation process. So the difference of the two Q-local martingales $V \cdot \widetilde{M}$ and $\widetilde{V \cdot M}$ differ by a finite variation process. Thus, Q-a.s. $(\widetilde{V \cdot M}) = V \cdot \widetilde{M}$.

We now explain how to remove the drift term of a semimartingale using Girsanov Theorem.

Theorem. Suppose B is a Brownian motion under P, and $f \in L(B)$, i.e., f is a progressive and $\int_0^t f_s^2 ds < \infty$ for all $t \ge 0$. Recall that the $\mathcal{E}(f \cdot B)$ given by

$$\mathcal{E}(f \cdot B)_t = \exp\left(\int_0^t f_s dB_s - \frac{1}{2}\int_0^t f_s^2 ds\right)$$

is a local martingale. Suppose further that $\mathcal{E}(f \cdot B)$ is a uniformly integrable true martingale. Then $\mathbb{E}[\mathcal{E}(f \cdot B)_{\infty}] = 1$, and we may define another probability measure Q by $dQ = \mathcal{E}(f \cdot B)_{\infty} dP$. Let $h_t = \int_0^t f_s ds$. Then under the new measure Q, $\tilde{B} = B - h$ is a Brownian motion.

Proof. Let $Z = \mathcal{E}(f \cdot B)$. Recall that we have $Z = (fZ) \cdot B$. So $Z^{-1} \cdot [B, Z] = Z^{-1} \cdot (fZ \cdot (t)) = f \cdot (t) = h$. Here we use (t) to denote the process $X_t = t$ for all $t \ge 0$. Since $Z_t = \mathbb{E}[Z_{\infty}|\mathcal{F}_t]$, we have $Q = Z_t \cdot P$ on \mathcal{F}_t for each $t \ge 0$. So by Theorem 16.19, $\tilde{B} = B - h = B - Z^{-1} \cdot [B, Z]$ is a local martingale under Q. By Theorem 16.20, $[\tilde{B}]^Q = [B]^Q = [B]^P = (t)$. By Levy's characterization of Brownian motion, \tilde{B} is a Brownian motion under Q.

Remark. The above theorem also holds for *d*-dimensional, in which case $B = (B^1, \ldots, B^d)$ is a *d*-dimensional Brownian motion, $f = (f^1, \ldots, f^d)$, $h = (h^1, \ldots, h^d)$, and $h_t^j = \int_0^t f_s^j ds$. Now

the RN process $Z = \mathcal{E}(f \cdot B)$, where $f \cdot B$ is understood as $\sum_{j=1}^{d} f^{j} \cdot B^{j}$. We have $Z - Z_{0} = \sum_{j} f^{j} Z \cdot B^{j}$. So $Z^{-1} \cdot [B^{j}, Z] = f_{j} \cdot (t) = h_{j}$. Thus, for any $j, \widetilde{B}^{j} := B^{j} - h^{j} = B^{j} - Z^{-1} \cdot [B^{j}, Z]$ is a local martingale. Since $[\widetilde{B}^{j}, \widetilde{B}^{k}] = [B^{j}, B^{k}] = \delta_{j,k}(t)$, by Levy's characterization, $\widetilde{B} = B - h$ is a *d*-dimensional Brownian motion under Q.

When the conditions in the above theorem is satisfied, under the new measure Q, which is absolutely continuous w.r.t. P, the original Brownian motion B is no longer a Brownian motion. Instead, $\tilde{B} := B - h$ is a Brownian motion. We now let P_B denote the law of a Brownian motion; and let P_{B-h} denote the law of $\tilde{B} = B - h$ under P. This means $P_{B-h} = P \circ \tilde{B}^{-1}$. Since \tilde{B} is a Brownian motion under Q, we have $Q \circ \tilde{B}^{-1} = P_B$. Since $Q \ll P$, we conclude that $P_B \ll P_{B-h}$. If we further know that P-a.s. $\mathcal{E}(f \cdot B)_{\infty} > 0$, then we also have $P \ll Q$, and so $P_{B-h} \ll P_B$. In that case, we can say that B - h satisfies every almost surely property of a Brownian motion. For example, we can say that B - h is a.s. Hölder continuous of any order less than 1/2, a.s. $\limsup_{t\to\infty} B_t - h_t = \infty$ and $\liminf_{t\to\infty} B_t - h_t = -\infty$, and a.s.

$$\limsup_{t \downarrow 0} \frac{B_t - h_t}{\sqrt{2t \log \log(1/t)}} = \limsup_{t \to \infty} \frac{B_t - h_t}{\sqrt{2t \log \log(t)}} = 1.$$

We may loose the conditions on f. Now we still assume that $f \in L(B)$, but do not assume that $Z = \mathcal{E}(f \cdot B)$ is a uniformly integrable. Then in general, the law of B - h may not be absolutely continuous w.r.t. that of B. For example, if h = (t), then the law of B - h and the law of B are singular to each other. To see this, note that by the law of iterated logarithm, we have a.s. $\lim_{t\to\infty} B_t/t = 0$ and $\lim_{t\to\infty} (B_t - t)/t = -1$. But we may use localization method to conclude that the path of B - h is locally similar to that of B.

For $n \in \mathbb{N}$, let $\tau_n = \inf\{t \ge 0 : |\log Z_t| \ge n\}$. Then $\tau_n \uparrow \infty$, and for each $n, Z^{\tau_n} = \mathcal{E}(\mathbf{1}_{[0,\tau_n]}f \cdot B)$ is a bounded martingale. So $\mathbb{E}_P[Z_{\tau_n}] = 1$. Then we may define a new probability measure Q_n by $dQ_n = Z_{\tau_n}dP$. Now $Q_n \ll P$ and $P \ll Q_n$ because $Z_{\tau_n} > 0$. Under the new measure $Q_n, B_t - \int_0^t \mathbf{1}_{[0,\tau_n]}f_s ds = B_t - h_{t\wedge\tau_n}$ is a Brownian motion. So we know that the law of $B - h_{\cdot\wedge\tau_n}$ is absolutely continuous w.r.t. that of B. Since $B - h_{\cdot\wedge\tau_n}$ agrees with B - h up to τ_n , we know that $P_{B-h} \ll P_B$ on \mathcal{F}_{τ_n} . Since $\tau_n \to \infty$, we know that B - h satisfies the almost surely local property of B. For example, from that B is a.s. locally Hölder continuous on \mathbb{R}_+ , we can conclude that B - h is also a.s. Hölder continuous on \mathbb{R}_+ .

For the completeness of the theory, we need a criterion to check when $\mathcal{E}(f \cdot B)$ is a uniformly integrable martingale so that we do not need to do localization.

Theorem 16.23 (Nivikov condition). Let M be a local martingale with $M_0 = 0$ and

$$\mathbb{E}[e^{[M]_{\infty}/2}] < \infty.$$

Then $\mathcal{E}(M) = \exp(M - \frac{1}{2}[M])$ is a uniformly integrable martingale.

If $M = \sum_{j=1}^{d} \sigma^j \cdot B^j$ for a Brownian motion $B = (B^1, \dots, B^d)$, then the Nivikov condition becomes

$$\mathbb{E}\left[e^{\frac{1}{2}\int_0^\infty \sum_{j=1}^a (\sigma_s^j)^2 ds}\right] < \infty.$$

Lemma. Let B be a Brownian motion. Then $\mathcal{E}(B)_t = e^{B_t - t/2}$ is a martingale.

Proof. Fix $t > s \ge 0$. Since $B_t - B_s \perp\!\!\!\perp \mathcal{F}_s$, we have $e^{B_t - B_s} \perp\!\!\!\perp \mathcal{F}_s$. So

$$\mathbb{E}[e^{B_t - B_s} | \mathcal{F}_s] = \mathbb{E}[e^{B_t - B_s}] = \int_{\mathbb{R}} \frac{e^x e^{-\frac{x^2}{2(t-s)}}}{\sqrt{2\pi(t-s)}} \, dx = e^{(t-s)/2},$$

which implies that $\mathbb{E}[e^{B_t - t/2} | \mathcal{F}_s] = e^{B_s - s/2}$.

Lemma 16.22. Suppose $\Omega = C(\mathbb{R}_+, \mathbb{R})$, and P_0 is the law of Brownian motion. This means that the coordinate process under P_0 is a Brownian motion. Let B denote this coordinate process. Let \mathcal{F} be the P_0 -complete filtration generated by the coordinate process. Let P_t denote the law of B + t. Then for any $t \ge 0$, $P_t = \mathcal{E}(B)_t \cdot P_0$ on \mathcal{F}_t .

Proof. Let $Z = \mathcal{E}(B)$. Then Z is a martingale by the lemma. Fix $t_0 \geq 0$. Then $Z^{t_0} = \mathcal{E}(\mathbf{1}_{[0,t_0]}B)$ is a uniformly integrable martingale. If we define a new probability measure Q_{t_0} on Ω by $dQ_{t_0}/dP_0 = Z_{\infty}^{t_0} = Z_{t_0}$, then under the new measure Q_{t_0} , $\widetilde{B}_t^{(t_0)} = B_t - \int_0^t \mathbf{1}_{[0,t_0]}(s)ds = B_t - t \wedge t_0$ is a Brownian motion. In other words, under Q_{t_0} , up to the time t_0 , B is the sum of a Brownian motion \widetilde{B} and the function t, i.e., the law of B under Q_{t_0} is that of B + t under P. Since $Q_{t_0} = Z_{t_0} \cdot P_0$, and Z_{t_0} is \mathcal{F}_{t_0} -measurable, we get the conclusion.

Theorem 16.23 (Nivikov condition). Let M be a local martingale with $M_0 = 0$ and

$$\mathbb{E}[e^{[M]_{\infty}/2}] < \infty.$$

Then $\mathcal{E}(M) = \exp(M - \frac{1}{2}[M])$ is a uniformly integrable martingale.

Lemma 16.24. Let B be a Brownian motion. Let τ be a stopping time such that $\mathbb{E}[e^{\tau/2}] < \infty$. Then $\mathbb{E}[\mathcal{E}(B)_{\tau}] = \mathbb{E}[e^{B_{\tau} - \frac{\tau}{2}}] = 1$.

Proof. We may suppose that $\Omega = C(\mathbb{R}_+, \mathbb{R})$, B is the coordinate process, and \mathbb{P} is the law of a Brownian motion (so that B is a Brownian motion under \mathbb{P}). Let Q denote the law of a Brownian motion plus the function t. From Lemma 16.22, for any $t \geq 0$, $Q = Z_t \cdot \mathbb{P}$ on \mathcal{F}_t , where $Z_t := e^{B_t - t/2}$. By Lemma 16.16, if τ is a stopping time, then $Q \ll \mathbb{P}$ on $\mathcal{F}_\tau \cap \{\tau < \infty\}$, and the Radon-Nikodym derivative is Z_τ . If τ is such that $Q[\tau < \infty] = 1$, we then have $\mathbb{E}[Z_\tau] = 1$.

Fix b > 0 and let τ_b be the first time that $B_t - t = -b$. Then $Q[\tau_b < \infty] = 1$ since under Q, $B_t - t$ has the law of a Brownian motion, which is recurrent. So we get

$$\mathbb{E}[\exp(B_{\tau_b} - \frac{\tau_b}{2})] = \mathbb{E}[Z_{\tau_b}] = 1.$$

Since Z is a supermartingale, from $\mathbb{E}[Z_{\tau_b}] = 1$ we know that Z^{τ_b} is a uniformly integrable martingale. Thus, by Optional Stopping Theorem,

$$1 = \mathbb{E}[Z_{\tau}^{\tau_b}] = \mathbb{E}[Z_{\tau_b \wedge \tau}] = \mathbb{E}[\mathbf{1}_{\{\tau \le \tau_b\}} e^{B_{\tau} - \tau/2}] + \mathbb{E}[\mathbf{1}_{\{\tau_b < \tau\}} e^{B_{\tau_b} - \tau_b/2}].$$
(4.1)

By the definition of τ_b , $B_{\tau_b} - \tau_b/2 = \tau_b - b - \tau_b/2 = \tau_b/2 - b$. So

$$\mathbb{E}[\mathbf{1}_{\{\tau_b < \tau\}} e^{B_{\tau_b} - \tau_b/2}] = e^{-b} \mathbb{E}[\mathbf{1}_{\{\tau_b < \tau\}} e^{\tau_b/2}] \le e^{-b} \mathbb{E}[\mathbf{1}_{\{\tau_b < \tau\}} e^{\tau/2}] \to 0$$

as $b \to \infty$ because $\mathbb{E}[e^{\tau/2}] < \infty$. Letting $b \to \infty$ in (4.1) we get $\mathbb{E}[e^{B_{\tau}-\tau/2}] = 1$.

Proof of Theorem 16.23. Let $u_t = [M]_t$, $S = \sup\{u_t : t \ge 0\} = [M]_\infty$, and $v_s = \inf\{t \ge 0 : u_t > s\}$. Then in an enlarged probability space M_{v_s} , $0 \le s < S$, extends to a Brownian motion B, and S is a stopping time for B. By the assumption, we have $\mathbb{E}[e^{S/2}] < \infty$. By Lemma 16.24, $\mathbb{E}[e^{M_\infty - [M]_\infty/2}] = \mathbb{E}[e^{B_S - S/2}] = 1$. Thus, $e^{M - [M]/2}$ is a uniformly integrable martingale. \Box

5 Stochastic Differential Equations

A stochastic differential equation (SDE) has the following general form.

$$dX_t^i = \sum_{j=1}^{\delta} \sigma_j^i(t, X) dB_t^j + b^i(t, X) dt, \quad 1 \le i \le d.$$

or equivalently,

$$X_{t}^{i} - X_{0}^{i} = \sum_{j} \int_{0}^{t} \sigma_{j}^{i}(s, X) dB_{s}^{j} + \int_{0}^{t} b^{i}(s, X) ds, \quad 1 \le i \le d.$$

Here $X = (X^1, \ldots, X^d)$ is a continuous vector semimartingale and $B = (B^1, \ldots, B^\delta)$ is a δ dimensional Brownian motion. The σ_j^i and b^i , $1 \le i \le d$, $1 \le j \le \delta$, are real valued functions defined on

$$\mathbb{R}_+ \times C(\mathbb{R}_+, \mathbb{R}^d)$$

which are progressive in the sense that for any fixed $t_0 > 0$, σ_i^i and b^i restricted to the subspace

$$[0, t_0] \times C(\mathbb{R}_+, \mathbb{R}^d)$$

are measurable w.r.t. $\mathcal{B}([0, t_0]) \times \mathcal{F}_{t_0}^c$, where $\mathcal{F}_{t_0}^c$ is the σ -algebra on $C(\mathbb{R}_+, \mathbb{R})$ generated by the coordinate process up to t_0 . This means that, for a fixed t, the values of $\sigma_j^i(t, w)$ and $b^i(t, w)$ depend only on the values of w before t. Note that there are no randomness in σ_j^i and b^i . We write $\sigma = (\sigma_j^i)$ and $b = (b^i)$, which are $\mathbb{R}^{d \times \delta}$ -valued and \mathbb{R}^d -valued, respectively. We often write the SDE in the vector form:

$$dX_t = \sigma(t, X) \circ dB_t + b(t, X)dt, \tag{5.1}$$

or

$$X_t - X_0 = \int_0^t \sigma(s, X) \circ dB_s + \int_0^t b(s, X) ds.$$
 (5.2)

A simple case of σ and b is that there exist measurable functions $\sigma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times \delta}$ and $b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ such that $\sigma(t, w) = \sigma(t, w_t)$ and $b(t, w) = b(t, w_t)$. If σ and b further do not depend on t, then the equation is said to be time-homogeneous. There are also other possibilities such as $b(t, w) = \int_0^t w_s ds$.

We call (5.1) or (5.2) $\text{SDE}(\sigma, b)$. If we further require that $X_0 = x$ for some $x \in \mathbb{R}^d$, then the equation is called $\text{SDE}_x(\sigma, b)$. The x may also be replaced by a random variable ζ , which must be independent of B, or a probability measure μ on \mathbb{R}^d .

There are two kinds of solutions of $SDE(\sigma, b)$: strong solution and weak solution. For both kinds of solutions, we are given the functions σ and b.

For the strong solution, besides σ and b, we are also given a d-dim Brownian motion B on some probability space and an initial value, which is a deterministic point $x \in \mathbb{R}^d$ or a random vector ζ in \mathbb{R}^d independent of B. We require that the solution X to be adapted to \mathcal{F}^{B,X_0} , the complete filtration generated by B and X_0 . The stochastic integral is also w.r.t. \mathcal{F}^{B,X_0} .

For the weak solution, besides σ, b , we are only given the initial value $x \in \mathbb{R}^d$ or an initial distribution μ on \mathbb{R}^d . We are not given the Brownian motion or the probability space. A weak solution of the $\text{SDE}_{\mu}(\sigma, b)$ is a package:

$$(\Omega, \mathcal{F}, \mathbb{P}), \quad B, \quad X,$$

where $(\Omega, \mathcal{F}, \mathbb{P})$ is a filtered space such that \mathcal{F} is complete, B is a d-dim \mathcal{F} -Brownian motion, X is a d-dim \mathcal{F} -semimartingale with $X_0 = x$ or $X_0 \sim \mu$, and (5.2) a.s. holds w.r.t. the filtration \mathcal{F} . This mean that the space and the Brownian motion are also parts of the solution.

The relations between the two kinds of solutions are (i) a strong solution is always a weak solution; (ii) if (\mathcal{F}, B, X) is a weak solution, and X is \mathcal{F}^{B,X_0} -adapted, then X is a strong solution. This condition does not hold in general.

We will discuss the uniqueness of the solution. The uniqueness of the strong solution means that if X and X' both solve $\text{SDE}(\sigma, b)$ on $[0, \infty)$ w.r.t. the same Brownian motion and the same initial value, then a.s. X = X'. We may allow that a solution to have a finite lifetime. In that case, the uniqueness means that if X_t , $0 \leq t < T$, and X'_t , $0 \leq t < T'$, are solutions of the same equation with the same Brownian motion and the same initial value, then a.s. X = X'on $[0, T \wedge T')$. If the uniqueness holds, then for a given Brownian motion and initial value, there exists an a.s. unique solution with the maximal interval so that all other solutions are its restrictions. There are two kinds of uniqueness for weak solutions. We say that pathwise uniqueness holds if for any two weak solutions (B, X) and (B', X') of $\text{SDE}(\sigma, b)$ defined on the same filtered space $(\Omega, \mathcal{F}, \mathbb{P})$ such that B = B' and $X_0 = X'_0$, we have a.s. X = X' (or they a.s. agree on the common time interval). We say that uniqueness in law holds if any two weak solutions (B, X) and (B', X') of $\text{SDE}_{\mu}(\sigma, b)$ with the maximal interval have the same joint finite dimensional distribution.

Example (A trivial example). Let $d = \delta$, $\sigma_i^i \equiv \delta_{i,j}$ and $b^i \equiv 0$. The SDE (σ, b) becomes

$$dX_t = dB_t.$$

For ζ independent of $B, X = \zeta + B$ is a strong solution of the SDE with initial value ζ .

Example. Let $d = \delta = 1$, $\sigma(t, w) = w_t$, and $b \equiv 0$. The SDE (σ, b) becomes

$$dX_t = X_t dB_t.$$

The stochastic exponential $\mathcal{E}(B)_t = e^{B_t - t/2}$ is a strong solution of the SDE with initial value 1. For ζ independent of $B, X = \zeta \mathcal{E}(B)$ is a strong solution of the SDE with initial value ζ .

Example. Bessel process of dimension δ is the solution of the SDE:

$$dX_t = dB_t + \frac{\delta - 1}{2X_t} \, dt.$$

We got the existence and uniqueness of the solution by transforming it into an ODE.

Example (Brownian motion on the unit circle). Let *B* be a 1-dimensional Brownian motion. Let $X = \cos(B)$ and $Y = \sin(B)$. Then (X, Y) takes values in the unit circle $\{(x, y) : x^2 + y^2 = 1\}$, and the argument runs as a Brownian motion. It is called a Brownian motion on the unit circle. Itô's formula shows that they satisfy the SDE:

$$dX_t = -Y_t dB_t - \frac{1}{2}Xdt;$$

$$dY_t = X_t dB_t - \frac{1}{2}Ydt.$$

On the other hand, if (X, Y) solves the SDE, then $X^2 + Y^2$ is constant because

$$d(X_t^2 + Y_t^2) = 2X_t dX_t + 2Y_t dY_t + Y_t^2 dt + X_t^2 dt = 0.$$

Example (A weak solution not a strong solution). Let $d = \delta = 1$. Let W be a 1-dimensional Brownian motion. Let

$$B_t = \int_0^t \operatorname{sign}(W_t) dW_t, \quad t \ge 0,$$

where $\operatorname{sign}(x) \in \{1, 0, -1\}$ depending on the sign of x. Then B is a local martingale with $[B]_t = \int_0^t \operatorname{sign}(W_s)^2 ds = t, t \ge 0$. Here we used the fact that the set $B^{-1}(0)$ has Lebesgue measure zero. By Levy's characterization of Brownian motion, B is also a Brownian motion. Since $W_t = \int_0^t \operatorname{sign}(W_t) dB_t, t \ge 0$, (W, B) is a weak solution of

$$dW = \operatorname{sign}(W)dB, \quad W(0) = 0.$$

Here the underlying filtration is \mathcal{F}^W generated by W. This solution does not satisfy the pathwise uniqueness. In fact, (-W, B) is also a weak solution.

We claim that W is not a strong solution, i.e., W is not adapted to the filtration \mathcal{F}^B generated by B. For the proof take a sequence of convex even C^2 functions F_n such that $F_n(x) = |x|$ if $|x| \ge 1/n$, and for each $x \in \mathbb{R}$, $F_n(x) \downarrow |x|$. Let $f_n = F'_n$. Then $|f_n| \le 1$ and $f_n(x) \to \operatorname{sign}(x)$ on \mathbb{R} . By Itô's formula, for any n,

$$F_n(W_t) - F_n(W_0) = \int_0^t f_n(W_s) dW_s + \frac{1}{2} \int_0^t F_n''(W_s) ds, \quad t \ge 0.$$

Let $n \to \infty$. Then $F_n(W_t) - F_n(W_0) \to |W_t|$. By dominated convergence theorem for stochastic integral, $\int_0^t f_n(W_s) dW_s \to \int_0^t \operatorname{sign}(W_s) dW_s = B_t$. Since F''_n is even, we get

$$B_t = |W_t| - \lim_{n \to \infty} \frac{1}{2} \int_0^t F_n''(|W_s|) ds, \quad t \ge 0.$$

This means that B is adapted to the filtration $\mathcal{F}^{|W|}$ generated by |W|. If W is adapted to \mathcal{F}^B , then $\mathcal{F}^W \subset \mathcal{F}^B \subset \mathcal{F}^{|W|} \subset \mathcal{F}^W$. We should have $\mathcal{F}^W = \mathcal{F}^{|W|}$. However, for a Brownian motion $W, \mathcal{F}^W \neq \mathcal{F}^{|W|}$ because for any fixed $t_0 > 0$, then event $\{W(t_0) > 0\}$ belongs to \mathcal{F}^W but not $\mathcal{F}^{|W|}$. This is a contradiction.

Remark. Let $L_t = \lim_{n \to \infty} \frac{1}{2} \int_0^t F_n''(|W_s|) ds, t \ge 0$. Then

$$|W| = B + L$$

Since for each $n, F_n'' \ge 0, L$ is increasing. So L is a finite variation process, |W| is a semimartingale with

$$d|W_t| = dB_t + dL_t = \operatorname{sign}(W_t)dW_t + dL_t.$$

The equation is called Itô-Tanaka equation, and L is called the local time of the Brownian motion W. Since $F''_n(x)$ for $|x| \ge 1/n$, we know that L stays constant on each open interval on which $W \ne 0$. So it increases only at the time when W = 0.

Example . Consider the d-dimensional SDE

$$dX_t = dB_t + b(t, X_t)dt, (5.3)$$

where $b : [0, \infty) \times \mathbb{R}^d \to \mathbb{R}^d$. Under certain conditions, we may use Girsanov Theorem to construct a weak solution. First let *B* be a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Define a local martingale *Z* by

$$Z_t = \exp\Big(\int_0^t \sum_{j=1}^d b^j(s, B_s) dB_s^j - \frac{1}{2} \sum_{j=1}^d \int_0^t b^j(s, B_s)^2 ds\Big), \quad t \ge 0.$$

Suppose that there are conditions on b such that $\int_0^t \sum_{j=1}^d b^j(s, B_s) dB_s^j$ satisfies the Nivikov condition, i.e.,

$$\mathbb{E}\Big[\exp\Big(\frac{1}{2}\int_0^\infty \|b(s,B_s)\|^2 ds\Big)\Big] < \infty$$

This is the case, for example, if there is a function $b \in L^2(\mathbb{R}_+, \lambda)$ such that $||b(t, x)|| \leq |b(t)|$ for each $t \geq 0$ and $x \in \mathbb{R}^d$. Then Z is a uniformly integrable martingale. We define another probability measure $\widetilde{\mathbb{P}}$ on (Ω, \mathcal{F}) such that $\widetilde{\mathbb{P}} = Z_{\infty} \cdot \mathbb{P}$. Then $\widetilde{\mathbb{P}} = Z_t \cdot \mathbb{P}$ on \mathcal{F}_t for each $t \geq 0$. By Girsanov Theorem, under the new measure $\widetilde{\mathbb{P}}, \widetilde{B}_t := B_t - \int_0^t b(s, B_s) ds, t \geq 0$, is a *d*-dimensional Brownian motion. Now B and \widetilde{B} satisfy

$$dB_t = d\widetilde{B}_t + b(t, B_t)dt.$$

Thus, (B, \widetilde{B}) on $(\Omega, \mathcal{F}, \widetilde{\mathbb{P}})$ is a weak solution of (5.3).

5.1 Strong solution: existence and uniqueness

We now consider the existence and uniqueness of the strong solution of the following SDE

$$X_t - X_0 = \int_0^t \sigma(s, X_s) \cdot dB_s + \int_0^t b(s, X_s) ds,$$
 (5.4)

where $\sigma = (\sigma_j^i) \in C(\mathbb{R}_+ \times \mathbb{R}^d, \mathbb{R}^{d \times \delta})$ and $b = (b^i) \in \mathbb{C}(\mathbb{R}_+ \times \mathbb{R}^d, \mathbb{R}^d)$. The theory parallels the main existence/uniqueness result for ordinary differential equations.

We use L^2 to denote the space of random vectors ζ in \mathbb{R}^d such that $\mathbb{E}[\|\zeta\|^2] < \infty$. The norm of $\zeta \in L^2$ is denoted by $\|\zeta\|_2 = \mathbb{E}[\|\zeta\|^2]^{1/2}$.

Theorem 18.3 (A simplified version). Fix a d-dimensional Brownian motion B. Suppose that there is K > 0 such that for any $t \in \mathbb{R}_+$ and $x, y \in \mathbb{R}^d$,

$$\|\sigma(t,x)\| + \|b(t,x)\| \le K(1+\|x\|);$$
(5.5)

$$\|\sigma(t,x) - \sigma(t,y)\| + \|b(t,x) - b(t,y)\| \le K \|x - y\|.$$
(5.6)

Then we have the following.

- (i) For any $\zeta \in L^2$ independent of B, a strong solution X^{ζ} of $SDE_{\zeta}(\sigma, b)$ (with initial value ζ) exists, and $X_t^{\zeta} \in L^2$ for any $t \geq 0$.
- (ii) The strong solution in (i) is unique, and a weak solution of $SDE_{\zeta}(\sigma, b)$ with (initial value) $\zeta \in L^2$ is a strong solution.
- (iii) We may choose a version of the solution X^x with initial value x for each $x \in \mathbb{R}^d$ such that $\mathbb{R}^d \times \mathbb{R}_+ \ni (x, t) \mapsto X_t^x$ is continuous. This means that the solution depends continuously on the initial value.
- (iv) Let X_t^x , $x \in \mathbb{R}^d$, $t \in \mathbb{R}_+$, be as in (iii). Then for any $\zeta \in L^2$, $X^x|_{x=\zeta}$ is a strong solution of $SDE_{\zeta}(\sigma, b)$. In other words, the solution X^{ζ} in (i) a.s. equals $X^x|_{x=\zeta}$.

Lemma 18.4 (Gronwall). Let a, b > 0. Let $f \in C(\mathbb{R}_+, \mathbb{R}_+)$ such that

$$f(t) \le a + b \int_0^t f(s) ds, \quad t \ge 0$$

Then $f(t) \leq ae^{bt}$ for all $t \geq 0$.

Proof. Let $F(t) = \int_0^t f(s)ds$, $t \ge 0$. Then $F \in C^1(\mathbb{R}_+, \mathbb{R})$, and $F' = f \le a + bF$. Let $G(t) = e^{-bt}F(t)$. Then $G'(t) = e^{-bt}(F'(t) - bF(t)) \le ae^{-bt}$ and G(0) = 0. So $G(t) \le \int_0^t ae^{-bs}ds = a(1-e^{-bt})/b$. Thus, $F(t) = e^{bt}G(t) \le a(e^{bt}-1)/b$, and $f(t) \le a+bF(t) \le ae^{bt}$. □

Let \mathcal{F} be a filtration, and B be an \mathcal{F} -Brownian motion. For any continuous \mathcal{F} -adapted process X in \mathbb{R}^d , we define an \mathcal{F} -vector semimartingale S(X) in \mathbb{R}^d by

$$S(X)_t = \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) \circ dB_s, \quad t \ge 0.$$

If $X = X_0 + S(X)$, then (X, B) is a weak solution of $SDE(\sigma, b)$. If we further have $\mathcal{F} = \mathcal{F}^{B, X_0}$, then X is a strong solution.

Lemma 18.5. Let X and Y be adapted continuous processes in \mathbb{R}^d such that $X_t, Y_t \in L^2$ for all $t \geq 0$. (i) If σ and b satisfy (5.5), then

$$\mathbb{E}[\sup_{0 \le s \le t} \|S(X)_s\|^2] \le 4K^2(t+4)(t+\int_0^t \mathbb{E}[\|X_s\|^2]ds).$$
(5.7)

(ii) If σ and b satisfy (5.6), then

$$\mathbb{E}[\sup_{0 \le s \le t} \|S(X)_s - S(Y)_s\|^2] \le 2K^2(t+4) \int_0^t \mathbb{E}[\|X_s - Y_s\|^2] ds.$$
(5.8)

Proof. (i) Using that $(x+y)^2 \le 2x^2 + 2y^2$, we get

$$\mathbb{E}[\sup_{0 \le s \le t} \|S(X)_s\|^2] \le 2\mathbb{E}[\sup_{0 \le s \le t} \|\int_0^s b(u, X_u) du\|^2] + 2\mathbb{E}[\sup_{0 \le s \le t} \|\int_0^s \sigma(u, X_u) \circ dB_u\|^2].$$

For the first term on the RHS, since $||b(t, x)|| \le K(1 + ||x||)$,

$$\mathbb{E}[\sup_{0\leq s\leq t} \|\int_{0}^{s} b(u, X_{u})ds\|^{2}] \leq \mathbb{E}[(\int_{0}^{t} \|b(s, X_{s})\|ds)^{2}] \leq \mathbb{E}[t\int_{0}^{t} \|b(s, X_{s})\|^{2}ds]$$

= $t\int_{0}^{t} \mathbb{E}[\|b(s, X_{s})\|^{2}]ds \leq t\int_{0}^{t} \mathbb{E}[K^{2}(1+\|X_{s}\|)^{2}]ds \leq 2K^{2}t\int_{0}^{t}(1+\mathbb{E}[\|X_{s}\|^{2}]ds).$ (5.9)

For the second term on the RHS, since $\|\sigma(t,x)\| \leq K(1+\|x\|)$, using Doob's martingale inequality, we get

$$\mathbb{E}[\sup_{0\leq s\leq t} \|\int_{0}^{s} \sigma(u, X_{u}) \circ dB_{u}\|^{2}] \leq 4\mathbb{E}[\|\int_{0}^{t} \sigma(s, X_{s}) \circ dB_{s}\|^{2}]$$

$$= 4\mathbb{E}[\sum_{i=1}^{d} (\int_{0}^{t} \sum_{j=1}^{\delta} \sigma_{j}^{i}(s, X_{s}) dB_{s}^{j})^{2}] = 4\sum_{i=1}^{d} \mathbb{E}[\int_{0}^{t} \sum_{j=1}^{\delta} \sigma_{j}^{i}(s, X_{s})^{2} ds]$$

$$= 4\int_{0}^{t} \mathbb{E}[\|\sigma(s, X_{s})\|^{2}] ds \leq 4\int_{0}^{t} \mathbb{E}[(K(1+\|X_{s}\|))^{2}] ds \leq 8K^{2}\int_{0}^{t} (1+\mathbb{E}[\|X_{s}\|^{2}]) ds. \quad (5.10)$$
where (5.9) with (5.10) we get (5.7)

Combining (5.9) with (5.10) we get (5.7).

(ii) We have

$$\mathbb{E}[\|S(X)_t - S(Y)_t\|^2] \le 2\mathbb{E}[\|\int_0^t b(s, X_s) - b(s, Y_s)ds\|^2] + 2\mathbb{E}[\|\int_0^t (\sigma(s, X_s) - \sigma(s, Y_s)) \circ dB_s\|^2].$$

For the first term, using a similar argument as in (5.9) and that $||b(t,x) - b(t,y)|| \le K||x-y||$, we get

$$\mathbb{E}[\|\int_0^t b(s, X_s) - b(s, Y_s) ds\|^2] \le K^2 t \int_0^t \mathbb{E}[\|X_s - Y_s\|^2] ds.$$

For the second term, using a similar argument as in (5.10) and that $\|\sigma(t,x) - \sigma(t,y)\| \le K \|x - y\|$, we get

$$\mathbb{E}[\|\int_0^t (\sigma(s, X_s) - \sigma(s, Y_s)) \circ dB_s\|^2] \le 4K^2 \int_0^t \mathbb{E}[\|X_s - Y_s\|^2] ds.$$

Combining the two displayed formulas, we get (5.8).

Corollary. Suppose σ and b satisfy (5.5,5.6). If (X, B) is a weak solution of (5.4) such that $X_0 \in L^2$, then for any $t \ge 0$,

$$\mathbb{E}[\|X_t\|^2] \le (2\mathbb{E}[\|X_0\|^2] + 8K^2(t+4)t)e^{8K^2(t+4)t} < \infty,$$
(5.11)

and so $X_t \in L^2$. If (Y, B) is another weak solution of (5.4) with $Y_0 \in L^2$, then for any $t \ge 0$,

$$\mathbb{E}[\sup_{0 \le s \le t} \|X_s - Y_s\|^2] \le 2\mathbb{E}[\|X_0 - Y_0\|^2]e^{4K^2(t+4)t}.$$
(5.12)

In particular, the weak solution of (5.4) with L^2 -initial value satisfies pathwise uniqueness.

Proof. Fix R > 0. Let τ_R be the first $t \ge 0$ such that $||X_t|| \ge R$. Let $\sigma_R(t, x) = \mathbf{1}_{||x|| < R} \sigma(t, x)$ and $b_R(t, x) = \mathbf{1}_{||x|| < R} b(t, x)$. Then X^{τ_R} is a solution of $\text{SDE}_{X_0}(\sigma_R, b_R)$, which means that $X_{t \land \tau_R} = X_0 + S_R(X_{\land \tau_R})$, where

$$S_R(X)_t := \int_0^t b_R(s, X_s) ds + \int_0^t \sigma_R(s, X_s) \circ dB_s, \quad t \ge 0.$$

Note that $X_{t \wedge \tau_R} \in L^2$ for all $t \ge 0$ because $||X_{t \wedge \tau_R}|| \le R \vee ||X_0||$. Since σ_R and b_R satisfy (5.5), by Lemma 18.5 (i), (5.7) holds for S_R . Since $X_{t \wedge \tau_R} = X_0 + S_R(X_{\cdot \wedge \tau_R})_t$, we get

$$\mathbb{E}[\|X_{t\wedge\tau_R}\|^2] \le 2\|X_0\|^2 + 2\mathbb{E}[\|S_R(X_{\cdot\wedge\tau_R})_t\|^2] \le 2\|X_0\|^2 + 8K^2(t+4)(t+\int_0^t \mathbb{E}[\|X_{s\wedge\tau_R}\|^2]ds.$$

Let $f_R(t) = \mathbb{E}[||X_{t \wedge \tau_R}||^2]$. Then f_R is continuous by Dominated convergence theorem. By the displayed formula, we have for any T > 0,

$$f_R(t) \le 2||X_0||^2 + 8K^2(T+4)T + 8K^2(T+4)\int_0^t f(s)ds, \quad 0 \le t \le T.$$

By Gronwall's lemma, $f_R(T) \leq (2||X_0||^2 + 8K^2(T+4)T)e^{8K^2(T+4)T}$, $T \geq 0$. Since $X_{t \wedge \tau_R} \to X_t$ as $R \to \infty$, by Fatou's lemma, we get (5.11), so $X_t \in L^2$ for all $t \geq 0$.

Since $X_t = X_0 + S(X)_t$ and $Y_t = Y_0 + S(Y)_t$, we get

$$\mathbb{E}[\sup_{0 \le s \le t} \|X_s - Y_s\|^2] \le 2\mathbb{E}[\|X_0 - Y_0\|^2] + 2\mathbb{E}[\sup_{0 \le s \le t} \|S(X)_s - S(Y)_s\|^2]$$
$$\le 2\mathbb{E}[\|X_0 - Y_0\|^2] + 4K^2(T+4)\int_0^t \mathbb{E}[\|X_s - Y_s\|^2]ds, \quad 0 \le t \le T$$

If we let $f(t) = \mathbb{E}[\sup_{0 \le s \le t} ||X_s - Y_s||^2]$, then $f(t) \le 2\mathbb{E}[||X_0 - Y_0||^2] + 4K^2(T+4)\int_0^t f(s)ds$. Then we get (5.12) using Gronwall's lemma.

If $X_0 = Y_0$, then (5.12) implies that a.s. X = Y. So we get the pathwise uniqueness.

Proof of Theorem 18.3. (i) For the existence, we use the well-known Picard iteration for ODE. Let the δ -dimensional Brownian motion B and a random vector $\zeta \in L^2$ be fixed such that $\zeta \perp B$. A solution X of $\text{SDE}_{\zeta}(\sigma, b)$ satisfies that $X = \zeta + S(X)$. Define a sequence of $\mathcal{F}^{B,\zeta}$ -semimartingales (X^n) such that $X^0 \equiv \zeta$, and for any $n \ge 0$, $X^{n+1} = \zeta + S(X^n)$. If the sequence converges to some process X in some sense, then we expect that $X = \zeta + S(X)$.

Fix T > 0. Let $C_1 = 4K^2(T+4)T(1 + \mathbb{E}[||\zeta||^2])$ and $C_2 = 2K^2(T+4)$. We will prove by induction that for any $n \ge 0$,

$$\mathbb{E}[\sup_{0 \le s \le t} \|X_s^{n+1} - X_s^n\|^2] \le C_1 \frac{(C_2 t)^n}{n!}, \quad \forall 0 \le t \le T.$$
(5.13)

For n = 0, we have $X^1 - X^0 = S(X^0) = S(\zeta)$. By (5.7) we get (5.13) for n = 0. Assume that (5.13) holds for n - 1. Since $X^{n+1} - X^n = S(X^n) - S(X^{n-1})$, by (5.8),

$$\mathbb{E}[\sup_{0 \le s \le t} \|X_s^{n+1} - X_s^n\|^2] \le C_2 \int_0^t \mathbb{E}[\|X_s^n - X_s^{n-1}\|^2] ds \le C_2 \int_0^t C_1 \frac{(C_2 s)^{n-1}}{(n-1)!} ds = C_1 \frac{(C_2 t)^n}{n!}.$$

Thus, (5.13) holds for all $n \ge 0$. By Chebyshev's inequality,

$$\mathbb{P}[\sup_{0 \le s \le T} \|X_s^{n+1} - X_s^n\|^2 > 4^{-n}] \le C_1 \frac{(4C_2T)^n}{n!}, \quad n \ge 0.$$

Since $\sum_{n=0}^{\infty} C_1 \frac{(4C_2T)^n}{n!} < \infty$, by Borel-Cantelli Lemma,

$$\mathbb{P}[\text{for infinitely many } n, \sup_{0 \le s \le T} \|X_s^{n+1} - X_s^n\| > 2^{-n}] = 0.$$

Thus, a.s. there is a random number N such that for $n \ge N$, $\sup_{0\le s\le T} ||X_s^{n+1} - X_s^n|| \le 2^{-n}$. Since $\sum_{n=0}^{\infty} 2^{-n} < \infty$, this implies that a.s. $X^n|_{[0,T]}$ converges as $n \to \infty$ uniformly on [0,T]. The limit is a continuous process on [0,T]. Then we can conclude that a.s. for every $N \in \mathbb{N}$, $\lim_{n\to\infty} X^n|_{[0,N]}$ converges uniformly on [0,N] to some $X^{(N)}$. If N < N', then we have a.s. $X^{(N)} = X^{(N')}|_{[0,N]}$. Thus, outside a null event, we have $X^{(N)} = X^{(N')}|_{[0,N]}$ for any $N < N' \in \mathbb{N}$. So there is a continuous process X on $[0, \infty)$ such that a.s. $X^{(n)}$ converges to X uniformly on [0,T] for any T > 0. Since each X^n is $\mathcal{F}^{B,\zeta}$ -adapted, so is X. By (5.13), for every $t \ge 0, X_t^n$ converges in L^2 . So $X_t \in L^2$ is the L^2 -limit of (X_t^n) . By (5.13) we also get

$$\mathbb{E}[\sup_{0 \le s \le t} \|X_s - X_s^n\|^2]^{1/2} \le \sum_{m=n}^{\infty} \left(C_1 \frac{(C_2 t)^m}{m!}\right)^{1/2}.$$
(5.14)

We now prove that a.s. $\zeta + S(X) = X$. Since $\mathbb{E}[\sup_{0 \le s \le T} ||X_s^n - X_s^{n+1}||^2]^{1/2}$ gives a distance between X^n and X^{n+1} , by (5.14),

$$\mathbb{E}[\sup_{0 \le s \le T} \|X_s - X_s^{n+1}\|^2] \le \Big(\sum_{m=n+1}^{\infty} \Big(C_1 \frac{(C_2 t)^m}{m!}\Big)^{1/2}\Big)^2$$

which tends to 0 as $n \to \infty$. Since $X^{n+1} = \zeta + S(X^n)$, by (5.8) and (5.14),

$$\mathbb{E}[\sup_{0 \le s \le T} \|\zeta + S(X)_s - X_s^{n+1}\|^2] = \mathbb{E}[\sup_{0 \le s \le T} \|S(X)_s - S(X^n)_s\|^2]$$

$$\le 2K^2(T+4) \int_0^T \mathbb{E}[\|X_s - X^n\|_s^2] ds \le 2K^2(T+4) \int_0^T \Big(\sum_{m=n}^\infty \Big(C_1 \frac{(C_2s)^m}{m!}\Big)^{1/2}\Big)^2 ds,$$

which also tends to 0 as $n \to \infty$. Thus, by sending $n \to \infty$, we get $\mathbb{E}[\sup_{0 \le s \le T} ||\zeta + S(X)_s - X_s||^2] = 0$, i.e., a.s. $\zeta + S(X) = X$ on [0,T]. Since this holds for any T > 0, we get a.s. $\zeta + S(X) = X$. So X is a solution of the $\text{SDE}_{\zeta}(\sigma, b)$. Since X is $\mathcal{F}^{B,\zeta}$ -adapted, it is a strong solution.

(ii) The uniqueness of the strong solution with initial value in L^2 follows from the pathwise uniqueness of the weak solution since every strong solution is also a weak solution. By the pathwise uniqueness of the weak solution and the existence of the strong solution, a weak solution with initial value in L^2 should also be a strong solution.

(iii) We will apply Theorem 2.23. It is about the existence of a continuous version of a process with given finite dimensional distribution. We used it to prove the existence of continuous Brownian motion. It says that if $X_t, t \in \mathbb{R}^d$, is a process taking values in a complete metric space (S, ρ) , and there exists a, b, C > 0 such that for any $s, t \in \mathbb{R}^d$,

$$\mathbb{E}[\rho(X_s, X_t)^a] \le C \|s - t\|^{d+b},$$

then X has a continuous version. Here X can be defined only on a subdomain of \mathbb{R}^d . When X is \mathbb{R}^d -valued, $\rho(X_s, X_t)$ is simply $||X_s - X_t||$. We apply Theorem 2.23 here to X_t^x with index set $(x, t) \in \mathbb{R}^d \times \mathbb{R}_+$. It suffices to prove the estimate for a bounded region, i.e., for any R, T > 0, there exists a, b, C > 0 such that

$$\mathbb{E}[\|X_s^x - X_t^y\|^a] \le C(\|x - y\| + |s - t|)^{d+b}, \quad \|x\|, \|y\| \le R, \quad s, t \in [0, T].$$
(5.15)

When this holds, we get the existence of a continuous version of X_t^x on $\{x \in \mathbb{R}^d : ||x|| \leq R\} \times [0,T]$. Letting $R, T \to \infty$, we then get the continuous version of X_t^x on $\mathbb{R}^d \times \mathbb{R}_+$. In the lemma and the corollary before this proof, we have estimates on $\mathbb{E}[||X_t^x - X_t^y||^2]$. It is not strong enough for the purpose here. We now need to improve the estimates so that we get upper bounds of $\mathbb{E}[||X_t^x - X_t^y||^p]$ for big p. The proof requires BDG inequality, which we have skipped. So we now skip the technical part of the proof of (iii).

(iv) Suppose now $X_t^x, x \in \mathbb{R}^d, t \in \mathbb{R}_+$, is jointly continuous in x and t, and for every x, X^x is the strong solution of $\text{SDE}_x(\sigma, b)$. Let $\zeta \in L^2$ be independent of B. We want to show that the solution X^{ζ} of $\text{SDE}_{\zeta}(\sigma, b)$ is a.s. equal to $X^{x}|_{x=\zeta}$. First, suppose ζ takes countably many values. Recall that when we constructed the solution X^{ζ} by successively defined a sequence of processes X^n , which a.s. converges to X^{ζ} locally uniformly. We now write them as $X^{\zeta,n}$ to emphasize the dependence on ζ . Similarly, for any $x \in \mathbb{R}^d$, we have a sequence $X^{x,n}$, which a.s. converges to the solution X^x with initial value x. We can prove by induction that for any n, on the event $\{\zeta = x\}$, a.s. $X^{\zeta,n} = X^{x,n}$. Thus, as their limits, we have a.s. $X^{\zeta} = X^x$ on the event $\{\zeta = x\}$. Since ζ takes countably many values, we then get a.s. $X^{\zeta} = X^{x}|_{x=\zeta}$. For a general ζ , we may define a sequence $(\zeta_m), m \in \mathbb{N}$, such that when ζ lies in the cube $\prod_{j=1}^{\delta} [\frac{k_j}{2^m}, \frac{k_j+1}{2^m}]$ for some $(k_1, \ldots, k_d) \in \mathbb{Z}^d$, ζ_m takes values $(\frac{k_1}{2^m}, \ldots, \frac{k_m}{2^m})$. Then each ζ_m takes countably many values, belongs to L^2 and is independent of B, and as $m \to \infty$, $\zeta_m \to \zeta$ pointwise and in L^2 . Now for each m, we have a.s. $X^{\zeta_m} = X^x|_{x=\zeta_m}$. Fix $t \ge 0$. By the continuity of X_t^x in both x and t, we know that $X_t^x|_{x=\zeta_m}$ converges to $X_t^x|_{x=\zeta}$ as $m \to \infty$. By the previous corollary we know that $X_t^{\zeta_m} \to X_t^{\zeta}$ in L^2 , which implies that $(X_t^{\zeta_m})$ has a subsequence, which converges a.s. to X_t^{ζ} . Thus, we get a.s. $X_t^{\zeta} = X_t^x|_{x=\zeta}$. Since both sides are continuous in t, we then get a.s. $X^{\zeta} = X^x|_{x=\zeta}.$

Remark. The condition of Theorem 18.3 is somewhat too strong because σ and b have to be defined on $\mathbb{R}_+ \times \mathbb{R}^d$, and the Lipschitz condition should hold throughout. However, we may use localization and Lipschitz extension to weaken the assumptions. We may assume that σ and b are defined on $\mathbb{R}_+ \times U$, where U is a domain in \mathbb{R}^d containing the initial value x_0 , and σ and b are locally bounded and locally Lipschitz continuous in x. The weaker assumption is satisfied if σ and b are continuous and continuously differentiable in x. In that case, we may not have a solution defined on $[0, \infty)$. But for any initial value $x_0 \in U$, the solution X^{x_0} exists up to some positive random lifetime T. If Y_t , $0 \le t < S$, also solves the initial value problem, then a.s. Y is a restriction of X^{x_0} . Moreover, if $T < \infty$, then as $t \uparrow T$, either $||X_t^{x_0}|| \to \infty$ or $X_t^{x_0} \to \partial U$.

5.2 Weak solution and martingale problem

Suppose (X, B) defined on the filtered space $(\Omega, \mathcal{F}, \mathbb{P})$ is a weak solution of

$$dX_t = \sigma(t, X_t) \circ dB_t + b(t, X_t)dt$$

for two measurable functions $\sigma : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^{d \times \delta}$ and $b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$. We assume that σ and b are locally bounded, i.e., for any R > 0 and T > 0, $\|\sigma\|$ and $\|b\|$ are bounded on

 $[0,T] \times \{x \in \mathbb{R}^d : ||x|| \leq R\}$. Let $C_K^2(\mathbb{R}^d, \mathbb{R})$ denote the space of C^2 functions on \mathbb{R}^d with compact supports. For $f \in C_K^2(\mathbb{R}^d, \mathbb{R})$, by Itô's formula, we have

$$df(X_t) = \sum_{i=1}^d \partial_i f(X_t) dX_t^i + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X_t) d[X^j, X^k]_t$$
$$= \sum_{i=1}^d \sum_{j=1}^\delta \partial_i f(X_t) \sigma_j^i(t, X_t) dB_t^j + \sum_{i=1}^d \partial_i f(X_t) b^i(t, X_t) dt$$
$$+ \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \partial_j \partial_k f(X_t) \sum_{i=1}^d \sigma_i^j(t, X_t) \sigma_i^k(t, X_t) dt.$$

Let $a^{j,k} = \sum_{i=1}^{\delta} \sigma_i^j \sigma_i^k$, i.e., as matrixes, $a = \sigma \sigma'$. Define

$$M_t^f := f(X_t) - f(X_0) - \int_0^t A_s f(X_s) ds, \quad t \ge 0,$$
(5.16)

where

$$A_t f(x) = \sum_{i=1}^d b^i(t,x) \partial_i f(x) + \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d a^{j,k}(t,x) \partial_j \partial_k f(x).$$

Then M^f is an \mathcal{F} -local martingale. We will see that M^f is in fact a true martingale.

Since $f \in C_K^2(\mathbb{R}^d, \mathbb{R})$, we know that $f, \partial_i f$, and $\partial_j \partial_k f$ are all bounded, and there are R > 0such that $\partial_i f$ and $\partial_j \partial_k f$ vanish outside $\{x \in \mathbb{R}^d : |x| < R\}$. Since b and $a = \sigma \sigma'$ are locally bounded, we can then conclude that for any $T > 0, t \mapsto \sup_{x \in \mathbb{R}^d} |A_t f(x)|$ is bounded on [0, T]. Thus, M_t^f is bounded on [0, T] for any $T \in \mathbb{R}_+$. So M^f is a true \mathcal{F} -martingale. In fact, we do not need to mention \mathcal{F} because M^f is a martingale w.r.t. the natural filtration generated by itself.

We say that X solves the martingale problem (a, b) if for any $f \in C^2_K(\mathbb{R}^d, \mathbb{R})$ with a compact support, the M^f defined by (5.16) is a martingale (w.r.t. the natural filtration generated by itself). Thus, if (X, B) is a weak solution of $SDE(\sigma, b)$, then X solves the martingale problem (a, b) with $a = \sigma \sigma'$.

Theorem 18.7. The $SDE(\sigma, b)$ has a weak solution (X, B) if and only if X solves the martingale problem for (a, b) with $a = \sigma \sigma'$.

Proof. We have proved the "only if" part. For the "if" part, suppose X is such that for any $f \in C^2(\mathbb{R}, \mathbb{R})$ with compact support, M^f is a local martingale. Fix $i \in \{1, \ldots, d\}$. For any R > 0, there is a function $f_R \in C^2(\mathbb{R}, \mathbb{R})$ with compact support such that $f_R^i(x) = x_i$ for $|x| \leq R$. Note that $f_R''(x) = 0$ for $|x| \leq R$. By localization, we see that for any i,

$$M_t^i := X_t^i - X_0^i - \int_0^t b^i(s, X_s) ds$$

is a local martingale. A similar argument (with $f_R^{j,k}(x) = x_j x_k$) for $|x| \leq R$ in place of f_R^i) shows that for any j, k (with $a = \sigma \sigma'$),

$$M_t^{j,k} := X_t^j X_t^k - X_0^j X_0^k - \int_0^t b^j(s, X_s) X_s^k ds - \int_0^t b^k(s, X_s) X_s^j ds - \int_0^t a^{j,k}(s, X_s) ds$$

is a local martingale. Now we have

$$dX_{t}^{i} = dM_{t}^{i} + b^{i}(t, X_{t})dt;$$

$$dX_{t}^{j}X_{t}^{k} = dM_{t}^{j,k} + b^{j}(t, X_{t})X_{t}^{k}dt + b^{k}(t, X_{t})X_{t}^{j}dt + a^{j,k}(t, X_{t})^{2}dt$$

Applying the product formula to the first group of SDE, we get

$$dX_t^j X_t^k = X_t^j dM_t^k + X_t^k dM_t^j + b^j(t, X_t) X_t^k dt + b^k(t, X_t) X_t^j dt + d[M^j, M^k]_t.$$

Compared it with the second equation, we get $d[M^j, M^k]_t = \sum_{i=1}^d \sigma_i^j(t, X_t)\sigma_i^k(t, X_t)dt$. Finally, using Theorem 16.12, a theorem which was skipped, we know that in an enlarged probability space, there exists *d*-dimensional Brownian motion *B* such that $M_t^i = \sum_{j=1}^{\delta} \sigma_j^i(t, X_t) dB_t^j$ for all $1 \leq i \leq d$. Then we get

$$dX_t^i = dM_t^i + b^i(t, X_t)dt = \sum_{j=1}^{\delta} \sigma_j^i(t, X_t)dB_t^j + b^i(t, X_t)dt.$$

We are not going to prove Theorem 16.12. Instead, we briefly explain the idea of its proof in the simplest case: $d = \delta = 1$. In that case, we have $d[M]_t = \sigma(t, X_t)^2 dt$. If $\sigma(t, X_t)$ never vanishes, then we may define $B_t = \int_0^t \sigma(s, X_s)^{-1} dM_s$. Then $dM_t = \sigma(t, X_t) dB_t$, and by Levy's characterization of Brownian motion, we can then conclude that B is a Brownian motion. For the general case, we first enlarge the probability space such that there exists a Brownian motion W in the enlarged space independent of M. Then we define B by

$$B_t = \int_0^t \mathbf{1}_{\sigma(s,X_s) \neq 0} \sigma(s,X_s)^{-1} dM_s + \int_0^t \mathbf{1}_{\sigma(s,X_s) = 0} dW_s, \quad t \ge 0.$$

This means we compensate the interval on which $\sigma(t, X_t) = 0$ by integrating an independent Brownian motion. Then *B* is the Brownian motion that we need.

5.3 Diffusion and Markov property

We will focus on the SDE of the kind

$$dX_t = \sigma(X_t) \circ dB_t + b(X_t)dt, \quad X_0 = x, \tag{5.17}$$

where $\sigma \in C(\mathbb{R}^d, \mathbb{R}^{d \times \delta})$ and $b \in C(\mathbb{R}^d, \mathbb{R}^d)$ satisfy the conditions in Theorem 18.3, i.e., there is a constant K > 0 such that for any $x, y \in \mathbb{R}^d$,

$$\|\sigma(x) - \sigma(y)\| + \|b(x) - b(y)\| \le K \|x - y\|.$$

The (unique) strong solution X^x of the SDE with initial value x is called a diffusion process. Let P^x denote the law of X^x . Since we can find a version of X^x for each $x \in \mathbb{R}^d$ such that X_t^x is continuous in both t and $x, x \to P^x$ is a probability kernel.

Theorem. The strong solution X of (5.17) with any initial value $\zeta \in L^2$ is a time-homogeneous Markov process w.r.t. the complete filtration \mathcal{F}^B generated by B, and the transition kernel is $x \mapsto P^x$. This means that for any fixed $t_0 \geq 0$, $\text{Law}[X_{t_0+\cdot}|\mathcal{F}^B_{t_0}] = P^{X_{t_0}}$.

Proof. Fix $t_0 \ge 0$. By Theorem 18.3, $X_{t_0} \in L^2$. Define $B_t^{t_0+} = B_{t_0+t} - B_{t_0}$ and $\mathcal{F}_t^{B,t_0+} = \mathcal{F}_{t_0+t}^B$, $t \ge 0$. Then B^{t_0+} is an \mathcal{F}^{B,t_0+} -Brownian motion independent of $\mathcal{F}_{t_0}^B$. Let $X_t^{t_0+} = X_{t_0+t}, t \ge 0$. Since X satisfies (5.17), we have for any $t \ge 0$,

$$X_t^{t_0+} - X_0^{t_0+} = \int_{t_0}^{t_0+t} \sigma(X_s) \circ dB_s + \int_{t_0}^{t_0+t} b(X_s) ds$$
$$= \int_0^t \sigma(X_s^{t_0+}) \circ dB_s^{t_0+} + \int_0^t b(X_s^{t_0+}) ds.$$

Thus, (X^{t_0+}, B^{t_0+}) w.r.t. the filtration \mathcal{F}^{B,t_0+} is a weak solution of (5.17) with initial value $X(t_0)$. By Theorem 18.3, this weak solution is a strong solution. Moreover, there is a family of \mathbb{R}^d -valued random vectors $Z(x,t), x \in \mathbb{R}^d, t \in \mathbb{R}_+$, such that

- (i) For each $x \in \mathbb{R}^d$, Z(x,t), $t \ge 0$, is a strong solution of (5.17) with Z(x,0) = x and with B^{t_0+} in place of B.
- (ii) The map $\mathbb{R}^d \times \mathbb{R}_+ \ni (x,t) \mapsto Z_t^x$ is continuous.
- (iii) Almost surely $X_{\cdot}^{t_0+} = Z(X(t_0), \cdot).$

For each $x \in \mathbb{R}^d$, the conditional law of $Z(x, \cdot)$ given $\mathcal{F}^B_{t_0}$ is its unconditional law P^x since $Z(x, \cdot)$ is measurable w.r.t. B^{t_0+} , which is independent of $\mathcal{F}^B_{t_0}$. From the facts that a.s. $X^{t_0+}_{\cdot} = Z(X(t_0), \cdot)$ and that $X(t_0)$ is $\mathcal{F}^B_{t_0}$ -measurable, we then know that the conditional law of X^{t_0+} given $\mathcal{F}^B_{t_0}$ is $P^{X_{t_0}}$.

6 Connections with Partial Differential Equations

In this section we study diffusion processes from the perspective of their Markov properties, and connect them with the partial differential equations. The material of this section is chosen from multiple references.

6.1 Transition kernel and operator

We now briefly review the notation of probability kernels and Markov process needed here. A probability kernel from \mathbb{R}^d to \mathbb{R}^d is map μ defined on the product space $\mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d)$ such that for any $x \in \mathbb{R}^d$, $\mu(x, \cdot)$ is a probability measure on \mathbb{R}^d , and for any Borel measurable set $A \subset \mathbb{R}^d$,

 $\mu(\cdot, A)$ is a Borel measurable function on \mathbb{R}^d . If μ and ν are two probability kernels from \mathbb{R}^d to \mathbb{R}^d , then we may define a new probability kernel $\mu\nu$ from \mathbb{R}^d to \mathbb{R}^d , which is defined by

$$\mu\nu(x,A) = \int \mu(x,dy)\nu(y,A), \quad x \in \mathbb{R}^d, \quad A \in \mathcal{B}(\mathbb{R}^d)$$

The formula means that we integrate the measurable function $\nu(\cdot, A)$ on \mathbb{R}^d against the measure $\mu(x, \cdot)$. We have the associative law: $(\mu\nu)\lambda = \mu(\nu\lambda)$, but not the commutative law.

An \mathcal{F} -adapted \mathbb{R}^d -valued process X_t , $t \in \mathbb{R}_+$, is called \mathcal{F} -Markov if there is a family of probability kernels $\mu_{s,t}$, $0 \leq s \leq t < \infty$, from \mathbb{R}^d to \mathbb{R}^d , such that for any $0 \leq s \leq t$,

$$\operatorname{Law}[X_t | \mathcal{F}_s] = Law[X_t | X_s] = \mu_{s,t}(X_s, \cdot).$$

This means that if $f: \mathbb{R}^d \to \mathbb{R}$ is bounded and measurable, then

$$\mathbb{E}[f(X_t)|\mathcal{F}_s] = \int f(y)\mu_{s,t}(X_s, dy)$$

The family $\mu_{s,t}$ must satisfy the Chapman-Kolmogorov relation:

$$\mu_{r,s}\mu_{s,t} = \mu_{r,t} \quad 0 \le r \le s \le t.$$

If $\mu_{s,t}$ depends only on t-s, i.e., there is a one parameter family $\mu_t, t \in \mathbb{R}_+$, such that $\mu_{s,t} = \mu_{t-s}$, then X is called time-homogeneous, and the Chapman-Kolmogorov relation becomes

$$\mu_s \mu_t = \mu_{s+t}, \quad s, t \ge 0.$$

Recall that the diffusion processes are time-homogeneous Markov processes.

For every kernel μ in \mathbb{R}^d , we associate it with an operator T_{μ} defined by

$$T_{\mu}f(x) = \int f(y)\mu(x,dy),$$

where f is a bounded measurable function from \mathbb{R}^d to \mathbb{R} . Then $|T_{\mu}f|$ is bounded by any upper bound of |f|. If $f = \mathbf{1}_A$ for some $A \in \mathcal{B}(\mathbb{R}^d)$, then $T_{\mu}f = \mu(\cdot, A)$ is measurable. Thus, for any measurable simple function f, $T_{\mu}f$ is measurable. By approximation, $T_{\mu}f$ is measurable for any bounded measurable function f.

If μ and ν are two kernels in \mathbb{R}^d , then we have the following equality

$$T_{\mu} \circ T_{\nu} = T_{\mu\nu}$$

because for any f,

$$T_{\mu} \circ T_{\nu}f(x) = \int T_{\nu}f(y)\mu(x,dy) = \int \int f(z)\nu(y,dz)\mu(x,dy) = \int f(z)\mu\nu(x,dz).$$

Suppose (μ_t) is a family of probability kernels in \mathbb{R}^d associated with a time-homogeneous Makrov process X in \mathbb{R}^d . Let $T_t = T_{\mu_t}$. Then from Chapman-Kolmogorov relation, we get

$$T_s \circ T_t = T_{s+t}, \quad s, t \ge 0.$$

Thus, $\{T_t : t \ge 0\}$ forms a semigroup of operators on the space of bounded measurable functions on \mathbb{R}^d . If X^x is the Markov process starting from x, then for any $t \ge 0$, the law of X_t^x is $\mu_t(x, \cdot)$. Then the integral $\int f(y)\mu_t(x, dy)$ is exactly the expectation of $f(X_t)$. So we get an expression of T_t in terms of X^x :

$$T_t f(x) = \mathbb{E}[f(X_t^x)] = \mathbb{E}^x[f(X_t)],$$

where \mathbb{E}^x means the expectation w.r.t the law of the Markov process started from x.

6.2 Infinitesimal generator and parabolic PDE

We now consider the case that X is a diffusion process as strong solutions of (5.17). For a fixed bounded continuous function f, we define

$$u(t,x) = T_t f(x) = \mathbb{E}[f(X_t^x)] = \mathbb{E}^x[f(X_t)].$$

Note that u(0,x) = f(x). Since f is bounded, u is bounded on $\mathbb{R}_+ \times \mathbb{R}^d$. Since X_t^x is jointly continuous in x and t, by dominated convergence theorem, u(t,x) is jointly continuous in t and x.

The infinitesimal generator A associated to the SDE is

$$Af(x) = \lim_{t \downarrow 0} \frac{(T_t f)(x) - f(x)}{t} = \lim_{t \downarrow 0} \frac{1}{t} (u(t, x) - u(0, x)), \quad x \in \mathbb{R}^d.$$

Let \mathcal{D}_A denote the set of all bounded continuous functions f on \mathbb{R}^d such that the limit exists for every $x \in \mathbb{R}^d$. For $f \in \mathcal{D}_A$, Af is a well-defined measurable function on \mathbb{R}^d .

Let $a = \sigma \sigma'$. Define the second order differential operator \mathcal{A} by

$$\mathcal{A}f(x) = \sum_{i=1}^{d} b^{i}(x)\partial_{i}f(x) + \frac{1}{2}\sum_{j,k=1}^{d} a^{j,k}(x)\partial_{j}\partial_{k}f(x)$$

Theorem. The space $C_K^2(\mathbb{R}^d)$ belongs to \mathcal{D}_A , and for any $f \in C_K^2(\mathbb{R}^d)$,

$$Af(x) = \mathcal{A}f(x). \tag{6.1}$$

Proof. Let $f \in C^2_K(\mathbb{R}^d)$. Since X^x solves the martingale problem (a, b),

$$M_t^x := f(X_t^x) - f(x) - \int_0^t \mathcal{A}f(X_s^x) ds$$

is a martingale. From $\mathbb{E}[M_t^x] = \mathbb{E}[M_0^x] = 0$, we get

$$\frac{1}{t}(\mathbb{E}[f(X_t^x)] - f(x)) = \mathbb{E}\Big[\frac{1}{t}\int_0^t \mathcal{A}f(X_s^x)ds\Big].$$

The quantity inside the square bracket on the RHS is uniformly bounded because $\partial_i f$ and $\partial_j \partial_k f$ have compact supports, and b^i and $a^{j,k}$ are locally bounded. Letting $t \downarrow 0$, by dominated convergence theorem, the RHS tends $\mathcal{A}f(x)$. So $f \in \mathcal{D}_A$, and (6.1) holds.

From the expression of M_t^x and its martingale property, we get the Dynkin's formula **Theorem** (Dynkin's formula). For any bounded stopping time τ , if $f \in C_K^2(\mathbb{R}^d)$, then

$$\mathbb{E}[f(X_{\tau}^{x})] = f(x) + \mathbb{E}[\int_{0}^{\tau} Af(X_{s}^{x})ds].$$

Remark. If τ is the less than τ_U , which is the first time that X exits a bounded domain U, then Dynkin's formula holds for any $f \in C^2(\mathbb{R}^d)$ with Af replaced by $\mathcal{A}f$. This is because we may find another function $f_0 \in C^2_K(\mathbb{R}^d)$ such that $f = f_0$ on U.

When τ in the theorem is a deterministic time t, Dynkin's formula becomes

$$u(t,x) = f(x) + \int_0^t \mathbb{E}[Af(X_s^x)]ds = u(0,x) + \int_0^t u^A(s,x)ds = u(0,x) + \int_0^t$$

where $u^A(t,x)$ is defined in the same way as u(t,x) except with Af in place of f. Since $Af = \mathcal{A}f \in C_K(\mathbb{R}^d)$, $u^A(t,x)$ is continuous in t and x. So u is differentiable in t, and

$$\partial_t u(t,x) = \partial_t T_t f(x) = u^A(t,x) = T_t \circ A f(x), \quad f \in C^2_K(\mathbb{R}^d).$$
(6.2)

Theorem (Kolmogorov's backward equation). For $f \in C^2_K(\mathbb{R}^d)$, $u(t, \cdot) \in \mathcal{D}_A$ for each t > 0; and u satisfies the following equation with initial value

$$\begin{cases} \partial_t u(t,x) = Au(t,x), & t > 0, x \in \mathbb{R}^d; \\ u(0,x) = f(x), & x \in \mathbb{R}^d. \end{cases}$$
(6.3)

Here the operator A acts on the second variable x.

Proof. Clearly, $u(0, x) = f(x), x \in \mathbb{R}^d$. Fix t > 0. Let g(x) = u(t, x). Since u is differentiable in t, using the Markov property of X we get for small r,

$$\frac{1}{r} (\mathbb{E}^x[g(X_r)] - g(x)) = \frac{1}{r} (\mathbb{E}^x[\mathbb{E}^{X_r}[f(X_t)]] - \mathbb{E}^x[f(X_t)])$$
$$= \frac{1}{r} (\mathbb{E}^x[\mathbb{E}^x[f(X_{r+t})|\mathcal{F}_r]] - \mathbb{E}^x[f(X_t)])$$
$$= \frac{1}{r} \mathbb{E}^x[f(X_{r+t}) - f(X_t)] = \frac{1}{r} (u(r+t,x) - u(t,x)) \to \partial_t u, \quad r \downarrow 0$$

Hence

 $Au = \lim_{r \downarrow 0} \frac{1}{r} (\mathbb{E}^x[g(X_r)] - g(x)), \text{ exists and equals } \partial_t u.$
We have proved that $A = \mathcal{A}$ on $C_K^2(\mathbb{R}^d)$. If we know that $Au = \mathcal{A}u$. Then Equation (6.3) becomes the following second-order parabolic PDE

$$\begin{cases} \partial_t u(t,x) = \mathcal{A}u(t,x), & t > 0, x \in \mathbb{R}^d; \\ u(0,x) = f(x), & x \in \mathbb{R}^d. \end{cases}$$
(6.4)

The PDE is parabolic since the coefficient matrix $(a^{j,k})_{1 \leq j,k \leq d}$ is semi-positive definite (because $a = \sigma \sigma'$). At this moment we can not immediately say that $u(t,x) := \mathbb{E}^x[f(X_t)]$ gives the solution of (6.4) because we have not shown that Au = Au. However, we have the following theorem, which says that such u is the only bounded candidate of the solution. We let $C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ denote the space of bounded functions defined on $\mathbb{R}_+ \times \mathbb{R}^d$, which are once continuously differentiable in the first variable, and twice continuously differentiable in all other variables.

Theorem. If $u \in C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ is a solution of the PDE (6.4), then $u(t,x) = \mathbb{E}^x[f(X_t)]$.

Proof. Fix $t_0 > 0$ and $x \in \mathbb{R}^d$. We want to show that $u(t_0, x) = \mathbb{E}^x[f(X_{t_0})]$. Let X be a strong solution of the $\text{SDE}(\sigma, b)$ started from x. Define

$$M_t = u(t_0 - t, X_t^x), \quad 0 \le t \le t_0.$$

Then M is a semimartingale, and by Itô's formula, we calculate

$$dM_t = -\partial_t u(t_0 - t, X_t) + \sum_{i=1}^d \partial_i u(t_0 - t, X_t) dX_t^i + \frac{1}{2} \sum_{j,k=1}^d \partial_j \partial_k u(t_0 - t, X_t) d[X^j, X_k]_t.$$

Since X is a strong solution of $SDE(\sigma, b)$, we have

$$dX_t^i = \sum_{j=1}^{\delta} \sigma_j^i(X_t) dB_t^j + b^i(X_t) dt,$$

and

$$d[X^j, X^k]_t = \sum_{i=1}^{\delta} \sigma_i^j(X_t) \sigma_i^k(X_t) dt = a^{j,k}(X_t) dt$$

Thus,

$$dM_t = \sum_{i=1}^d \partial_i u(t_0 - t, X_t) \sum_{j=1}^\delta \sigma_j^i(X_t) dB_t^j - \partial_t u(t_0 - t, X_t) dt + \mathcal{A}u(t_0 - t, X_t) dt.$$

The drift term disappears because $\partial_t u = \mathcal{A}u$. So M is a local martingale. Since u is bounded, M is a true martingale. So $\mathbb{E}[M_{t_0}] = M_0$. From the definition of M, we get $\mathbb{E}[f(X_{t_0})] = \mathbb{E}[u(0, X_{t_0})] = \mathbb{E}[M_{t_0}] = M_0 = u(t_0, x)$. **Example**. Suppose $d = \delta$, σ is the identity matrix, and so is a, and b = 0. Then the SDE becomes $dX_t = dB_t$. So the solutions are $X_t^x = x + B_t$. We then have

$$T_t f(x) = \mathbb{E}[f(x+B_t)], \quad Af(x) = \lim_{t \downarrow 0} \frac{1}{t} (\mathbb{E}[f(x+B_t)] - f(x)), \quad \mathcal{A}f(x) = \frac{1}{2} \Delta f(x),$$

where Δ is the Laplacian operator. So the PDE is the heat equation:

$$\partial_t u(t,x) = \frac{1}{2} \Delta_x u(t,x), \quad t > 0.$$
(6.5)

In this particular case, we can show directly that, if f is a continuous function on \mathbb{R}^d with compact support, then $u(t, x) := \mathbb{E}[f(x + B_t)]$ is a solution of the above PDE with initial value u(0, x) = f(x). The argument uses the fact that, for t > 0, B_t has a density function:

$$p_t(y) = \frac{1}{(2\pi t)^{n/2}} e^{-\frac{\|y\|^2}{2t}}.$$

One can check directly that $p_t(y)$ also solves the heat equation (6.5). Now $u(t, x) = \mathbb{E}[f(x+B_t)]$ can be expressed by

$$u(t,x) = \mathbb{E}[f(x+B_t)] = \int_{\mathbb{R}^d} f(x+y)p_t(y)dy = \int_{\mathbb{R}^d} f(y)p_t(x-y)dy.$$

Since $f \in C_K(\mathbb{R}^d)$,

$$\Delta_x u(t,x) = \int_{\mathbb{R}^d} f(y) \Delta_x p_t(x-y) dy;$$
(6.6)

$$\partial_t u(t,x) = \int_{\mathbb{R}^d} f(y) \partial_t p_t(x-y) dy.$$
(6.7)

Since $\partial_t p_t(x-y) = \frac{1}{2}\Delta_x p_t(x-y)$, we get (6.5).

Remark. The assumption that $f \in C_K(\mathbb{R}^d)$ in the above example is used to guarantee that the differentiation operators commute with the integral. These results follow from Fubini's theorem and the integrability of $f(y)\partial_{x_j}p_t(x-y)$ and $f(y)\partial_{x_j}^2p_t(x,y)$. For that purpose, we may loosen the assumption on f. For example, it suffices to assume that f is a bounded continuous function.

In this example, the diffusion process has a transition density, which solves the PDE for u. This is a coincidence. In the general case, if the density is smooth, then it satisfies the PDE with \mathcal{A} replaced by its adjoint \mathcal{A}^* . This is Kolmogorov's forward equation.

For the operator \mathcal{A} defined by

$$\mathcal{A} = \frac{1}{2} \sum_{j,k=1}^{d} a^{j,k}(x) \partial_j \partial_k + \sum_{i=1}^{d} b^i(x) \partial_i,$$

we define its adjoint \mathcal{A}^* by

$$\mathcal{A}^*g(x) = \frac{1}{2} \sum_{j,k=1}^d \partial_j \partial_k(a(x)^{j,k}g(x)) - \sum_{i=1}^d \partial_i(b_i(x)g(x)), \quad g \in C^2(\mathbb{R}^d).$$

Note that $\Delta^* = \Delta$. It is called the adjoint of \mathcal{A} because

$$\int_{\mathbb{R}^d} \mathcal{A}f(x)g(x)dx = \int_{\mathbb{R}^d} f(x)\mathcal{A}^*g(x)dx, \quad f \in C^2_K(\mathbb{R}^d), \ g \in C^2(\mathbb{R}^d).$$

This fact follows from integration by parts (and that f vanishes outside a bounded set).

Theorem (Kolmogorov's forward equation). Assume that the diffusion process X has a transition density $p_t(x, y)$, i.e.,

$$\mathbb{E}^{x}[f(X_{t})] = \int_{\mathbb{R}^{d}} f(y)p_{t}(x,y)dy, \quad f \in C_{K}^{2}(\mathbb{R}^{d}),$$

and $p_t(x,y)$ is C^2 in y for every t > 0 and $x \in \mathbb{R}^d$. Then $p_t(x,y)$ satisfies the Kolmogorov's forward equation:

 $\partial_t p_t(x,\cdot) = \mathcal{A}_y^* p_t(x,\cdot), \quad t > 0,$

where \mathcal{A}_{y}^{*} acts on the second variable of $p_{t}(x, y)$.

Proof. Let $f \in C_K^2(\mathbb{R}^d)$. By Dynkin's formula, $\mathbb{E}^x[f(X_t)] = f(x) + \int_0^t \mathbb{E}^x[\mathcal{A}f(X_s)]ds$. By the definition of density function, for $t_2 > t_1 > 0$,

$$\int_{\mathbb{R}^d} f(y)(p_{t_2}(x,y) - p_{t_1}(x,y))dy = \int_{t_1}^{t_2} \int_{\mathbb{R}^d} \mathcal{A}f(y)p_s(x,y)dyds = \int_{\mathbb{R}^d} f(y) \int_{t_1}^{t_2} \mathcal{A}_y^* p_s(x,y)dsdy.$$

Since the equality holds for any $f \in C^2_K(\mathbb{R}^d)$, we get

$$p_{t_2}(x,y) - p_{t_1}(x,y) = \int_{t_1}^{t_2} \mathcal{A}_y^* p_s(x,y) ds, \quad t_2 > t_1 > 0.$$

So the conclusion holds.

6.3 The Feynman-Kac formula

Let the diffusion processes X_t^x , the infinitesimal generator A, and differential operator \mathcal{A} be as before. Suppose $f, q \in C_b(\mathbb{R}^d)$. Consider the following equation:

$$\begin{cases} \partial_t u = \mathcal{A}u + qu, \quad t > 0, x \in \mathbb{R}^d; \\ u(0, x) = f(x), \quad x \in \mathbb{R}^d. \end{cases}$$
(6.8)

Theorem. If u is a solution of (6.8) such that for any t_0 , u is bounded on $[0, t_0] \times \mathbb{R}^d$, then

$$u(t,x) = \mathbb{E}^x \Big[f(X_t) \exp\Big(\int_0^t q(X_s) ds \Big) \Big], \quad t \ge 0, x \in \mathbb{R}^d.$$
(6.9)

Proof. Fix $t_0 > 0$. Define $N(t) = u(t_0 - t, X_t), 0 \le t \le t_0$. By Itô's formula,

$$dN_{t} = -\partial_{t}u(t_{0} - t, X_{t})dt + \sum_{i=1}^{d} \partial_{i}u(t_{0} - t, X_{t})dX_{t}^{i} + \frac{1}{2}\sum_{j,k=1}^{d} \partial_{j}\partial_{k}u(t_{0} - t, X_{t})d[X^{j}, X^{k}]_{t}$$
$$= \sum_{i=1}^{d} \partial_{i}u(t_{0} - t, X_{t})\sum_{j=1}^{\delta} \sigma_{j}^{i}(X_{t})dB_{t}^{j} - \partial_{t}u(t_{0} - t, X_{t})dt + \mathcal{A}u(t_{0} - t, X_{t})dt$$
$$= \sum_{i=1}^{d} \partial_{i}u(t_{0} - t, X_{t})\sum_{j=1}^{\delta} \sigma_{j}^{i}(X_{t})dB_{t}^{j} - q(X_{t})u(t_{0} - t, X_{t})dt.$$

Let

$$M_t = N_t \exp\Big(\int_0^t q(X_s)ds\Big).$$

By product formula,

$$dM_t = \exp\left(\int_0^t q(X_s)ds\right)dN_t + M_t q(X_t)dt$$
$$= \exp\left(\int_0^t q(X_s)ds\right)\sum_{i=1}^d \partial_i u(t_0 - t, X_t)\sum_{j=1}^\delta \sigma_j^i(X_t)dB_t^j$$

Thus, M is a local martingale. Since u is bounded on $[0, t_0] \times \mathbb{R}^d$ and q is bounded, M is also bounded. Thus, M is a true martingale. We then get $\mathbb{E}[M_{t_0}] = \mathbb{E}[M_0]$. Since $M_0 = u(t_0, x)$ and $M_{t_0} = f(X_{t_0}) \exp(\int_0^{t_0} q(X_s) ds)$, we get (6.9).

We call (6.9 the Feynman-Kac formula. If we define u by (6.9), we can not immediately say that u solves (6.8). Instead we have the following theorem.

Theorem . Let $f \in C^2_K(\mathbb{R}^d)$. Define u by (6.9). Then u satisfies the equation

$$\begin{cases} \partial_t u = Au + qu, \quad t > 0, x \in \mathbb{R}^d; \\ u(0, x) = f(x), \quad x \in \mathbb{R}^d. \end{cases}$$
(6.10)

Proof. Let $Y_t = f(X_t)$ and $Z_t = \exp(\int_0^t q(X_s)ds)$. Then Z is an adapted C^1 process, and $dZ_t = Z_t q(X_t)dt$. Since q is bounded, say by R, we have $0 < Z_t \leq e^{Rt}$ for any $t \geq 0$. Recall that for some local martingale L_t , Y_t satisfies the SDE:

$$dY_t = dL_t + \mathcal{A}f(X_t)dt.$$

Since Z_t is a C^1 adapted process,

$$d(Y_tZ_t) = Y_t dZ_t + Z_t dY_t = Z_t dL_t + Z_t (\mathcal{A}f(X_t) + q(X_t)Y_t) dt.$$

Thus, the M defined by

$$M_{t} = Y_{t}Z_{t} - Y_{0}Z_{0} - \int_{0}^{t} Z_{s}(\mathcal{A}f(X_{s}) + q(X_{s})f(X_{s}))ds$$

is a local martingale. Fixed $t_0 > 0$. Since Z is uniformly bounded on $[0, t_0]$, and $Y = f(X), \mathcal{A}f(X), q(X)f(X)$ are all uniformly bounded, M is uniformly bounded on $[0, t_0]$. So M is a true martingale. Thus, $\mathbb{E}[M_t] = \mathbb{E}[M_0] = 0$, which implies that

$$u(t,x) = \mathbb{E}^x[Y_t Z_t] = f(x) + \int_0^t \mathbb{E}^x[Z_s(\mathcal{A}f(X_s) + q(X_s)f(X_s))]ds$$

is differentiable in t.

Let $r \ge 0$. We have $Z_{r+t}/Z_r = \exp(\int_0^t q(X_{r+s})ds)$. By the Markov property of X, we have

$$\mathbb{E}^{x}[Y_{r+t}Z_{r+t}|\mathcal{F}_{r}] = Z_{r}\mathbb{E}^{x}[f(X_{r+t})\exp(\int_{0}^{t}q(X_{r+s})ds)|\mathcal{F}_{r}] = Z_{r}\mathbb{E}^{X_{r}}[Y_{t}Z_{t}] = Z_{r}u(t,X_{r}).$$

Thus,

$$u(r+t,x) = \mathbb{E}^x[Y_{r+t}Z_{r+t}] = \mathbb{E}^x[\mathbb{E}^x[Y_{r+t}Z_{r+t}|\mathcal{F}_r]] = \mathbb{E}^x[Z_ru(t,X_r)].$$

Since $T_r u(t, x) = \mathbb{E}^x [u(t, X_r)]$, we get

$$\frac{1}{r}(T_r u(t,x) - u(t,x)) = \frac{1}{r}(\mathbb{E}^x[u(t,X_r)] - u(r+t,x)) + \frac{1}{r}(u(r+t,x) - u(t,x))$$
$$= \mathbb{E}^x[u(t,X_r)\frac{1}{r}(1-Z_r)] + \frac{1}{r}(u(r+t,x) - u(t,x)).$$

As $r \downarrow 0$, the second term on the RHS tends to $\partial_t u(t, x)$. By dominated convergence theorem, the first term tends to -q(x)u(t, x). So we get $Au = \partial_t u - qu$.

6.4 Boundary value problem

Let Ω be a bounded domain of \mathbb{R}^d . Let $\sigma = (\sigma_j^i) \in C(\Omega, \mathbb{R}^{d \times \delta})$ and $b = (b^i) \in C(\Omega, \mathbb{R}^d)$. Let $a = (a^{j,k}) = \sigma \sigma' \in C(\Omega, \mathbb{R}^{d \times d})$. Let $B = (B^1, \ldots, B^\delta)$ be a Brownian motion. Suppose X_t^x , $0 \le t < \tau$, solves the SDE

$$dX_t = \sigma(X_t) \circ dB_t + b(X_t)dt$$

with initial value $x \in \Omega$, and in the case that $\tau < \infty$, as $t \uparrow \tau$, X_t tends to $\partial \Omega$.

Let \mathcal{A} be the differential operator

$$\mathcal{A} = \frac{1}{2} \sum_{j,k=1}^{d} a^{j,k}(x) \partial_j \partial_k + \sum_{i=1}^{d} b^i(x) \partial_i.$$

Let $C_0(\Omega)$ denote the space of continuous functions on $\overline{\Omega}$, which vanish on $\partial\Omega$. Let $f \in C_0(\Omega)$. Consider the following parabolic PDE with initial value and boundary value :

$$\begin{cases} \partial_t u = \mathcal{A}u, & t > 0, x \in \Omega; \\ u(0, x) = f(x), & x \in \overline{\Omega}. \\ u(t, x) = 0, & t > 0, x \in \partial\Omega. \end{cases}$$
(6.11)

Theorem . If u is a solution of (6.11), then u can be expressed by

$$u(t,x) = \mathbb{E}^{x}[\mathbf{1}_{\{\tau > t\}}f(X_{t})].$$
(6.12)

Proof. Fix $t_0 > 0$. Define M_t , $0 \le t \le t_0$, by $M_t = u(t_0 - t, X_t)$, if $t < \tau$, and $M_t = 0, t \ge \tau$. Then M is continuous on $[0, t_0]$ since if $\tau \le t_0$, as $t \uparrow \tau$, $X_t \to \partial \Omega$, and so $u(t_0 - t, X_t) \to 0$. By Itô's formula, M is a local martingale up to $\tau \wedge t_0$. Since M is constant on $[\tau \wedge t_0, t_0]$, it is a local martingale on $[0, t_0]$. By continuity, u is bounded on $[0, t_0] \times \overline{\Omega}$. So M is a true martingale. Thus, $\mathbb{E}[M_{t_0}] = \mathbb{E}[M_0] = u(t_0, x)$. On the other hand, $M_{t_0} = \mathbf{1}_{\{\tau > t_0\}}u(0, X_{t_0}) = \mathbf{1}_{\{\tau > t_0\}}f(X_{t_0})$. So we get (6.12).

Suppose further that $q \in C_0(\Omega)$. Consider the PDE

$$\begin{cases} \partial_t u = \mathcal{A}u + qu, \quad t > 0, x \in \Omega; \\ u(0, x) = f(x), \quad x \in \overline{\Omega}. \\ u(t, x) = 0, \quad t > 0, x \in \partial\Omega. \end{cases}$$
(6.13)

Then we have the following theorem, whose proof is left as an exercise.

Theorem . If u is a solution of (6.11), then u can be expressed by

$$u(t,x) = \mathbb{E}^x \Big[\mathbf{1}_{\{\tau > t\}} f(X_t) \exp\Big(\int_0^t q(X_s) ds\Big) \Big].$$

6.5 Feller semigroup

We will learn some abstract theory in this subsection. It has a flavor of operator theory in Functional Analysis. Let $(T_t)_{t\geq 0}$ be a semigroup of transition operators associated with a time-homogeneous Markov process X, i.e.,

$$T_t f(x) = \mathbb{E}^x [f(X_t)]$$

for bounded measurable function f. Recall that $T_t f$ is also a bounded measurable function. Now we let $C_0 = C_0(\mathbb{R}^d)$ denote the space of continuous functions f on \mathbb{R}^d , which satisfy that $f(x) \to 0$ as $||x|| \to \infty$. The space C_0 is a Banach space equipped with the uniform norm $||f|| = \sup |f(x)|$.

Definition. We call $(T_t)_{t\geq 0}$ a Feller semigroup, and X a Feller process if

- (F1) $T_t C_0 \subset C_0, t \ge 0,$
- (F2) For any $f \in C_0$, $(t, x) \mapsto T_t f(x)$ is continuous on $[0, \infty) \times \mathbb{R}^d$.

By the definition of T_t , it is clear that each T_t is a contraction map, i.e., $||T_t f|| \le ||f||$.

Example. Let $\sigma \in C(\mathbb{R}^d, \mathbb{R}^{d \times \delta})$ and $b \in C(\mathbb{R}^d, \mathbb{R}^d)$ be Lipschitz continuous. Let B be a δ -dimensional Brownian motion. Consider the SDE

$$dX_t^x = \sigma(X_t^x) \circ dB_t + b(X_t^x)dt, \quad X_0^x = x.$$

We have known that the solution exists uniquely, and we may choose a version of X^x for every $x \in \mathbb{R}^d$ such that X_t^x is jointly continuous in x and t. Now we further assume that σ and b are bounded. Then X is a Feller process. In fact, for $f \in C_0$, since X_t^x is jointly continuous in x and t, by dominated convergence theorem, $T_t f(x) = \mathbb{E}[f(X_t^x)]$ is jointly continuous in x and t. We also know that $T_t f$ is continuous for every $t \ge 0$. It remains to show that for any t > 0, $\mathbb{E}[f(X_t^x)] \to 0$ as $||x|| \to \infty$. Fix t > 0. By dominated convergence theorem and the fact that $f \in C_0$, it suffices to show that $||X_t^x|| \stackrel{\mathrm{P}}{\to} \infty$ as $||x|| \to \infty$. This holds because by the boundedness assumption on σ and b, $||X_t^x - x|| = ||\int_0^t \sigma(X_s^x) \circ dB_s + \int_0^t b(X_s^x) ds||$ is bounded in L^2 by a constant independent of x. Finally, since $T_0 f = f$, we get (F2).

Recall that we say that (T_t) is a semigroup because it satisfies $T_t \circ T_s = T_{t+s}$. A semigroup of operators on a Banach space B may be obtained from exponential of bounded linear operators. For a bounded linear operator A on B, its exponential is the bounded linear operator e^A defined by

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}$$

where A^0 is the identity I, $A^1 = A$, and $A^{n+1} = A \circ A^n$. The series converges in the operator norm because $||A^n|| \leq ||A||^n$. It is easy to see that $e^{tA} \circ e^{sA} = e^{(t+s)A}$. So $(e^{tA})_{t\geq 0}$ form a semigroup. We say that A is the infinitesimal generator of this semigroup, and may recover Afrom $(e^{tA})_{t\geq 0}$ because

$$\frac{1}{t}(e^{tA}-I) = \frac{1}{t}\sum_{n=1}^{\infty}\frac{t^nA^n}{n!} = A + t\sum_{n=2}^{\infty}\frac{t^{n-2}A^n}{n!} \to A, \quad \text{as } t\downarrow 0.$$

So we make the following definition for the Feller semigroup.

Definition. For a Feller semigroup (T_t) , its infinitesimal generator A is defined by

$$Af = \lim_{t \downarrow 0} \frac{1}{t} (T_t f - f), \quad f \in \mathcal{D}_A,$$

where \mathcal{D}_A is the set of all $f \in C_0$ such that the above limit converges in the norm topology.

It turns out that A is not defined on the whole space C_0 , and is not a bounded linear operator. We can not thus express T_t as e^{tA} . But we can still do something on it.

Proposition. If $f \in \mathcal{D}_A$, then (i) $T_t f \in \mathcal{D}_A$ for every $t \ge 0$; (ii) the function $t \mapsto T_t f$ is strongly differentiable in C_0 , and

$$\partial_t T_t f = T_t A f = A T_t f;$$

(iii) $T_t f - f = \int_0^t T_s A f ds = \int_0^t A T_s f ds.$

Proof. For fixed $t \ge 0$, using the semigroup property, we get

$$\lim_{r \downarrow 0} \frac{1}{r} [T_r T_t f - T_t f] = \lim_{r \downarrow 0} T_t [\frac{1}{r} (T_r f - f)] = T_t A f.$$

So we get $T_t f \in \mathcal{D}_A$, which is (i), and $AT_t f = T_t A f$. Since $T_r T_t = T_{r+t}$, the above shows that $t \mapsto T_t f$ has right-hand derivative $T_t A f = AT_t f$. Since $A f \in C_0$, $T_t A f$ is continuous in t. So the right-hand derivative is actually the two-sided derivative, and (ii) and (iii) both hold. \Box

An operator A with domain \mathcal{D}_A on a Banach space B is called closed if its graph $\{(f, Af) : x \in \mathcal{D}_A\}$ is a closed subset of B^2 . This is a natural extension of bounded linear operators. An operator A is closed if and only if for any sequence (f_n) in \mathcal{D}_A , the two conditions " $f_n \to f$ in B" and " $Af_n \to g$ in B" together imply that $f \in \mathcal{D}_A$ and Af = g.

Proposition. The domain \mathcal{D}_A of the infinitesimal generator A of a Feller semigroup is dense in C_0 , and A is a closed operator.

Proof. Set $A_h f = \frac{1}{h}(T_h f - f)$ and $B_s f = \frac{1}{s} \int_0^s T_t f dt$. Then A_h and B_s are bounded operators on C_0 , and

$$A_h B_s = B_s A_h = A_s B_h = B_h A_s.$$

Here the first and the third "=" follows easily from the fact hat T_h commutes with T_t . The second "=" follows from

$$B_{s}A_{h}f = \frac{1}{hs} \int_{0}^{s} T_{t}(T_{h}f - f)dt = \frac{1}{hs} \int_{0}^{s} (T_{t+h}f - T_{t}f)dt = \frac{1}{hs} \left(\int_{h}^{h+s} T_{t}fdt - \int_{0}^{s} T_{t}fdt \right)$$
$$= \frac{1}{hs} \left(\int_{s}^{h+s} T_{t}fdt - \int_{0}^{h} T_{t}fdt \right) = A_{s}B_{h}f.$$

For every $f \in C_0$, we have $B_h f \to f$ as $h \downarrow 0$. Thus, for s > 0,

$$A_h B_s f = A_s B_h f \to A_s f, \quad h \downarrow 0.$$

So $B_s f \in \mathcal{D}_A$. Since $B_s f \to f$ as $s \downarrow 0$, \mathcal{D}_A is dense in C_0 .

Let (f_n) be a sequence in \mathcal{D}_A converging to f, and suppose $Af_n \to g$. Then

$$B_s g = \lim_{n \to \infty} B_s A f_n = \lim_{n \to \infty} B_s \lim_{h \downarrow 0} A_h f_n = \lim_{n \to \infty} \lim_{h \downarrow 0} B_s A_h f_n$$
$$= \lim_{n \to \infty} \lim_{h \downarrow 0} A_s B_h f_n = \lim_{n \to \infty} A_s f_n = A_s f.$$

It follows that $f \in \mathcal{D}_A$, and $Af = \lim_{s \downarrow 0} A_s f = \lim_{s \downarrow 0} B_s g = g$. So A is closed.

Remark. For the Feller semigroup obtained from the SDE $dX_t = \sigma(X_t) \circ dB_t + b(X_t)dt$, we have known that the infinitesimal generator A agrees with the second order differential operator $\mathcal{A} = \frac{1}{2} \sum_{j,k} a^{j,k} \partial_j \partial_k + \sum_i b^i \partial_i$ on C_K^2 . From the above proposition, we know that, for any $f \in C_0$, if there is a sequence (f_n) in C_K^2 such that $f_n \to f$ and $\mathcal{A}f_n \to g \in C_0$, then $f \in \mathcal{D}_A$ and Af = g.

Let $\lambda > 0$, we define

$$R_{\lambda}f(x) = \int_0^\infty e^{-\lambda t} T_t f(x) dt.$$

Since $T_t f \in C_0$ and $||T_t f|| \leq ||f||$ for all $t \geq 0$, by dominated convergence theorem, $R_{\lambda} f \in C_0$. By triangle inequality, $||R_{\lambda} f|| \leq \int_0^\infty e^{-\lambda t} ||f|| dt = \frac{1}{\lambda} ||f||$, i.e., $||R_{\lambda}|| \leq \frac{1}{\lambda}$, and λR_{λ} is a contraction operator on C_0 . Each R_{λ} is called a resolvent of the Feller semigroup.

Proposition. For any $\lambda > 0$, the operator $\lambda I - A$ from \mathcal{D}_A to C_0 is one-to-one and onto, and its inverse is R_{λ} .

Proof. For $f \in \mathcal{D}_A$,

$$R_{\lambda}(\lambda I - A)f = \int_{0}^{\infty} e^{-\lambda t} T_{t}(\lambda f - Af)dt$$
$$= \lambda \int_{0}^{\infty} e^{-\lambda t} T_{t}fdt - \int_{0}^{\infty} e^{-\lambda t}\partial_{t}(T_{t}f)dt$$
$$= -\int_{0}^{\infty} \partial_{t}(e^{-\lambda t})T_{t}fdt - \int_{0}^{\infty} e^{-\lambda t}\partial_{t}(T_{t}f)dt$$
$$= -\int_{0}^{\infty} \partial_{t}(e^{-\lambda t}T_{t}f)dt = -e^{-\lambda t}T_{t}f|_{0}^{\infty} = T_{0}f = f$$

Conversely, if $f \in C_0$, then

$$\begin{aligned} A_h R_\lambda f &= R_\lambda A_h f = \int_0^\infty e^{-\lambda t} T_t \frac{1}{h} (T_h f - f) dt = \frac{1}{h} \int_0^\infty e^{-\lambda t} (T_{h+t} f - T_t f) dt \\ &= \frac{1}{h} \int_0^\infty e^{-\lambda t} T_{h+t} f dt - \frac{1}{h} \int_h^\infty e^{-\lambda t} T_t f dt - \frac{1}{h} \int_0^h e^{-\lambda t} T_t f dt \\ &= \frac{1}{h} \int_0^\infty (e^{-\lambda t} - e^{-\lambda (t+h)}) T_{h+t} f dt - \frac{1}{h} \int_0^h e^{-\lambda t} T_t f dt. \end{aligned}$$

As $h \downarrow 0$, the LHS tends to $AR_{\lambda}f$, while the RHS tends to $\int_{0}^{\infty} \lambda e^{-\lambda t} T_{t}f dt - f = \lambda R_{\lambda}f - f$. So $R_{\lambda}f \in \mathcal{D}_{A}$ and $AR_{\lambda}f = \lambda R_{\lambda}f - f$, which implies that $(\lambda I - A)R_{\lambda}f = f$.

From this proposition we see that the infinitesimal generator A determines all resolvents R_{λ} . Since $\lambda \mapsto R_{\lambda}f$ is the Laplace transform of $t \mapsto T_t f$, the resolvents in turn determine the Feller semigroup (T_t) .

Proposition (Resolvent identity). (i) For any $\lambda, \mu > 0$,

$$R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu} = (\mu - \lambda)R_{\mu}R_{\lambda}.$$

(ii) For any $f \in C_0$, $\|\lambda R_{\lambda} f - f\| \to 0$ as $\lambda \to \infty$.

Proof. (i) From $R_{\lambda} = (\lambda I - A)^{-1}$ we get

$$R_{\mu}^{-1} - R_{\lambda}^{-1} = \mu I - \lambda I.$$

Composing R_{λ} on the left of both sides, and composing R_{μ} from the right of both sides, we get $R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$. Switching R_{λ} and R_{μ} , we get $R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\mu}R_{\lambda}$.

(ii) First suppose $f \in \mathcal{D}_A$. Let $g = (I - A)f \in C_0$. Then $f = R_1g$, and

$$\lambda R_{\lambda}f - f = \lambda R_{\lambda}R_{1}g - R_{1}g = R_{\lambda}R_{1}g - R_{\lambda}g = R_{\lambda}(R_{1}g - g) \to 0$$

in the norm topology because $R_1g - g \in C_0$, and $||R_\lambda|| \leq 1/\lambda$. For a general $f \in C_0$, since \mathcal{D}_A is dense in C_0 , we may find a sequence (f_n) in \mathcal{D}_A such that $f_n \to f$. For each n, $\lambda R_\lambda f_n \to f_n$ as $\lambda \to \infty$. Since λR_λ is a contraction for each $\lambda > 0$, $\lambda R_\lambda f_n \to \lambda R_\lambda f$ as $n \to \infty$ uniformly in λ . So we have $\lambda R_\lambda f \to f$ as $\lambda \to \infty$.

6.6 One-dimensional diffusion process

At the end, we focus on the solution of the following SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \qquad (6.14)$$

where $\sigma, b \in C^1(I, \mathbb{R})$ is positive, and I is an open interval on \mathbb{R} . Since σ and b are locally Lipschitz continuous, the strong solution X^x with any initial value $x \in I$ exists uniquely, which may blow up at some random finite time. When that happens, X_t^x tends to one end point of I(which could be $+\infty$ or $-\infty$) at that time.

We may simplify the SDE as follows. Suppose Y = f(X) for some $f \in C^2(I)$. By Itô's formula, Y satisfies the SDE:

$$dY_t = f'(X_t)\sigma(X_t)dB_t + f'(X_t)b(X_t)dt + \frac{1}{2}f''(X_t)\sigma(X_t)^2dt.$$

If f is strictly increasing and satisfies the equation

$$f'(x)b(x) + \frac{1}{2}f''(x)\sigma(x)^2 = 0, \qquad (6.15)$$

then the SDE for Y simplifies to

$$dY_t = (\sigma f') \circ f^{-1}(Y_t) dB_t, \qquad (6.16)$$

and so Y is a local martingale.

Solving (6.15), we get $f''(x)/f'(x) = 2b(x)/\sigma(x)^2$. Since $f''/f' = \frac{d}{dx}(\log f')$, we get $\log f'(x) = C + \int_{x_0}^x 2b(s)/\sigma(s)^2 ds$, where x_0 is any point in I, and $C \in \mathbb{R}$ is a constant. So $f'(x) = \exp(\int_{x_0}^x 2b(s)/\sigma(s)^2 ds)$ is one solution. Integrating f', we get f. Since f' is C^1 and positive, f is C^2 and strictly increasing. Since $\sigma \in C^1$, we see that $(\sigma f') \circ f^{-1} \in C^1$. So we can reduce (6.14) to the equation

$$dX_t = \sigma(X_t)dB_t,\tag{6.17}$$

where $\sigma \in C^1(I, \mathbb{R})$ is positive.

Lemma. Let $a < b \in I$. The process X that satisfies (6.14) does not stay in [a, b] during its life period [0, T).

Proof. By applying a function $f \in C^2(I)$, we may assume that X satisfies (6.17). Then X is a local martingale, and so is a time-change of a full or stopped Brownian motion. This means that there is a Brownian motion W defined on an extended probability space such that $X_t = W_{[X]_t}, 0 \leq t < T$. Then almost surely either $[X]_{\infty} = \infty$ and $\limsup_{t\uparrow T} X_t = +\infty$ and $\liminf_{t\uparrow T} X_t = -\infty$, or $[X]_T < \infty$ and $\lim_{t\uparrow T} X_t$ converges to $W_{[X]_T}$. Suppose $X_t \in [a, b]$ for $0 \leq t < T$. Then the first case can not happen, and we have $[X]_T < \infty$ and $\lim_{t\uparrow T} X_t$ converges to some $x_0 \in [a, b]$. If $T < \infty$, then X_t approaches some end point of I. So we must have $T = \infty$. But now $[X]_T = \int_0^\infty \sigma(X_t)^2 = \infty$ because $\lim_{t\uparrow\infty} \sigma(X_t) = \sigma(x_0) > 0$, which is a contradiction.

Proposition . For the solution X of (6.17), if $a < x < b \in I$, then

$$\mathbb{P}^x[\tau_a < \tau_b] = \frac{b-x}{b-a}, \quad \mathbb{P}^x[\tau_b < \tau_a] = \frac{x-a}{b-a}.$$
(6.18)

where τ_a and τ_b are the first time that X reaches a and b, respectively.

Proof. We know that it does not happen that $X([0,T)) \subset [a,b]$. So $\tau_a \wedge \tau_b < T$. Since X is a local martingale, and X is bounded on $[0, \tau_a \wedge \tau_b]$, we get

$$x = X_0^x = \mathbb{E}[X_{\tau_a \wedge \tau_b}^x] = a \mathbb{P}^x[\tau_a < \tau_b] + b \mathbb{P}^x[\tau_b < \tau_a].$$

Since $\mathbb{P}^x[\tau_a < \tau_b] + \mathbb{P}^x[\tau_b < \tau_a] = 1$, we get (6.18).

Corollary. For the solution X of (6.14) and an injective C^2 function f on I such that f(X) is a local martingale, if $a < x < b \in I$, then

$$\mathbb{P}^{x}[\tau_{a} < \tau_{b}] = \frac{f(b) - f(x)}{f(b) - f(a)}, \quad \mathbb{P}^{x}[\tau_{b} < \tau_{a}] = \frac{f(x) - f(a)}{f(b) - f(a)}.$$
(6.19)

Proof. If X starts from x, then Y := f(X) satisfies (6.16) and starts from f(x). The time that X reaches a or b is the time that Y reaches f(a) or f(b). Then we apply the previous proposition to Y.

The increasing function f with the property of (6.19) is called a scale function for X. Such scale function is unique up to an affine map. If f(x) = x is a scale function, then X is a local martingale, and we say that X is on a natural scale.

For X on a natural scale, the behavior of X at its terminal time, i.e., the limit of X_t as $t \uparrow T$, is determined by the interval I. This is the statement of the following proposition.

Proposition. Suppose X solves (6.17) on an interval I, and starts from $x \in I$.

- (i) If $I = \mathbb{R}$, then a.s. $T = \infty$, $\limsup_{t \uparrow T} X_t = +\infty$ and $\liminf_{t \uparrow T} X_t = -\infty$.
- (ii) If $I = (a, \infty)$ or $(-\infty, a)$ for some $a \in \mathbb{R}$, then a.s. $\lim_{t \uparrow T} X_t = a$.

(iii) If I = (a, b) for some $a < b \in \mathbb{R}$, then

$$\mathbb{P}^{x}[\lim_{t\uparrow T} X_{t} = a] = \frac{b-x}{b-a}, \quad \mathbb{P}^{x}[\lim_{t\uparrow T} X_{t} = b] = \frac{x-a}{b-a}.$$

Proof. Since X is a local martingale, on an extended probability space there is a Brownian motion W such that $X_t = W_{[X]_t}$, $0 \le t < T$. So a.s. either Case 1: $[X]_T < \infty$ and $\lim_{t\uparrow T} X_t$ converges, or Case 2: $[X]_T = \infty$, $\limsup_{t\uparrow T} X_t = +\infty$ and $\liminf_{t\uparrow T} X_t = -\infty$. When $I = \mathbb{R}$, Case 1 can not happen because if $\lim_{t\uparrow T} X_t = x_0 \in \mathbb{R}$, then $[X]_T = \int_0^T \sigma(X_s)^2 ds < \infty$, which implies that $T < \infty$. But $T < \infty$ implies that $X_t \to +\infty$ or $-\infty$ as $t\uparrow T$, a contradiction. So Case 2 must happen, i.e., $[X]_T = \infty$, $\limsup_{t\uparrow T} X_t = +\infty$ and $\liminf_{t\uparrow T} X_t = -\infty$. We then

get a.s. $T = \infty$ because if $T < \infty$, then X_t tends to ∞ or $-\infty$ as $t \uparrow T$. So we get (i). For (ii) and (iii), Case 2 can not happen because $I \neq \mathbb{R}$, and so a.s. $\lim_{t \uparrow T} X_t$ converges. The limit must be a boundary point because if it is $x_0 \in I$, then from $[X]_T = \int_0^T \sigma(X_s)^2 ds < \infty$ we get $T < \infty$, which implies that X_t tends to an end point of I, a contradiction. So we get (ii). For (iii), we have $\mathbb{P}^x[\lim_{t \uparrow T} X_t = a] + \mathbb{P}^x[\lim_{t \uparrow T} X_t = b] = 1$. Then we may compute $\mathbb{P}[\lim_{t \uparrow T} X_t = a]$ using the martingale property of X.

Corollary. Suppose X solves (6.14) on an interval I with a scale function f, and starts from $x \in I$.

- (i) If $f(I) = \mathbb{R}$, then a.s. $T = \infty$, $\limsup_{t \uparrow T} X_t = \sup I$ and $\liminf_{t \uparrow T} X_t = \inf I$.
- (ii) If $f(I) = (a, \infty)$ for some $a \in \mathbb{R}$, then a.s. $\lim_{t\uparrow T} X_t = \inf I$; if $f(I) = (-\infty, a)$ for some $a \in \mathbb{R}$, then a.s. $\lim_{t\uparrow T} X_t = \sup I$.
- (iii) If f(I) is bounded, then

$$\mathbb{P}^{x}[\lim_{t\uparrow T} X_{t} = \inf I] = \frac{\sup f(I) - f(x)}{\sup f(I) - \inf f(I)}, \quad \mathbb{P}^{x}[\lim_{t\uparrow T} X_{t} = \sup I] = \frac{f(x) - \inf f(I)}{\sup f(I) - \inf f(I)}.$$

Suppose X is on a natural scale, i.e., solves (6.17). We are specially interested in the case that $I = \mathbb{R}$. In this case, X visits every point infinitely many times, and is recurrent. We call $\nu = \sigma(x)^{-2}dx$ the speed measure for X. The name comes from the following ergodicity theorem. We will not work on its proof.

Theorem. Suppose X is a diffusion on \mathbb{R} on a natural scale with speed measure ν . Then for any two nonnegative measurable functions f and g on I with $\nu f < \infty$ and $\nu g > 0$, and any $x \in \mathbb{R}$, we have \mathbb{P}^x -a.s.

$$\lim_{t \to \infty} \frac{\int_0^t f(X_s) ds}{\int_0^t g(X_s) ds} = \frac{\nu f}{\nu g}$$

In particular, if ν is a finite measure, and we normalize it to a probability measure $\mathbb{P}_0 = \nu/|\nu|$, then we get by choosing $g \equiv 1$,

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t f(X_s) ds = \int f(x) \mathbb{P}_0(dx).$$

Moreover, if the process X starts with initial distribution \mathbb{P}_0 , then it is a stationary process.