
Lecture Notes on Brownian Motion, Continuous Martingale and

Stochastic Analysis (Itô’s Calculus)

This lecture notes mainly follows Chapter 11, 15, 16 of the book Foundations of Modern
Probability by Olav Kallenberg.

Throughout, we fix an underlying filtered probability space (Ω,F ,P), where F = (Ft)t≥0 is
a filtration. Recall a normal distribution N(µ, σ2), σ > 0, is a probability measure on R with
a density function:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

If X ∼ N(µ, σ2), then E[X] = µ and var(X) = E[(X − EX)2] = σ2. This distribution has a
characteristic function:

φ(t) = E[eitX ] = eiµt−
σ2t2

2 .

We also think of N(µ, 0) = δµ as a normal distribution. It has no density function, but has
characteristic function eiµt. A random variable with normal distribution is called a Gaussian
random variable.

We may also define d-dimensional normal distribution N(µ,A), where µ ∈ Rd and A ∈ Rd2

is a semi-definite matrix. It has characteristic function:

φ(t) = E[ei
∑d
j=1 tjXj ] = ei

∑d
j=1 µjtj−

1
2

∑d
j=1

∑d
k=1 Aj,ktjtk .

The density function exists whenever A is strictly positive. A random vector with normal
distribution is called a Gaussian random vector.

1 Gaussian Processes and Brownian Motion

A family of random variables (Xt)t∈I is said to be jointly Gaussian if for any t1, . . . , tn ∈ I and
any c1, . . . , cn ∈ R,

∑n
j=1 cjXtj is Gaussian, and is said to be centered if E[Xt] = 0 for all t.

This means that (Xt1 , . . . , Xtn) follows a normal distribution on Rn. This property holds, for
example, if Xt are independent Gaussian random variables. In fact, if Xt ∼ N(at, σ

2
t ) and are

independent, then
∑n

j=1 cjXtj ∼ N(
∑n

j=1 cjatj ,
∑n

j=1 c
2
jσ

2
tj ). A random process (Xt) is called

a Gaussian process if the random variables are jointly Gaussian.

Lemma 11.1. (Covariance function)
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(i) Suppose (Xt)t∈T and (Yt)t∈T are both jointly Gaussian. If for any t ∈ T , E[Xt] = E[Yt];
and for any s, t ∈ T , cov(Xs, Xt) = cov(Ys, Yt). Then (Xt)t∈T and (Yt)t∈T have the same
distribution.

(ii) If the family (Xt)t∈T is jointly Gaussian, then the family is independent if and only if
cov(Xs, Xt) = 0 for any s 6= t ∈ T .

Proof. (i) For any t1, . . . , tn ∈ T and c1, . . . , cn, we have

E[
n∑
j=1

cjXtj ] =
n∑
j=1

cjE[Xtj ];

var[
n∑
j=1

cjXtj ] = E[(
n∑
j=1

cj(Xtj − E[Xtj ]))
2] =

n∑
j=1

n∑
k=1

cjck cov(Xtj , Xtk).

The same computation holds for
∑n

j=1 cjYtj . From the assumption we know that
∑n

j=1 cjXtj

and
∑n

j=1 cjYtj have the same expectation and variance. Since they are both Gaussian random
variables, they must have the same distribution. By Gramér and Wold Theorem (Corollary

4.5), (Xt1 , . . . , Xtn)
d
= (Yt1 , . . . , Ytn) for any t1, . . . , tn ∈ T . So by Proposition 2.2, X

d
= Y .

(ii) The only if part is trivial. The if part follows from (i) since if we set Yt, t ∈ T , to be

independent Gaussian random variables such that Yt
d
= Xt for every t ∈ T , then by (i), X

d
= Y .

So Xt, t ∈ T , must also be independent.

Suppose (Xt)t∈T is jointly centered Gaussian. Let H0 be the linear space spanned by
(Xt)t∈T . By definition, every element in H0 is a Gaussian random variable centered at 0.
Assign the L2 norm to H0: ‖X‖ = E[X2]1/2. Let H be the completion of H0. Then H is
a Hilbert space. Every element of H is a Gaussian random variable. To see this, note that
if Xn ∈ H0 tends to X ∈ H, then φXn(t) → φX(t), which implies that φX(t) has the form

of e−
σ2t2

2 for some σ ≥ 0. We call H a Gaussian Hilbert space. From the lemma we know
that, for X,Y ∈ H, X and Y are independent iff cov(X,Y ) = 0. We may construct a infinite
dimensional separable Gaussian Hilbert space as follows. First, let ζn, n ∈ N, be i. i.d. N(0, 1)
random variables. Let H0 be the linear space spanned by (ζn), and let H be the closure of H0

with respect to the L2 norm.

Proposition 11.2. Let ζ1, . . . , ζd be i. i.d. random variables with d ≥ 2. Then the distribution
of (ζ1, . . . , ζd) is spherically symmetric iff they are jointly centered Gaussian.

Proof. If ζ1, . . . , ζd
d
= N(0, σ2) with σ > 0, then each ζj has a density function

f(x) =
1√
2πσ

e−
x2

2σ2 .
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So the random vector (ζ1, . . . , ζd) has a density function

f(x) =

d∏
j=1

f(xj) =
1

(
√

2πσ)d
e−
|x|2

2σ2 ,

which is spherically symmetric. So the distribution of (ζ1, . . . , ζd) is spherically symmetric. If
σ = 0, then (ζ1, . . . , ζd) is a point mass at (0, . . . , 0).

Now suppose the distribution of (ζ1, . . . , ζd) is spherically symmetric. Let φ be the charac-
teristic function of any ζj , i.e., φ(t) = E[eitζj ]. Then by symmetry, φ(t) = φ(−t) = φ(t), t ∈ R.

So φ takes real values on R. For any s, t ∈ R, by spherical symmetry, sζ1 + tζ2
d
=
√
s2 + t2ζ1.

Thus,

φ(s)φ(t) = E[eisζ1+itζ2 ] = E[ei
√
s2+t2ζ1 ] = φ(

√
s2 + t2).

Then we get φ(
√

2t) = φ(t)2. This shows that φ is non-negative. By induction, φ(
√
nt) = φ(t)n.

Thus, for any q = n/m ∈ Q+, φ(
√
qt) = φ(t)q. By continuity, we get φ(

√
x) = φ(1)x for any

x ≥ 0, i.e., φ(x) = φ(1)x
2

for x > 0. Since φ(−t) = φ(t), we have φ(x) = φ(1)x
2

for any x ∈ R.

Since |φ| ≤ 1, φ(1) = e−
σ2

2 for some σ ≥ 0. So φ(t) = e−
σ2t2

2 , which means that each ζj is a
centered Gaussian random variable with variance σ2.

We omit Theorems 11.3 and 11.4.

Theorem 11.5, part 1 (Existence of Brownian motion). There exists a Gaussian process B
with independent increments such that B0 = 0 and for any t ≥ s, Bt −Bs ∼ N(0, t− s).

Proof. There are several ways to prove the existence. One way is to show that the transition
kernel

µs,t(x, ·) = N(x, t− s), t ≥ s ≥ 0,

is a consistent family, and let B be a Markov process with this transition kernel
We now give another proof. First, we construct an infinite dimensional separable Gaussian

Hilbert space H using an independent sequence of Gaussian random variables. Then H is
isomorphic to L2(R+, λ), where λ is the Lebesgue measure on R. Let f : L2(R+, λ)→ H be an
isomorphism. Define

Bt = f(1[0,t]) ∈ H.

Then B is a centered Guassian process, and from f(0) = 0 we get a.s. B0 = 0. For t > s,
var(Bt−Bs) = ‖1[0, t]−1[0,s]‖2 = t− s, so Bt−Bs ∼ N(0, t− s). Finally, if t0 ≤ t1 ≤ · · · ≤ tn,
then Bt1 − Bt0 , . . . , Btn − Btn−1 are f -images of 1(t0,t1], . . . , 1(tn−1,tn], which are orthogonal in
L2(R+, λ). So Bt1 −Bt0 , . . . , Btn −Btn−1 are orthogonal in H. Thus, they are independent.

Theorem 11.5, part 2 (Continuity of Brownian motion). The B in the previous theorem has
a continuous version, which is locally Hölder continuous of any exponent a ∈ (0, 1/2).
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Recall that B′ is called a version of B if for every t ≥ 0, a.s. B′t = Bt. It is weaker
than the condition that, a.s. for every t ≥ 0, B′t = Bt, in which case we say that B′ and
B are indistinguishable. If B has two continuous versions B′ and B′′, then B′ and B′′ are
indistinguishable because first, for every t ∈ Q+, a.s. B′t = B′′t ; second a.s. for every t ∈ Q+,
B′t = B′′t because Q+ is countable; and finally a.s. B′ ≡ B′′ by continuity of B′ and B′′, and
the denseness of Q+ in R+.

A function f is said to be Hölder continuous of exponent a if there is a constant C > 0
such that for any x, y in the domain of f , |f(x)− f(y)| ≤ C|x− y|a. If it called locally Hölder
continuous of exponent a if for any x in the domain of f , there is a neighborhood U of x
such that f |U is Hölder continuous of exponent a. To prove the theorem, we use the following
theorem.

Theorem 2.23. Let Xt, t ≥ 0, be a real valued process. Assume that there are a, b, C > 0 such
that for any s, t ∈ R+,

E[|Xt −Xs|a] ≤ C|t− s|1+b.

Then X has a continuous version, which is a.s. locally Hölder continuous with exponent c for
any c ∈ (0, b/a).

Proof. It suffices to consider X|[0,1]. Fix c ∈ (0, b/a). For n ∈ N, let Dn be the set of binary

points of level n in [0, 1], i.e., k
2n , 0 ≤ k ≤ 2n. We first consider the Hölder property of X|Dn .

Let
ζn = max{|X k

2n
−X k−1

2n
| : 1 ≤ k ≤ 2n}.

Then we have

P[ζn > (
1

2n
)c] ≤

2n∑
k=1

P[|X k
2n
−X k−1

2n
|a > (

1

2n
)ca]

≤ 2can
2n∑
k=1

E[|X k
2n
−X k−1

2n
|a] ≤ 2can2nC2−n(1+b) = C2n(ca−b).

Since ca < b,
∞∑
n=1

P[ζn > (
1

2n
)c] ≤

∞∑
n=1

C2n(ca−b) <∞.

By Borel-Cantelli lemma, a.s. there is a random N such that for any n > N , ζn ≤ ( 1
2n )c. So

there a.s. exists a random C > 0 such that for any n ∈ N, and t, s ∈ Dn with |t − s| = 1
2n ,

|Xt −Xs| ≤ C|t− s|c. Let E denote the event that the inequality holds, which has probability
1. Let D =

⋃
nDn. Then D is dense in [0, 1].

We now show that X|D is Hölder continuous with exponent c on the event E. Suppose
E occurs. Let x < y ∈ D. Let n0 be the smallest n ∈ N such that Dn ∩ [x, y] 6= ∅. Let
z0 ∈ Dn0∩[x, y]. Then |x−z0|, |y−z0| ≤ 1

2n0 . We first estimate |Xx−Xz0 |. If x = z0, it is trivial.
Suppose x < z0. Then x ∈ Dm for some m > n0. Then we can find n0 < n1 < · · · < nk = m
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and x = xk < xk−1 < · · · < x0 = z0 such that xk ∈ Dnk , 0 ≤ k ≤ n and |xk − xk−1| = 2−nk .
Then we get

|Xx −Xz0 | ≤
k∑
j=1

|Xxj −Xxj−1 | ≤ C
k∑
j=1

C(2−nj )c ≤ C2−cn1

∞∑
s=0

2−sc =
C2−cn1

1− 2−c
.

On the other hand, |x− z0| ≥ |x1−x0| = 2−n1 . So |Xx−Xz0 | ≤ C
1−2−c |x− z0|c ≤ C

1−2−c |x− y|
c.

Symmetrically, |Xy −Xz0 | ≤ C
1−2−c |x− y|

c. Thus,

|Xx −Xy| ≤ |Xx −Xz0 |+ |Xy −Xz0 | ≤
2C

1− 2−c
|x− y|c.

Since X|D is Hölder continuous on the event E, it extends to a continuous process Y on [0, 1]
by the denseness of D in [0, 1]. We now show that Y is a version of X, i.e., for any t ∈ [0, 1],
a.s. Xt = Yt. Fix t ∈ [0, 1]. Let tn ∈ Dn, n ∈ N, be such that tn → t. Then a.s. Xtn → Yt.

Since E[|Xtn −Xt|a] ≤ C|tn − t|1+b, we have Xtn → Xt in La, and so Xtn
P→ Xt. So we must

have a.s. Xt = Yt.

Proof of Theorem 11.5, part 2. For any t > s, since Xt−Xs ∼ N(0, t− s), (Xt−Xs)/
√
t− s ∼

N(0, 1). For a > 2, we have

E[|Xt −Xs|a] = |t− s|a/2
∫
R
|x|a 1√

2π
e−

x2

2 dx = C|t− s|a/2.

for some constant C depending on a. Let b = a/2− 1. By Theorem 2.23, X has a continuous

version, which is Hölder continuous with any exponent in (0, a/2−1
a ). By letting a→∞, we find

that the continuous version of X is Hölder continuous with any exponent in (0, 1/2).

The continuous centered Gaussian process given by Theorem 11.5 is called a (standard)
Brownian motion (BM for short) or a Wiener process. For x ∈ R, x + B is called a Brownian
motion started from x. A Brownian motion in Rd is a process Bt = (B1

t , . . . , B
d
t ) such that Bj

t ,
1 ≤ j ≤ d, are independent 1d Brownian motions. For x ∈ Rd, x + B is called a Brownian
motion in Rd started from x.

Recall that the distribution of a centered Gaussian process X is determined by its covariance
function, i.e., cov(Xt, Xs) for t, s ∈ T . Let t, s ≥ 0. If t ≥ s, then

cov(Bt, Bs) = cov(Bt −Bs, Bs) + var(Bs) = 0 + s = s = t ∧ s.

Symmetrically, if s ≥ t, we also have cov(Bt, Bs) = t ∧ s. For c ∈ R,

cov(cBt, cBs) = c2 cov(Bt, Bs) = c2(t ∧ s) = (c2t) ∧ (c2s) = cov(Bc2t, Bc2s), t, s ≥ 0.

So cB
d
= Bc2t, i.e., scaling the space by a factor c is equivalent to scaling the time by a factor c2.

This is called the Brownian scaling. We call x + Bc2t a Brownian motion started from x with
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speed c2. Taking c = −1, we find the symmetry of BM: −B d
= B. For any fixed t0, consider

the process Bt0+t −Bt0 , t ≥ 0. Since for t, s ≥ 0,

cov(Bt0+t−Bt0 , Bt0+s−Bt0) = cov(Bt0+t, Bt0+s)− cov(Bt0 , Bt0+s)− cov(Bt0+t, Bt0) + var(Bt0)

= (t0 + t) ∧ (t0 + s)− t0 − t0 + t0 = t ∧ s = cov(Bt, Bs),

(Bt0+t −Bt0)t≥0
d
= B.

We may use a similar idea to construct Brownian sheet, which is a Gaussian process with
two time variables: X(t1, t2), t1, t2 ≥ 0. For the construction, consider a isomorphism f :
L2(R2

+, λ
2) → H, where H is a Gaussian Hilbert space. The Brownian sheet is defined by

X(t1, t2) = f(1[0,t1]×[0,t2]).

Exercise. Find the covariance function for Brownian sheet.

A Brownian motion is defined on R+. We may extend it to R as follows. Let B+ and B−

be two independent BM on R+. Define BR
t = B+

t if t ≥ 0, BR
t = B−−t if t ≤ 0. This process

is not stationary because BR
0 is constant 0 but other BR

t is not. But it has the following nice
properties.

Exercise. Prove that for any fixed t0 ∈ R, BR
t0+t − BR

t0 , t ∈ R, has the same distribution as
BR.

Let F0 be the natural filtration generated by B. This means that for every t ≥ 0, F0
t is the

σ-algebra generated by Bs, 0 ≤ s ≤ t. Let N denote the family of subsets N of Ω such that
there exists some A ∈ F with P[A] = 0 and N ⊂ A. We let F denote the completion of F0,
i.e., for every t ≥ 0, Ft is the σ-algebra generated by F0

t and N .
Fix t0 ≥ 0. Since for every t ≥ 0 and s ∈ [0, t0], Bt0+t − Bt0 is independent of Bs, we see

that the process Bt0+t −Bt0 , t ≥ 0, is independent of F0
t0 , and so is also independent of Ft0 .

Proposition . F is right-continuous.

Proof. Fix t0 ≥ 0 and let t1 > t2 > · · · → t0. For n ∈ N, let Gn be the σ-algebra generated by
Bt−Btn+ , t ∈ [tn+1, tn]. By independent increment property of B, Gn, n ∈ N, are independent.
We also note that

F0
tn = σ(F0

t0 ,Gn,Gn+1, . . . ), n ∈ N,

since if t ∈ (t0, tn), Bt − Bt0 can be expressed as an infinite sum of random variables, each of
which is Gk-measurable for some k ≥ n. By Corollary 6.25, we then get a.s.

⋂
nF0

tn = F0
t0 ,

which implies that
⋂
nFtn = Ft0 .

Proposition . B is a martingale and time-homogeneous and space-homogeneous Markov pro-
cess with transition kernel µs,t(x,A) = N(x, t− s)(A) w.r.t. F0 or F .
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Proof. We first work on F0. To check the martingale property, fix t0, t ≥ 0. Since N(0, t) ∼
Bt0+t −Bt0 |= F0

t0 , we have E[Bt0+t −Bt0 |F0
t0 ] = E[Bt0+t −Bt0 ] = 0. So B is an F0-martingale.

The space-homogeneous Markov property of B follows from Proposition 7.5 and the fact that
B has F0-independent increments, i.e., Bt0+t − Bt0 |= F0

t0 for any t0, t ≥ 0. The proposition
also tells us that the transition kernels are given by µs,t(x,A) = P[Xt − Xs ∈ A − x] =
N(0, t− s)(A− x) = N(x, t− s)(A). Since µs,t depends only on t− s, B is time-homogeneous.
The above argument also works for F .

We may use the Brownian motion B to define other continuous Gaussian processes. Let

Xt = Bt − tB1, 0 ≤ t ≤ 1.

Then X0 = X1 = 0. Such X is called a Brownian bridge (from 0 to 0 with time span 1). It is
a Guassian process with covariance function

cov(Xt, Xs) = cov(Bt − tB1, Bs − sB1)

= cov(Bt, Bs)− t cov(B1, Bs)− s cov(B1, Bt) + st cov(B1, B1)

= t ∧ s− ts− ts+ ts = t ∧ s− ts = t(1− s) ∧ s(1− t).

We then immediately see that (X1−t)
d
= X because

cov(X1−t, X1−s) = ((1− t)s) ∧ ((1− s)t) = cov(Xt, Xs).

Lemma 11.6. If B is a Brownian motion, then tB1/t is also a Brownian motion, and (1 −
t)Bt/(1−t) and tB(1−t)/t are Brownian bridges. If X is a Brownian bridge, then (1 + t)Xt/(1+t)

and (1 + t)X1/(1+t) are Brownian motions.

Proof. All processes are centered Gaussian processes, whose distributions are determined by
their covariance functions. To prove that the process tB1/t has the same distribution as B, we
note that

cov(tB1/t, sB1/s) = ts cov(B1/t, B1/s) = ts((1/t) ∧ (1/s)) = s ∧ t.

Exercise. Prove other statements in Lemma 11.6.

Lemma . Let H be a Gaussian Hilbert space. Let ζ ∈ H. Let F0 be the σ-algebra generated by
a set S ⊂ H. Let H0 be the closed linear space spanned by S. Let ζ0 be the orthogonal projection
of ζ onto H0, and let σ = dist(ζ,H0) = ‖ζ− ζ0‖L2. Then the conditional law of ζ given F , i.e.,
Law(ζ|F) = N(ζ0, σ

2).

Proof. Since ζ0 belongs to the closed linear space spanned by S, which generates F0, we have
ζ0 ∈ F . Since ζ − ζ0 ⊥ H0, we have ζ − ζ0 |= F . Since ζ − ζ0 ∈ H and σ = ‖ζ − ζ0‖L2 ,
Law(ζ − ζ0) = N(0, σ2). Since ζ − ζ0 |= F , the conditional law Law(ζ − ζ0|F) is the same as the
unconditional law, i.e., N(0, σ2). Since ζ0 ∈ F , Law(ζ|F) = ζ0 +N(0, σ2) = N(ζ0, σ

2).
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Proposition 11.7 (Gaussian Markov Processes). Let Xt, t ∈ T , be a centered Gaussian process.
Define rs,t = cov(Xs, Xt), s, t ∈ T . Then X is Markov iff for any s ≤ t ≤ u, if rt,t 6= 0, then
rs,urt,t = rs,trt,u; if rt,t 6= 0, then rs,u = 0.

Proof. Fix t ≤ u ∈ T . We need to show that Law(Xu|Ft) = Law(Xu|Xt). Let Ht be the
closed linear space spanned by Xs, s ≤ t. Let Lt be the linear space spanned by Xt. By the
previous lemma, it suffices to show that the orthogonal projection of Xu to Ht agrees with the
orthogonal projection of Xu to Lt. If rt,t = 0, then Lt = {0}, and we need that Xu ⊥ Ht, i.e.,
rs,u = 0 for any s ≤ t. If rt,t 6= 0, then the projection of Xu to Lt can be described as aXt,

where a = cov(Xt,Xu)
cov(Xt,Xt)

=
rt,u
rt,t

. So we have X ′u := Xu − aXt |= Xs for any s ≤ t, which gives

0 = cov(X ′u, Xs) = cov(Xu − aXt, Xs) = rs,u − ars,t = rs,u − rt,urs,t/rt,t,

if rt,t 6= 0. The above argument can be reversed. So we get the equivalence.

We note that Brownian Bridge is Markov because for s ≤ t ≤ u, rs,u = s−su, rt,t = t(1− t),
rs,t = s(1− t), rt,u = t(1− u).

For a Brownian motion B, we define a centered Gaussian process

Yt = e−tB(
1

2
e2t), t ∈ R.

It is called a stationary Ornstein-Uhlenbeck process. It has covariance

cov(Yt, Ys) = e−te−s
1

2
e2t∧2s =

1

2
e−|t−s|.

Since for s ≤ t ≤ u, 1
2e
−|t−s| · 1

2e
−|u−t| = 1

2e
−|u−s| · 1

2e
−|t−t|, it is a Gaussian Markov process.

From the covariance function, we find that Y is stationary and time-reversible, i.e., for any

t0 ∈ R, (Yt0+t)
d
= Y and (Y−t)

d
= Y .

Exercise. Find the Markov transition kernels of a Brownian bridge and a stationary Ornstein-
Uhlenbeck process.

There is another important Gaussian process, called fractional Brownian motion (fBM for
short). A fBM with Hurst index H ∈ (0, 1) is a centered Gaussian process BH indexed by R
with the covariance function

cov(BH
t , B

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R.

It may be constructed using an isomorphism from L2(R, λ) to a Gaussian Hilbert space.

Exercise. Prove the following. (i) B1/2 agrees with BM on R. (ii) For any a > 0, (BH
at)

d
=

|a|HBH . (iii) For any fixed t0 ∈ R, (BH
t0+t −BH

t0 )t∈R
d
= BH . (iv) BH has a continuous version,

which is locally Hölder continuous with any exponent less than H.
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We omit Lemma 11.8.
We will study sample path properties of Brownian motion.

Theorem 11.9 (quadratic variation). Let B be a Brownian motion. Fix t > 0. Let ∆ = {0 =
t0 < · · · < tn = t} be a partition of [0, t]. Let h∆ := max{tk − tk−1 : 1 ≤ k ≤ n} be the mesh
size of ∆. Let

ζ∆ =

n∑
k=1

(Btk −Btk−1
)2.

Then as h∆ → 0, ζ∆ → t in L2. Moreover, if (∆n)n∈N is a nested sequence of partitions of
[0, t], i.e., ∆1 ⊂ ∆2 ⊂ · · · , and h∆n → 0, then a.s. ζ∆n → t.

Proof. Since Btk − Btk−1
, 1 ≤ k ≤ n, are independent, and Btk − Btk−1

∼ N(0, tk − tk−1) ∼
(tk − tk−1)1/2B1, we have

E[ζ∆] =
n∑
k=1

E[(Btk −Btk−1
)2] =

n∑
k=1

(tk − tk−1) = tn − t0 = t;

‖ζ∆ − t‖2L2 = E[(ζ∆ − t)2] = var(ζ∆) =
n∑
k=1

var((Btk −Btk−1
)2)

=

n∑
k=1

(tk − tk−1)2 var(B2
1) ≤ t var(B2

1)h∆.

Thus, as h∆ → 0, ζ∆ → t in L2.
Now suppose ∆1 ⊂ ∆2 ⊂ · · · , and h∆n → 0. By inserting more partitions, we may assume

that ∆n+1 contains exactly one more point than ∆n. We now show that (ζ∆n) is a reverse
martingale. The filtration is (F−n)n∈N, where F−n is the σ-algebra generated by ζk, k ≥ n. To
prove the martingale property, we need to show that, for any n ∈ N,

E[ζ∆n−1 − ζ∆n |ζ∆n , ζ∆n+1 , . . . ] = 0.

Suppose ∆n \∆n−1 = {b}, and the partition interval of ∆n−1 that contains b is [a, c]. Then

ζ∆n − ζ∆n+1 = (Bc −Ba)2 − ((Bc −Bb)2 + (Bb −Ba)2) = 2(Bc −Bb)(Bb −Ba).

We now introduce another probability space Σ = {1,−1} with counting measure. Consider the
product space Ω′ = Σ × Ω. On the product space, we have a random variable θ(σ, ω) = σ,
which is independent of Ω, and has distribution P[θ = ±1] = 1

2 . Define on Ω′ a new process
B′s = Bs, if s ≤ b; B′s = Bb + θ(Bs −Bb) if s ≥ b. Since Bb+s −Bb, s ≥ 0, is a BM independent
of Bs, s ≤ b, by the symmetry of BM and the independence between θ and B, θ · (Bb+s − Bb)
is also a BM independent of Bs, s ≤ b. Since B (resp. B′) can be recovered from Bs, s ≤ b and
Bb+s −Bb, s ≥ 0 (resp. θ · (Bb+s −Bb), s ≥ 0), we see that B′ has the same distribution as B,
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and is also a BM. We define ζ ′∆k
for B′ in the same way as ζ∆k

for B. Then (ζ ′∆k
) has the same

distribution as (ζ∆k
) as two processes. Now it suffices to show that

E[ζ ′∆n−1
− ζ ′∆n

|ζ ′∆n
, ζ ′∆n+1

, . . . ] = 0.

We observe that ζ ′∆k
= ζ∆k

for k ≥ n because each partition interval of ∆k lies either in [0, b] or
in [b, t]. But ζ ′∆n

− ζ ′∆n−1
= 2(B′c −B′b)(B′b −B′a) = θ · (ζ∆n − ζ∆n−1). So the equality becomes

E[θ · (ζ∆n − ζ∆n−1)|ζ∆n , ζ∆n+1 , . . . ] = 0,

which follows from the independence of θ and ζk’s.

Recall that for a function f defined on [s, t], the variation of f is defined to be

sup

n∑
k=1

|f(tk)− f(tk−1)|,

where the supremum is over all partitions {s = t0 < t1 < · · · < tn = t} of [s, t]. If f is continuous
and has bounded variation V on [s, t], and ∆n, n ∈ N, is a nested sequence of partitions of [s, t]
with h∆n → 0, then for any partition of [s, t],

n∑
k=1

|f(tk)− f(tk−1)|2 ≤ sup
x,y∈[s,t],|x−y≤h∆n

|f(x)− f(y)|V → 0, n→∞.

If f is Brownian motion, this convergence a.s. does not hold. So we have the corollary:

Corollary 11.10. Brownian motion a.s. has unbounded variation on every interval [s, t] with
s < t.

Suppose we have a filtration (Ft)t≥0. We way that Bt, t ≥ 0, is an F-Brownian motion if

(i) B is F-adapted;

(ii) for any s ≥ 0, Bs+t −Bs, t ≥ 0, is a Brownian motion, and is independent of Fs.

For example, if B is a Brownian motion, and F0 is the natural filtration generated by B,
and F is the completion of F0, then B is an Brownian motion w.r.t. F0 or F . Here we use
the property that B has time-homogeneous independent increments. If B is an F-Brownian
motion, and F ′ is the completion of F , then B is also an F ′-Brownian motion. This holds
because the independence property does not care about null sets. If F+ is the right-continuous
augmentation of F , then B is also an F+-Brownian motion. To see this, fix s ≥ 0. Then for
any δ > 0, Bs+δ+t−Bs+δ is independent of Fs+δ, which contains F+

s . So Bs+δ+t−Bs+δ, t ≥ 0,
is independent of F+

s . Letting δ ↓ 0, we see that Bs+t −Bs, t ≥ 0, is independent of F+
s .

If B is an F-Brownian motion, then it is a time-homogeneous F-Markov process because
it has F-independent increments. By Proposition 7.9 (strong Markov property), it τ is a finite
stopping time taking countably many values, then conditional on Fτ , Bτ+t, ≥ 0, is a Brownian
motion started from Bτ , which implies that Bτ+t−Bτ , t ≥ 0, is a Brownian motion independent
of Fτ . We now improve this result without assuming that τ takes finitely many values.
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Theorem 11.11 (Strong Markov Property). Let B be an F-Brownian motion. Let τ be a finite
weak F-stopping time. Then Bτ+t −Bτ , t ≥ 0, is a Brownian motion independent of F+

τ .

Proof. By Lemma 6.4, we may take a decreasing sequence of finite F-stopping times τn such
that each τn takes values in Z+

2n and τn ↓ τ . Then by Lemma 6.3, F+
τ =

⋂
nFτn .

Since B is time-homogeneous and space-homogeneous Markov, and τn takes countably many
values, by Proposition 7.9 (Strong Markov Property), Bτn+t−Bτn , t ≥ 0, is a Brownian motion
independent of Fτn , and so is also independent of F+

τ . Letting τn → τ , we conclude that
Bτ+t −Bτ , t ≥ 0, is a Brownian motion independent of F+

τ .

Omit Corollary 11.12.

Proposition 11.13. Let B be a Brownian motion, and define Mt = sups≤tBs, t ≥ 0. Then
for any t ≥ 0,

Mt
d
= Mt −Bt

d
= |Bt|.

Here we remark that as processes, M and |B| do not have the same distribution because M is
increasing but |B| is not.

Lemma 11.14 (reflection principle). For any stopping time τ , a Brownian motion B has the
same distribution as the process

B̃t = Bt∧τ − (Bt −Bt∧τ ), t ≥ 0.

Note that B̃t = Bt if t ≤ τ ; B̃τ+t − B̃τ = −(Bτ+t − Bτ ) for t ≥ 0. This means that the
increment of B̃ after τ is a reflection of the increment of B after τ .

Proof. Fix a > 0. It suffices to show that B̃t, 0 ≤ t ≤ a, has the same distribution as Bt,
0 ≤ t ≤ a. If we define B̂t using τ ∧ a instead of τ , then B̂t = B̃t, 0 ≤ t ≤ a. Now τ ∧ a
is a bounded stopping time. So we may assume that τ is a bounded stopping time. The rest
of the argument is similar to the proof of Theorem 11.9 except that we now use the bounded
stopping time τ in place of the deterministic time b, and use the strong Markov property of B,
and instead of multiplying the increment by an independent random variable, we now simply
multiply it by −1.

Proof of Proposition 11.13. Since M0 = B0 = 0, the statement is trivial if t = 0. Suppose
t > 0. We are going to find the joint distribution of (Mt, Bt). Note that (Mt, Bt) takes values
in {(x, y) ∈ R2 : x ≥ y ∨ 0}. It suffices to know P[Mt ≥ x,Bt ≤ y] for any pair (x, y) such that
x ≥ y ∨ 0.

Fix x, y ∈ R such that x ≥ y ∨ 0. Let τ = inf{s : Bs = x}. Then τ is a stopping
time, and Mt ≥ x iff τ ≤ t. Define B̃ as in Lemma 11.14. If Mt ≥ x and Bt ≤ y, then
B̃t = 2x − Bt ≥ 2x − y. On the other hand, if B̃t ≥ 2x − y ≥ x, then we must have τ ≤ t
because if τ > t, then Mt ≥ Bt = B̃t ≥ x, a contradiction. Thus, Bt = 2x− B̃t ≤ y. So we have
P[Mt ≥ x,Bt ≤ y] = P[B̃t ≥ 2x− y] =

∫∞
2x−y φt(s)ds, where

φt(x) =
1√
2πt

e−
x2

2t

11



is the density function of B̃t ∼ N(0, t). We may rewrite P[Mt ≥ x,Bt ≤ y] as∫ ∞
2x−y

φt(s)ds =

∫ y

−∞
φt(2x− b)db =

∫ y

−∞

∫ ∞
x
−2φ′t(2a− b)dadb.

So (Mt, Bt) has a joint density in R2, which is 1{x≥y∨0} − 2φ′t(2x− y). By changing variables,
we know that (Mt,Mt − Bt) has density 1{x,y≥0} − 2φ′t(x + y). Thus, both Mt and Mt − Bt
have the same density, which is 0 on (−∞, 0), and equals

∫∞
0 −2φ′t(x+ y)dy = 2φt(x) at x > 0.

This is the density function for |Bt|.

Omit Lemma 11.15, Theorem 11.16, Theorem 11.17.

Theorem 11.18 (laws of iterated logarithm). For a Brownian motion B, we have a.s.

lim sup
t→0+

Bt√
2t log log(1/t)

= lim sup
t→∞

Bt√
2t log log(t)

= 1.

Here log log(t) = log(log(t)), which is positive only when t > e.

Lemma . For any x > 0,

1

x
e−

x2

2 >

∫ ∞
x

e−
u2

2 du >
x

x2 + 1
e−

x2

2 .

Proof. For the first inequality, note that∫ ∞
x

e−
u2

2 du <

∫ ∞
x

u

x
e−

u2

2 du =
1

x
e−

x2

2 .

For the second inequality, define

f(x) = xe−x
2/2 − (x2 + 1)

∫ ∞
x

e−u
2/2du.

Observe that limx→∞ f(x) = 0 and for x > 0,

f ′(x) = e−x
2/2−x2e−x

2/2−2x

∫ ∞
x

e−u
2/2du+(x2+1)e−x

2/2 = −2x(

∫ ∞
x

e−u
2/2du− e

−x2/2

x
) > 0,

where we used the first inequality at the last step. So f < 0 on [0,∞), and we get the second
inequality.

Proof. Since tB1/t has the same law as B, the two equalities are equivalent to each other. So
it suffices to prove the case lim supt→∞. Let Mt = sups≤tBs be the maximum process. By the
above lemma, for any x > 0,

1

x

e−x
2/2

√
2π

> P[B1 > x] >
x

x2 + 1

e−x
2/2

√
2π

.
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Since Bt
d
=
√
tB1, and Mt

d
= |Bt|, we have

P[Mt > ut1/2] = 2P[Bt > ut1/2] ≤ 2e−u
2/2

√
2πu

.

Let h(t) =
√

2t log log(t). Fix R, ρ > 1. We then estimate

P[Mρn > Rh(ρn)] = P[Mρn >
√
ρnR

√
2 log(n log ρ)] ≤ 2(n log ρ)−R

2

√
2πR

√
2 log(n log ρ)

, n ≥ 2.

Since R > 1,
∑∞

n=2 n
−R2

< ∞. By Borel-Cantelli Lemma, the probability that there exist
infinitely many n such that Mρn > Rh(ρn) is 0, i.e., a.s. there exist N such that for n > N ,
Mρn ≤ Rh(ρn). So a.s. lim supMρn/h(ρn) ≤ R. Since this holds for any R > 1, we get a.s.
lim supMρn/h(ρn) ≤ 1. Since h(ρn)/h(ρn−1) → √ρ, we get a.s. lim supMρn/h(ρn−1) ≤ √ρ.
Since for any t > 1 there exist n such that ρn−1 ≤ t ≤ ρn, we get Mt/h(t) ≤Mρn/h(ρn−1). So
a.s. lim supt→∞Bt/h(t) ≤ lim supt→∞Mt/ht ≤ ρ. Since this holds for any ρ > 1, we have a.s.
lim supt→∞Bt/h(t) ≤ 1.

To prove the reverse inequality, let R > 1 and c =
√

(R− 1)/R < 1. Since BRn −BRn−1 ∼
N(0, Rn−1(R− 1)), we have

P[BRn −BRn−1 ≥ ch(Rn)] = P[
√
Rn−1(R− 1)B1 ≥

√
(R− 1)/R

√
2Rn log log(Rn)]

= P[B1 ≥
√

2 log log(Rn)] &
1

log(Rn)
√

log log(Rn)
.

Since the sum of the RHS over n is infinity, and BRn − BRn−1 , n ≥ 1, are independent, By
Borel-Cantelli Lemma, the event that BRn−BRn−1 ≥ ch(Rn) will happen infinitely often. This
implies that a.s.

lim sup(Bt −Bt/R)/ht ≥
√

(R− 1)/R.

From the upper bound, we have lim supt→∞(−Bt/R/ht) ≤ R−1/2. Then we have

lim supBt/ht ≥
√

(R− 1)/R−R−1/2.

Letting R→∞, we then get lim supBt/ht ≥ 1.

Corollary . Almost surely, lim supt→∞Bt =∞, lim inft→∞Bt = −∞, and for any x ∈ R, the
level set {t ≥ 0 : Bt = x} is unbounded.

Proof. That a.s. lim supt→∞Bt =∞ follows from a.s. lim supt→∞
Bt√

2t log log(t)
= 1. Since −B ∼

B, we have a.s. lim supt→∞(−Bt) =∞, which implies that lim inft→∞Bt = −∞. Then the two
equality both hold almost surely. When they both hold, for any x ∈ R, {t ≥ 0 : Bt = x} is
unbounded by intermediate value theorem for continuous functions.
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For example, if we define τ to be the first time that Bt visits some x ∈ R. Then a.s. τ is
finite. If I = [a, b] with a < 0 < b, and τ is the first time that B exits I, then τ is a finite
stopping time. We have Bτ = a if B visits a before b, and Bτ = b if otherwise. Since B is a
martingale, Bτ

t := Bτ∧t is a bounded martingale. By Optional Stopping Theorem (Theorem
6.29), 0 = B0 = E[Bτ

τ |F0] = E[Bτ ] = aP[Bτ = a]+bP[Bτ = b]. Since 1 = P[Bτ = a]+P[Bτ = b],
we calculate P[Bτ = a] = b

b−a and P[Bτ = b] = −a
b−a .

Corollary . A Brownian motion B is a.s. NOT locally Hölder continuous of exponent 1/2.

Proof. If B is Hölder continuous of exponent 1/2 in a neighborhood of 0, then lim supt→0+ |Bt−
B0|/
√
t <∞, which implies that lim supt→0+ |Bt − B0|/

√
2t log log(t) = 0, which a.s. does not

happen by Theorem 11.18.

Corollary . For any fixed t0 ≥ 0, B is a.s. not differentiable at t0.

Proof. We use the fact that Bt0+t − Bt0 , t ≥ 0, has the same distribution as B, and B is a.s.
not differentiable at 0 by the law of iterated logarithm.

Theorem (Nowhere differentiability). Almost surely B is not differentiable at any t ≥ 0.

Proof. We may consider B|[0,1]. In fact, if we have proved that a.s. B is nowhere differentiable
on [0, 1], then by scaling, we can conclude that for any N ∈ N, B is a.s. nowhere differentiable
on [0, N ]. Since there are countably such N , a.s. B is nowhere differentiable on any [0, N ],
N ∈ N, and so is nowhere differentiable on R+. If B is differentiable at t0 ∈ [0, 1), then

lim sup
h↓0

|Bt0+h −Bt0 |
h

<∞.

This means that there are constants δ ∈ (0, 1) and C1 > 0 such that if 0 ≤ h < δ, then
|Bt0+h − Bt0 | ≤ C1h. Let R > 0 be an upper bound of B on [0, 2]. Let M ∈ N be such
that M ≥ C1 ∨ (2R/δ). Then for h ∈ [δ, 1], |Bt0+h − Bt0 | ≤ 2R ≤ Mδ ≤ Mh. So for any
0 ≤ h ≤ 1, |Bt0+h − Bt0 | ≤ Mh. Suppose for a fixed M ∈ N, there exists t0 ∈ [0, 1] such that
|Bt0+h − Bt0 | ≤ Mh for all 0 ≤ h ≤ 1. Let n ∈ N and n ≥ 2. There is k ∈ {1, 2, . . . , 2n} such
that t0 ∈ [k−1

2n ,
k

2n ]. Then for 1 ≤ j ≤ 3,

|B k+j
2n
−B k+j−1

2n
| ≤ |B k+j

2n
−Bt0 |+ |B k+j−1

2n
−Bt0 | ≤

M(2j + 1)

2n
.

Let E denote the event that B is differentiable at some t0 ∈ [0, 1], and define

EMn,k = {|B k+j
2n
−B k+j−1

2n
| ≤ M(2j + 1)

2n
, 1 ≤ j ≤ 3}.

Then

E ⊂
∞⋃

M=1

∞⋂
n=2

2n⋃
k=1

EMn,k.
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We have

P[EMn,k] =
3∏
j=1

P[|B 1
2n
| ≤ M(2j + 1)

2n
] ≤ P[|B1| ≤

7M

2n/2
]3 ≤ C(

7M

2n/2
)3.

Here we used the fact that the density function of B1 is bounded by 1√
2π

. Hence

P[
2n⋃
k=1

EMn,k] ≤ 2nC(
7M

2n/2
)3 = 73CM32−n/2,

which then implies that P[
⋂∞
n=2

⋃2n

k=1E
M
n,k] = 0. So we get P[E] = 0.

In contrast to the law of iterated logarithm, we have the following result.

Theorem (Lévy’s modulus of continuity). Almost surely, we have

lim sup
h↓0

sup
0≤t≤1−h

|Bt+h −Bt|√
2h log(1/h)

= 1.

Proof. This is Theorem 1.14 of Brownian motion by Peter Möters and Yuval Peres.

Exercise. Prove the lower bound of Lévy’s modulus of continuity by showing that

a.s. lim sup
n→∞

sup
1≤k≤2n

|B k
2n
−B k−1

2n
|√

21−n log(2n)
≥ 1.

Omit the part of Chapter 11 after Theorem 11.18.

2 Stochastic Integrals and Quadratic Variation

We first introduce a new object: local martingale. Fix a filtration F = (Ft)t≥0, which is right-
continuous and complete. Recall that for an F-adapted process X and an F-stopping time τ ,
we may define a new process Xτ by Xτ

t = Xt∧τ . This is X stopped at τ .

Definition . An F-adapted process X is called a local martingale if there is a sequence of
F-stopping times τn with τn ↑ ∞ such that for each n, Xτn − X0 is an F-martingale. The
sequence (τn) is called a localizing sequence. If X is sample-wise continuous, then it is called a
continuous local martingale.

Remark . We have the following facts.

1. If X0 is integrable, Xτn −X0 is an F-martingale iff Xτn is an F-martingale.
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2. The condition that τn ↑ ∞ can be slightly weakened to a.s. τn → ∞. First, a null event
does not affect the martingale property. Second, if τn is a sequence tending to ∞, then
we may define an increasing sequence of stopping times tending to ∞ by τ ′n = infm≥n τm.
Here we use the right-continuity of F to guarantee that τ ′n is a stopping time.

3. A martingale is a local martingale. We may simply take all τn =∞

4. A local martingale stopped at any stopping time is still a local martingale. In fact, if X
is a local martingale with localizing sequence (τn), and if τ is any stopping time, then for
any n, (Xτ )τn −Xτ

0 = (Xτn)τ −X0 is a martingale. So (τn) is localizing sequence for Xτ .

5. A uniformly bounded local martingale is a martingale. This follows from Dominated
Convergence Theorem. To see this, suppose X is a uniformly bounded local martingale
with localizing sequence (τn), then for any t ≥ s ≥ 0 and n ∈ N, E[Xt∧τn |Fs] = Xs∧τn .
Letting n→∞, we get E[Xt|Fs] = Xs.

6. A local martingale may not be a martingale. A concrete example will be given later.
Sometimes we call a martingale a true martingale to emphasize.

7. We introduce the notation of local martingale because sometimes it is easier to check that
a process is a local martingale.

8. If X is F-adapted, and there exists an increasing sequence of F-stopping times τn with
τn ↑ ∞ such that for each n, Xτn is a local martingale, then X is a local martingale.
To see this suppose X0 = 0. For each n, let (σnk )k≥1 be the localizing sequence of Xτn .
For each n, since σnk → ∞, we may choose kn such that P[σnkn < n] < 1

2n . By Borel-
Cantellie lemma, a.s. σnkn → ∞. Let τ ′n = τn ∧ σnkn . Then a.s. τ ′n → ∞ and for each n,

Xτ ′n = (Xτn)σ
n
kn is a true martingale.

9. All local martingales form a linear space. In fact, if X and Y are both local martingales
with localizing sequences (τn) and (σn), then τn ∧σn ↑ ∞, and each τn ∧ τn localizes both
X and Y , and so also localizes X + Y . Thus, X + Y is also a local martingale.

10. We will focus on continuous local martingales. Suppose X is a continuous local martingale
with X0 = 0. Then we have a natural choice of localizing sequence: τn := inf{t ≥ 0 :
|Xt| ≥ n}. By convention, we set inf ∅ = ∞. Then τn ↑ ∞, and for each n, |Xτn | is
bounded by n, and so Xτn is a true martingale.

Proposition 15.2. If X is a continuous local martingale with locally finite variation, then a.s.
Xt = X0 for all t ≥ 0.

Proof. By considering X−X0, we may assume X0 = 0. We first prove the proposition assuming
that X has finite total variation on [0,∞), which is uniformly bounded by V . Then X itself
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is bounded in absolute value by V . So X is a true martingale. Fix t > 0 and a partition
∆ = {0 = t0 < · · · < tn = t} of [0, t]. Then

X2
t =

n∑
k=1

(Xtk −Xtk−1
)2 + 2

∑
1≤j<k≤n

(Xtj −Xtj−1)(Xtk −Xtk−1
).

By the martingale property of X, for each 1 ≤ j < k ≤ n,

E[(Xtj −Xtj−1)(Xtk −Xtk−1
)|Ftk−1

] = 0

because E[Xtk −Xtk−1
|Ftk−1

] = 0 and Xtj −Xtj−1 ∈ Ftk−1
. So we get E[X2

t ] = E[Q∆], where

Q∆ :=

n∑
k=1

(Xtk −Xtk−1
)2 ≤ V · sup

s1,s2∈[0,t]:|s1−s2|≤|∆|
|Xs1 −Xs2 |,

where |∆| = max1≤k≤n |tk − tk−1| is the mesh size of ∆. Since X is continuous, if the mesh size
of ∆ tends to 0, then the RHS of the above formula tends to 0. By Dominated Convergence
Theorem, E[Q∆]→ 0 as |∆| → 0. Since E[X2

t ] = E[Q∆] holds for any partition ∆ on [0, t], we
get a.s. Xt = 0. Thus, a.s. for every t ∈ Q+, Xt = 0. By continuity of X, we get a.s. X ≡ 0.

For the general case, let Vt be the total variation of X on [0, t]. Then V is continuous,
nondecreasing, and adapted. For each n ∈ N, let τn be the first time that Vt ≥ n. If such time
does not exist, then τn = ∞. This is a stopping time. Then Xτn has total variation on [0,∞)
bounded by n, and so itself is also bounded by n, and so is a true martingale. From the last
paragraph, we know that a.s. Xτ

n ≡ 0. Since τn →∞, we then get a.s. X ≡ 0.

Definition . A predictable step process has the form

Vt =
∞∑
j=0

ζj1(τj ,∞)(t) =
n∑
k=0

ηk1(τk,τk+1](t), t ≥ 0, (2.1)

where (τk) is a sequence of stopping times with τ0 = 0 and τk ↑ ∞, and ζk, ηk is Fτk -measurable

for each k. Note that ηk =
∑k

j=0 ζj . Also note that V is adapted. To see this, fix any t ≥ 0.
For every k, the event {τk < t ≤ τk+1} is Ft-measurable. It suffices to show that Vt restricted to
this event is Ft-measurable, which follows from the facts that ηk ∈ Fτk and Fτk ∩{τk < t} ⊂ Ft.

Definition . Given a predictable step process with the form (2.1) and an adapted process X,
we define the elementary integral process V ·X as in Chapter 6 by

(V ·X)t ≡
∫ t

0
V dX =

∞∑
k=0

ηk(Xt∧τk+1
−Xt∧τk) =

∞∑
j=0

ζj(Xt −Xt∧τj ).

Note that (V ·X)0 = 0. To see that the last equality holds, and this is a finite sum, not that if
t ∈ (τn, τn+1], then

∞∑
k=0

ηk(Xt∧τk+1
−Xt∧τk) =

n−1∑
k=0

ηk(Xτk+1
−Xτk) + ηn(Xt −Xτn);
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∞∑
j=0

ζj(Xt −Xt∧τj ) =
n∑
j=1

ζj(Xt −Xτj ) = ηnXt −
n∑
j=1

(ηj − ηj−1)Xτj

= ηn(Xt −Xτn) +
n−1∑
j=0

ηj(Xτj+1 −Xτj ).

Moreover, (V · X) is adapted because the RHS of the above formulas restricted to the event
τn < t is Ft-measurable. Also note that if X is continuous, then so is V ·X because by definition
and the continuity of X, V ·X is continuous on [τn, τn+1] for each n.

Lemma . If M is a martingale, and (τn) is an increasing sequence of stopping times with
τ0 = 0 and τn ↑ ∞, then for for any t ≥ 0,

E[M2
t ] =

∞∑
k=0

E[(Mt∧τk+1
−Mt∧τk)2].

Proof. We may write

Mt∧τn =
n−1∑
k=0

(Mt∧τk+1
−Mt∧τk).

So

M2
t∧τn =

n−1∑
k=0

(Mt∧τk+1
−Mt∧τk)2 + 2

∑
0≤j<k≤n−1

(Mt∧τj+1 −Mt∧τj )(Mt∧τk+1
−Mt∧τk).

For each j < k,
E[(Mt∧τj+1 −Mt∧τj )(Mt∧τk+1

−Mt∧τk)|Fτk ] = 0,

which follows from Optional Stopping Theorem and the fact that (Mt∧τj+1 −Mt∧τj ) ∈ Fτk .
Here we used the fact that Mt∧τj+1 −Mt∧τj and Mt∧τk+1

−Mt∧τk are in L2. So we get

EM2
t∧τn =

n−1∑
k=0

E[(Mt∧τk+1
−Mt∧τk)2].

Since as n→∞, Mt∧τn →Mt, by Corollary 6.22 and Proposition 3.12,

EM2
t = lim

n→∞
EM2

t∧τn =

∞∑
k=0

E[(Mt∧τk+1
−Mt∧τk)2].

Lemma 15.3. Let V be a predictable process with |V | ≤ C. Let M be a continuous L2-
martingale (i.e., E[M2

t ] < ∞ for every t ≥ 0) with M0 = 0. Then V ·M is still a continuous
L2 martingale; and for any t ≥ 0, E[(V ·M)2

t ] ≤ C2E[M2
t ].

18



Proof. The continuity of V ·M follows from the definition and the continuity of M . Recall
Corollary 6.14: if M is a martingale, τ is a stopping time that takes countably many values,
and η is a bounded Fτ -measurable random variable, then the process Nt := η(Mt −Mt∧τ ) is
again a martingale. For a continuous martingale M , we can remove the assumption that τ takes
countably many values because we may find a sequence of stopping times τn ↓ τ such that each
τn takes countably many values. Then E[η(Mt−Mt∧τn)|Fs] = η(Ms−Ms∧τn) for any t ≥ s ≥ 0.
Letting n → ∞ we get E[η(Mt −Mt∧τ )] = η(Ms −Ms∧τ ) using the continuity of M and the
uniform integrability of {ηMt∧τn : n ∈ N}. Here we use the fact that Mt∧τn = E[Mt|Ft∧τn ].
Suppose V has the form of (2.1). Suppose there are only finitely many k such that ζk 6= 0, then
V ·M is a martingale since it is a finite sum of ζj(Mt −Mt∧τj ), each of which is a martingale.
Fix any t ≥ 0, by the above lemma, we have

E[(V ·M)2
t ] =

∞∑
j=0

E[((V ·M)t∧τj+1 − (V ·M)t∧τj )
2]

=
∞∑
j=0

E[η2
j (Mt∧τj+1 −Mt∧τj )

2] ≤ C2
∞∑
j=0

E[(Mt∧τj+1 −Mt∧τj )
2] = C2E[M2

t ].

Thus, V ·M is also an L2-martingale. Finally, we consider the general case, i.e., there may
be infinitely many k such that ηk 6= 0. We write V n

t =
∑n

k=0 ζk1(τk,∞)(t). Then each V n

is a predictable process with finitely many nonzero ηk. So E[(V n · M)2
t ] ≤ E[M2

t ]. Since
(V n ·M)t → (V ·M)t, by Fatou’s lemma, E[(V ·M)2

t ] ≤ C2E[M2
t ]. Fix t ≥ s ≥ 0. For each

n ∈ N, V n ·M is a martingale, so E[(V n ·M)t|Fs] = (V n ·M)s. Since the sequence (V n ·M)t is
L2-bounded, it is uniformly integrable. So the a.s. convergence implies L1-convergence. Letting
n→∞, we get E[(V ·M)t|Fs] = (V ·M)s. So V ·M is a martingale.

Recall the following facts from Theorem 6.18, Theorem 6.21, Corollary 6.22, and Theorem
6.29. If M is a uniformly integrable martingale (i.e., (Mt)t≥0 is uniformly integrable), then
M∞ := limt→∞Mt converges a.s. and in L1, and for any stopping time τ , E[M∞|Fτ ] = Mτ . In
particular, we have ‖Mτ‖Lp ≤ ‖M∞‖Lp for any p ≥ 1, and E[M∞] = E[M0]. Also recall that
for any p > 1, if M is Lp-bounded, i.e., supt≥0 ‖Mt‖Lp < ∞, then M is uniformly integrable.
In that case, we have Mt →M∞ in Lp as t→∞. In particular, if M is uniformly bounded, it
is uniformly integrable, and Mt →M∞ in Lp for every p ≥ 1.

Let M2 denote the space of all L2-bounded continuous martingale M with M0 = 0. Equip
M2 with the norm ‖M‖M2 = ‖M∞‖L2 = ‖ limt→∞Mt‖L2 . Then M2 is clearly an inner
product space with 〈M,N〉 = E[M∞N∞]. Recall that by Proposition 6.16, for any t ≥ 0,
‖ sup0≤s≤t |Mt|‖L2 ≤ 2‖Mt‖L2 . Since ‖Mt‖L2 ↑ ‖M∞‖L2 = ‖M‖, we get ‖M∗‖L2 ≤ 2‖M‖M2 ,
where M∗ := supt≥0 |Mt|.

Lemma 15.4. M2 is a Hilbert space.
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Proof. Let (Mn) be a Cauchy sequence in M2. Since ‖(Mn −Mm)∗‖L2 ≤ 2‖Mn
∞ −Mm

∞‖, by
choosing a subsequence, we may assume that

E[sup
t≥0
|Mn

t −Mn+1
t |2] < 2−3n,

which implies that
P[sup
t≥0
|Mn

t −Mn+1
t | > 2−n] < 2−n.

By Borel-Cantelli lemma, a.s. there is (a random) N such that for n > N , supt≥0 |Mn
t −Mn+1

t | ≤
2−n. Let E denote the event that such N exists. Then P[E] = 1, and (Mn) is uniformly
Cauchy on R+ on the event E. Let M = limn→∞M

n on E, and M = 0 on Ec. Then M is
continuous on R+. Since a.s. Mn

t → Mt for all t ≥ 0, each Mn is adapted, and F is complete,
M is also adapted. The martingale property of M follows from the martingale property of
each Mn, and the uniform integrability of (Mn

t )n∈N for every fixed t. In fact, for any fixed
t ≥ s ≥ 0, E[Mn

t |Fs] = Mn
s . The sequence Mn

t is uniformly integrable because their L2 norms
are uniformly bounded. Letting n → ∞, we then get E[Mt|Fs] = Ms. The L2-boundedness
of M follows from Fatou’s lemma: E[M2

t ] ≤ lim inf E[(Mn
t )2] ≤ lim inf E[(Mn

∞)2] for all t ≥ 0.
Finally, in the formula limn,m→∞ E[supt≥0 |Mn

t −Mm
t |2]→ 0, if we fix n, let m→∞, and use

Fatou’s lemma, we then get limn→∞ E[supt≥0 |Mn
t −Mt|2]→ 0, and so Mn →M .

Theorem 15.5. For any continuous local martingales M and N , there a.s. exists a unique
continuous process [M,N ] of locally finite variation and with [M,N ]0 = 0 such that NM −
[N,M ] is a local martingale. The form [M,N ] is a.s. symmetric and bilinear with [M−M0, N−
N0] = [M,N ]. Furthermore, for any stopping time τ , a.s. [M,N ]τ = [M τ , N τ ] = [M τ , N ].
The process [M ] := [M,M ] is a.s. nondecreasing; and if M is bounded with M0 = 0, then
M2 − [M ] ∈M2.

Lemma . For a continuous local martingale M , a stopping time τ , and an Fτ -measurable
random variable ζ, ζ(M −M τ ) is a continuous local martingale.

Proof. The continuity is obvious. We know that M −M τ is a local martingale. We construct
localizing sequence σn for ζ(M −M τ ) as follows. If |ζ| > n, then σn = τ ; if |ζ| ≤ n, then
σn = inf{t ≥ τ : |Mt −Mτ | > n}. Then σn ↑ ∞, and each σn is a stopping time because for
any t ≥ 0,

{σn < t} = ({τ < t} ∩ {|ζ| > n}) ∪
⋃

q∈[0,t)∩Q

({τ ≤ q} ∩ {|Mq −Mτ | > n}) ∈ Ft.

Since (M −M τ )σn is a bounded local martingale, it is a true martingale, which vanishes on
[0, τ ]. If |ζ| > n, σn = τ , and so (ζ(M −M τ ))σn = ζ(M τ −M τ ) = 0. Thus,

(ζ(M −M τ ))σn = (1|ζ|≤nζ)(M −M τ )σn

is a martingale by Corollary 6.14 because 1|ζ|≤nζ is bounded and Fτ -measurable.
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Proof. If there are two continuous processes V 1 and V 2 with locally finite variation such that
V j

0 = 0 and NM − V j is a local martingale. Then V 1 − V 2 is a continuous local martingale
with locally finite variation and (V 1 − V 2)0 = 0. By Proposition 15.2, a.s. V 1 − V 2 ≡ 0. So we
get the uniqueness.

If [M,N ] exists, then for any stopping time τ ,

(MN − [M,N ])τ = M τN τ − [M,N ]τ (2.2)

is a local martingale. By the uniqueness, we get [M τ , N τ ] = [M,N ]τ . By the lemma, M τN −
M τN τ = M τ (N −N τ ) = Mτ (N −N τ ) is a local martingale. Combining it with (2.2), we see
that M τN − [M,N ]τ is a local martingale, which implies that [M τ , N ] = [M,N ]τ .

We may assume that M0 = N0 = 0. In fact, if we know that [M,N ] exists whenever
M0 = N0 = 0, then for general M,N , [M −M0, N −N0] exists, i.e., (M −M0)(N −N0)− [M −
M0, N−N0] is a local martingale. By the lemma applied to τ = 0, we see that M0(N−N0) and
N0(M −M0) are local martingales, which then implies that MN −M0N0 − [M −M0, N −N0]
is a local martingale. Thus, [M,N ] exists and a.s. equals [M −M0, N −N0].

To prove the existence and properties of [M,N ], by polarization, it suffices to prove the
existence, continuity, and monotonicity of [M ]. In fact, if (M + N)2 − [M + N ] and (M −
N)2 − [M −N ] are local martingales, then 4MN − ([M +N ]− [M −N ]) is a local martingale,
and so [M,N ] = ([M + N ] − [M − N ])/4. Since [M + N ] and [M − N ] are continuous and
nondecreasing, [M,N ] is continuous and has locally finite total variation. The symmetry and
bilinear property of [M,N ] is obvious.

We first assume that |M | is bounded by C <∞. Then M is a true martingale. Fix n ∈ N.
Define a sequence of stopping times (τnk )k≥0 such that τn0 = 0 and for each k ∈ N,

τnk = inf{t ≥ τnk−1 : |Mt −Mτnk
| ≥ 2−n}.

As usual, if such time does not exist, then τnk =∞, and so are all τnj , j ≥ k. We have τnk ↑ ∞.
Introduce two processes

V n
t =

∞∑
k=0

Mτnk
1(τnk ,τ

n
k+1](t), Qnt =

∞∑
k=0

(Mt∧τnk+1
−Mt∧τnk )2. (2.3)

This means that if t ∈ (τnk , τ
n
k+1], then V n

t = Mτnk
and Qnt =

∑k−1
j=0(Mτnj+1

−Mτnj
)2+(Mt−Mτnk

)2.
Note that V n is a bounded predictable step process. We have

M2
t = 2(V n ·M)t +Qnt , t ≥ 0.

To see this, note that if t ∈ (τnk , τ
n
k+1],

M2
τnk+1
−M2

τnk
= 2Mτnk

(Mτnk+1
−Mτnk

) + (Mτnk+1
−Mτnk

)2;

M2
t −M2

τnk
= 2Mτnk

(Mt −Mτnk
) + (Mt −Mτnk

)2, t ∈ (τnk , τ
n
k+1].
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By Lemma 15.3, each V n ·M is a continuous L2-martingale. Since |V n −M | ≤ 2−n by the
definition of (τnk ), we have for n ≥ m,

‖V n ·M − V m ·M‖M2 = ‖(V n − V m) ·M‖M2 ≤ 21−m‖M‖M2 .

By the completeness of M, there is N ∈M such that V m ·M → N . So we get

‖(V n ·M −N)∗‖L2 ≤ 2‖V n ·M −N‖M2 → 0.

The process [M ] := M2 − 2N is continuous, and M2 − [M ] = 2N ∈M2. We have

(Qn − [M ])∗ = 2(N − V n ·M)∗
P→ 0.

Thus, there is a subsequence (Qnk) of (Qn), which a.s. converges uniformly to [M ]. We claim
that [M ] is a.s. nondecreasing. Since [M ] is continuous, it suffices to show that a.s. [M ] is
nondecreasing on Q+, which further follows from the statement that for any p < q ∈ Q+, a.s.
[M ]p < [M ]q. There are two cases: Case (i) M is constant on [p, q]. In this case, for any n ≥ 1,
[p, q] lies in one interval [τnk , τ

n
k+1], and Qn is constant on [p, q]. By the a.s. uniform convergence

of (Qnk) to [M ], we conclude that a.s. [M ] is constant on [p, q]. Case (ii) M is not constant on
[p, q]. When n is big enough, we have 2−n < maxM([p, q]) −minM([p, q]). Then there exists
k such that τnk ∈ [p, q]. From the definition of Qn, we see that Qnp ≤ Qnτnk

≤ Qnq . By the a.s.

uniform convergence of (Qnk) to [M ], we conclude that a.s. [M ]p ≤ [M ]q in Case (ii). So we
get a.s. [M ]p ≤ [M ]q as desired. So [M ] is a.s. nondecreasing.

Now we do not assume that M is bounded. Recall that M0 = 0. Let τn be the first
time that |Mt| ≥ n. Then τn ↑ ∞, and for each n, M τn is a bounded martingale. So there
exists a continuous nondecreasing process [M τn ] starting from 0 such that (M τn)2 − [M τn ] is a
martingale. For n ≤ m, since M τn = (M τm)τn , we have a.s. [M τn ] = [M τm ]τn . So we may define
a process [M ] such that for any n, a.s. [M ]τn = [M τn ]. In fact, we may define [M ]t = [M τn ]t if
t ≤ τn on the event that [M τn ] = [M τm ]τn for any n ≤ m, which has probability 1. Then for
any n, (M2− [M ])τn = (M τn)2− [M τn ] is a martingale. So M2− [M ] is a local martingale.

We call [M ] the quadratic variation of M , and [M,N ] the quadratic covariation of M and
N . The name comes from the following fact (Proposition 15.18): Fix t > 0. For any partition
∆ = {0 = t0 < t1 < · · · < tn = t} of [0, t], define

T∆(M,N) =
n∑
k=1

(Mtk −Mtk−1
)(Ntk −Ntk−1

).

Then for any sequence of partitions (∆n) of [0, t] with mesh size |∆n| → 0, we have T∆(M,N)
P→

[M,N ]t. For example, if M is the Brownian motion B, then [B]t = t for any t ≥ 0.
One equality we will often use is: if σ ≤ τ are two stopping times, then

[M τ −Mσ] = [M τ ] + [Mσ]− 2[Mσ,M τ ] = [M ]τ + [M ]σ − [M,M ]σ∧τ = [M ]τ − [Mσ].
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Since [M ] is nondecreasing, we define [M ]∞ = limt→∞[M ]t. From Theorem 15.5, we know
that if M is uniformly bounded with M0 = 0, then M2 − [M ] ∈M2. So we get

‖M‖2M2 = E[M2
∞] = E[M ]∞ = ‖[M ]∞‖L1 . (2.4)

We now extend this result to more general case.

Lemma . For a continuous local martingale M with M0 = 0, M ∈M2 iff [M ]∞ ∈ L1, and we
have ‖M‖2M2 = ‖[M ]∞‖L1.

Proof. For n ∈ N, let τn be the first time that |Mt| ≥ n. Then τn ↑ ∞, and M τn is bounded by
n. From (2.4), we get

E[M2
τn ] = E[(M τn)2

∞] = E[M τn ]∞ = E[M ]τn . (2.5)

First, suppose M ∈ M2. Then E[M2
τn ] ≤ E[M2

∞] = ‖M‖2M2 . So E[M ]τn ≤ ‖M‖2M2 for any
n ∈ N. Since [M ]τn ↑ [M ]∞, we get [M ]∞ ∈ L1, and ‖[M ]∞‖L1 ≤ ‖M‖2M2 .

Second, suppose [M ]∞ ∈ L1. Let C = ‖[M ]∞‖L1 . Then for any n, by (2.5), ‖M τn‖2M2 ≤ C,
which implies that for any t ≥ 0, E[M2

t∧τn ] ≤ C. Letting n → ∞ and using Fatou’s lemma,
we get E[M2

t ] ≤ C for any t ≥ 0. To prove the martingale property of M , we fix t ≥ s ≥ 0.
For any n ∈ N, since M τn is a true martingale, E[Mt∧τn |Fs] = Ms∧τn . Note that as n → ∞,
Mt∧τn →Mt. Since the family (Mt∧τn) is L2-bounded, by letting n→∞, we get a.s. E[Mt|Fs] =
Ms. From E[M2

t ] ≤ C for any t ≥ 0 we get M ∈ M2 and ‖M‖2M2 = limt→∞ E[M2
t ] ≤ C =

‖[M ]∞‖L1 .

Corollary . For a continuous local martingale M with M0 = 0, M is a.s. constant 0 iff [M ] is
a.s. constant 0.

Proposition (Interval of Constancy). For a continuous local martingale M , a.s. M and [M ]
have the same interval of constancy. This means that, for almost every ω ∈ Ω, for any open
interval I ⊂ R+ such that M is constant, [M ] is also constant, and vice versa.

Proof. Since [M −M0] = [M ], we may assume that M0 = 0. We first show that, one the event
E0 that M is constant 0, [M ] is a.s. also constant 0, and vice versa. Define the stopping time
τ = inf{t ≥ 0 : Mt 6= 0}. Then M τ is constant 0. By the last corollary, [M τ ] = [M ]τ is a.s.
constant 0. So [M ] is a.s. constant on [0, τ). Since τ =∞ on the event E0, [M ] is a.s. 0 on R+

on the event E0. The reverse direction can be proved similarly by defining the stopping time
σ = inf{t ≥ 0 : [M ]t 6= 0}.

We second show that, for any fixed p < q ∈ Q+, on the event that M is constant on [p, q],
a.s. [M ] is constant on [p, q], and vice versa. In fact, one the event Ep,q that M is constant on
(p, q), the local martingale M q −Mp is constant 0. From the last paragraph, we know that
[M q −Mp] is a.s. constant 0 on the event Ep,q. Since

[M q −Mp] = [M q] + [Mp]− 2[Mp,M q] = [M ]q + [M ]p − 2[M ]p = [M ]q − [M ]p, (2.6)
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we see that [M ]q − [M ]p is a.s. constant 0 on Ep,q, and so [M ] is a.s. constant on [p, q] on the
event Ep,q. On the other hand, let Fp,q be the event that [M ] is constant on [p, q]. Then by
(2.6), [M q −Mp] is constant 0 on Fp,q. By the last paragraph, M q −Mp is a.s. constant 0 on
Fp,q, and so M is a.s. constant on [p, q] on the event Fp,q.

Let Np,q be the event that M is constant on [p, q], but [M ] is not, or [M ] is constant on
[p, q], but M is not. Let N =

⋃
p<q∈Q+

Np,q. Then P[N ] = 0. On the event N c, M and [M ]
have the same interval of constancy because if on an interval I ⊂ R+ one of M and [M ] is
constant and the other is not constant, then we can find p < q ∈ Q+ such that [p, q] ⊂ I and
one of the two processes are not constant on [p, q], which contradicts the definition of N .

Exercise. For a continuous local martingale M , prove that on the event that [M ]∞ <∞, a.s.
limt→∞Mt converges.

Proposition 15.6. For any sequence of continuous local martingales (Mn) with Mn
0 = 0,

(Mn)∗
P→ 0 iff [Mn]∞

P→ 0, and for any t ≥ 0, (Mn)∗t
P→ 0 iff [Mn]t

P→ 0.

Proof. First, let (Mn)∗
P→ 0. Fix ε > 0. Let τn be the first time |Mn

t | ≥ ε. Then (Mn)τ
n

is a bounded martingale. So ((Mn)τ
n
)2 − [(Mn)τ

n
] is an L2-martingale. This implies that

E[(Mn
τn)2] = E[[Mn]τn ]. Here if τn = ∞, Mn

τn is understood as limt→∞(Mn)τ
n

t = limt→∞M
n
t ,

which a.s. converges. In particular, we have E[[Mn]τn ] ≤ ε2 since |Mn
τn | ≤ ε. So we get

P[[Mn]∞ > ε] ≤ P[τn <∞] + P[[Mn]τn > ε]

≤ P[τn <∞] + ε−1E[[Mn]τn ] ≤ P[τn <∞] + ε,

where the second inequality follows from Chebyshev’s inequality. Since (Mn)∗
P→ 0, P[τn <

∞]→ 0 as n→∞. So for n big enough, P[[Mn]∞ > ε] < 2ε. Then we get [Mn]∞
P→ 0.

Second, let [Mn]∞
P→ 0. Now we define τn to be the first time that [Mn]t ≥ ε3. Then

[(Mn)τ
n
] = [Mn]τ

n
is bounded by ε3. By the previous lemma, (Mn)τ

n ∈M with ‖(Mn)τ
n‖2 =

E[Mn]τ
n

∞ ≤ ε3, which implies that ‖((Mn)τ
n
)∗‖2L2 ≤ 4ε3. By Chebyshev’s inequality,

P[|(Mn)∗| > ε] ≤ P[τn <∞] + P[|((Mn)τ
n
)∗|2 > ε2]

≤ P[τn <∞] + ε−2‖((Mn)τ
n
)∗‖2L2 ≤ P[τn <∞] + 4ε.

Since [Mn]∞
P→ 0, P[τn <∞]→ 0 as n→∞. So for n big enough, P[|(Mn)∗| > ε] < 5ε. Then

we get (Mn)∗
P→ 0.

The statement about (Mn)∗t and [Mn]t follows by considering the process (Mn)t.

Skip Proposition 15.7 (BDG inequalities) for now. Will come back later. Also skip Lemma
15.8 and Corollary 15.9.

A continuous adapted process A with locally finite total variation and A0 = 0 will be
simply called a finite variation process. For example, [M,N ] is a finite variation process. Such
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A determines a continuous, adapted, and non-decreasing process V such that Vt is the total
variation of A over [0, t]. Then 1

2(V + A) and 1
2(V − A) are continuous non-decreasing, and

determine two (positive) measures µ+ and µ− on R+, which are locally finite and have no
point mass. Since A is the difference of the two processes, dA determines a signed measure
µ = µ+ − µ−. The Stieltjes integral against dA and |dA| are the Lebesgue integral against the
signed measure µ and (positive) measure |µ| := µ+ + µ−, respectively. From 1

2(V ±A) ≥ 0 we
easily see that |At| ≤ Vt for all t ≥ 0.

Proposition 15.10. For any continuous local martingales M,N , we have a.s.

|[M,N ]t| ≤
∫ t

0
|d[M,N ]| ≤ [M ]

1/2
t [N ]

1/2
t , t ≥ 0, (2.7)

and for any measurable processes U, V , a.s.∫ t

0
|UV d[M,N ]| ≤

(∫ t

0
U2d[M ]

)1/2(∫ t

0
V 2d[N ]

)1/2
, t ≥ 0.

Proof. For every a, b ∈ R, a.s.

0 ≤ [aM + bN ]t = a2[M ]t + b2[N ]t + 2ab[M,N ]t, t ≥ 0.

Thus, a.s. for every a, b ∈ Q, the above formula holds, which then implies [M,N ]2t ≤ [M ]t[N ]t,
t ≥ 0.

Fix t > s ≥ 0. Since M −M s and N −N s are continuous local martingales, we have

[M −M s, N −N s]2t ≤ [M −M s]t[N −N s]t.

Recall that [M s, N s]t = [M,N s]t = [M s, N ]t = [M,N ]st = [M,N ]s. The LHS equals ([M,N ]t−
[M,N ]s)

2. Similarly, the RHS equals ([M ]t − [M ]s)([N ]t − [N ]s). Thus, a.s.

([M,N ]t − [M,N ]s)
2 ≤ ([M ]t − [M ]s)([N ]t − [N ]s).

Then a.s. the above inequality holds for any t > s ∈ Q+. By continuity of [M,N ], [M ], [N ],
the above inequality a.s. holds for any t > s ≥ 0. Thus, a.s. for any t > 0 and any partition
0 = t0 < · · · < tn = t, we have

n∑
k=1

|[M,N ]tk − [M,N ]tk−1
| ≤

n∑
k=1

([M ]tk − [M ]tk−1
)1/2([M ]tk − [M ]tk−1

)1/2

≤
( n∑
k=1

([M ]tk − [M ]tk−1
)
)1/2( n∑

k=1

([N ]tk − [N ]tk−1
)
)1/2

= [M ]
1/2
t [N ]

1/2
t .

Taking supremum over all partitions of [0, t], we conclude that a.s. (2.7) holds.
Next, write dµ = d[M ], dν = d[N ], and dρ = |d[M,N ]|. Then the same argument as above

(on I = [s, t] instead of [0, t]) shows that for any interval I ⊂ R+, a.s. (ρI)2 ≤ (µI)(νI). Then
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a.s. the inequality holds for any I = [s, t] such that s, t ∈ Q. By continuity, a.s. the inequality
holds for any closed or open interval I ⊂ R+. Outside the exceptional event, we have the
following. Suppose G ⊂ R+ is open. Then G is a disjoint union of open intervals Ik. So by
Cauchy inequality

ρG =
∑
k

ρIk ≤
∑
k

(µIk)
1/2(νIk)

1/2 ≤
(∑

k

µIk

)1/2(∑
k

νIk

)1/2
= (µG)1/2(νG)1/2.

Since every Borel set B can be approximated by open sets, we get ρB ≤ (µB)1/2(νB)1/2.
Suppose f =

∑
k ak1Bk and g =

∑
k bk1Bk are simple functions such that Bk’s are mutually

disjoint. Then

ρ|fg| =
∑
k

|akbk|ρBk ≤
∑
k

|akbk|(µBk)1/2(νBk)
1/2

≤
(∑

k

|ak|2µBk
)1/2(∑

k

|bk|2νBk
)1/2

= (µf2)1/2(νg)1/2.

The inequality then extends to any measurable functions f, g on R+.

Corollary . If M and N are two local martingales that agree (throughout R+) on an event E,
then [M ] and [N ] also agree on the event E.

Proof. Since M −N is constant 0 on the event E, by the proposition on intervals of constancy,
[M − N ] is a.s. constant 0 on E. Since [M ] − [N ] = [M + N,M − N ], by Proposition 15.10,
[M ]− [N ] is a.s. constant 0 on the event E.

Let E denote the space of uniformly bounded predictable step processes, which change values
at finitely many fixed times. This means that each U ∈ E can be expressed as

Ut =

n−1∑
j=0

ζj1(tj ,∞)(t) =

n−1∑
k=0

ηk1(tk,tk+1](t), (2.8)

where n ∈ N, 0 = t0 < t1 < · · · < tn, and for each k, ζk and ηk are bounded Ftk -measurable
random variables.

For every finite variation process A, let L(A) denote the space of progressive processes V
such that the Stieltjes integrals

∫ t
0 |V ||dA| is finite for all t ≥ 0. Note that L(A) contains all

right-continuous or left-continuous adapted processes, which are locally bounded. It is easy to
see that E ⊂ L(A). For every V ∈ L(A), we may define the process V ·A by (V ·A)t =

∫ t
0 V dA.

For V ∈ E , V · A defined in this way agrees with the elementary integral. Then V · A is also a
finite variation process, and d(V ·A) is absolutely continuous w.r.t. dA, and the Radon-Nikodym
derivative is V . Thus, U ∈ L(V ·A) iff UV ∈ L(A), and U · (V ·A) = (UV ) ·A.

Lemma 15.11. For any continuous local martingales M,N , and any U ∈ E, the elementary
integral U ·M is also a continuous local martingales, and a.s.

[U ·M,N ] = U · [M,N ].

26



Proof. We may take M0 = N0 = 0. The fact that U ·M is a local martingale follows from
localization: we use a sequence of stopping times τn ↑ ∞ to make M τn bounded martingales.
Then Lemma 15.3 implies that (U · M)τn = U · M τn is a martingale. So U · M is a local
martingale. To prove [U ·M,N ] = U · [M,N ], we may assume by localization that M , N , and
[M,N ] are uniformly bounded. Then M , N , MN − [M,N ] are all bounded martingales.

To prove that a.s. [U ·M,N ] = U · [M,N ], it suffices to prove that (U ·M)N − U · [M,N ]
is a martingale. Suppose U has the form of (2.8). Then

(U ·M)tNt =

n−1∑
j=0

ζj(Mt −Mt∧tj )Nt;

(U · [M,N ])t =

n−1∑
j=0

ζj([M,N ]t − [M,N ]t∧tj ).

Then we have

(U ·M)tNt − (U · [M,N ])t =
n−1∑
j=0

ζj((MtNt − [M,N ]t)− (M
tj
t Nt − [M tj , N ]t))

For each j, MN − [M,N ] and M tjN − [M,N ]tj are martingales, and so is their difference.
Since the two processes agree on [0, tj ], there difference vanishes on [0, tj ]. By Corollary 6.14,

ζj((MtNt − [M,N ]t) − (M
tj
t Nt − [M tj , N ]t)) is a martingale. So (U ·M)N − (U · [M,N ]) is a

martingale.

Given a continuous local martingale M , let L(M) denote the class of all progressive processes
V with (V 2 · [M ])t <∞ for all t ≥ 0, i.e., V 2 ∈ L([M ]).

Theorem 15.12. For every continuous local martingale M and V ∈ L(M), there exists an
a.s. unique continuous local martingale M ′ with M ′0 = 0 such that for any continuous local
martingale N , a.s. [M ′, N ] = V · [M,N ].

Note that if V ∈ L(M), then V ∈ L([M,N ]) by Proposition 15.10. So V · [M,N ] is well
defined. We will use V ·M or

∫
V dM to denote the process M ′, and call it the stochastic

integral of V against dM . The equality then reads

[V ·M,N ] = V · [M,N ].

By Lemma 15.11, this stochastic integral extends the elementary integral in the case that V ∈ E .
By iteration, we find that for two continuous local martingales M and N , and U ∈ L(M),
V ∈ L(N), a.s.

[U ·M,V ·N ] = U · [M,V ·N ] = U · (V · [M,N ]) = UV · [M,N ].

In particular, [U ·M ] = U2 · [M ].
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Proof. To prove the uniqueness, suppose M ′ and M ′′ are two continuous local martingales
started from 0 such that for every continuous local martingale N , a.s. [M ′, N ] = [M ′′, N ] =
V · [M,N ]. Taking N = M ′−M ′′, we get a.s. [M ′−M ′′] = 0, which implies that a.s. M ′ = M ′′.

For the existence, first assume that ‖V ‖2M := E(V 2 · [M ])∞ < ∞. Consider the linear
function on M2: N 7→ E(V · [M,N ])∞. By Proposition 15.10,

|E(V · [M,N ])∞| ≤ E[(V 2 · [M ])1/2
∞ [N ]1/2∞ ] ≤ ‖V ‖ME[[N ]∞]1/2 = ‖V ‖M‖N‖M2 .

Thus, the linear function is bounded. Since M2 is a Hilbert space, by Riesz representation
theorem, there is M ′ ∈M2 such that for any N ∈M2,

E(V · [M,N ])∞ = 〈M ′, N〉 = [M ′, N ]∞ = EM ′∞N∞.

By replacing N by N τ for some stopping time τ , we get

E(V · [M,N ])τ = E(V · [M,N ]τ )∞ = E(V · [M,N τ ])∞ = EM ′∞N τ
∞ = EM ′∞Nτ = EM ′τNτ .

Since V is progressive, V · [M,N ] is adapted. Now E[(V · [M,N ] −M ′N)τ ] = 0 for any
stopping time τ . By Lemma 6.13, V · [M,N ]−M ′N is a martingale. So we get a.s. [M ′, N ] =
V · [M,N ] for any N ∈ M2. By localization, this extends to any continuous local martingale
N .

We may remove the assumption that ‖V ‖2M < ∞ by localization. More specifically, define
τn = inf{t ≥ 0 : (V 2 · [M ])t ≥ n}, n ∈ N. Then for every n, ‖V ‖Mτn ≤ n. By the previous argu-

ment, for each n, there exists a continuous local martingale M̃ (n) such that for any continuous
local martingale N , a.s.

[M̃ (n), N ] = V · [M τn , N ]. (2.9)

For m < n, we have that for any continuous local martingale N , a.s.

[(M̃ (n))τm , N ] = [M̃ (n), N ]τm = V · [M τn , N ]τm = V · [M τm , N ] = [M̃ (m), N ].

Taking N = (M̃ (n))τm − M̃ (m), we get a.s. (M̃ (n))τm = M̃ (m). So there exists a continuous

process M̃ such that (M̃)τn = M̃ (n) for any n ∈ N. Since τn ↑ ∞, and (M̃)τn is a local

martingale for every n, M̃ is a continuous local martingale. Finally, for any continuous local
martingale N , and any n ∈ N, a.s.

[M̃,N ]τn = [(M̃)τn , N ] = [M̃ (n), N ] = V · [M τn , N ] = (V · [M,N ])τn .

Since τn ↑ ∞, we get a.s. [M̃,N ] = V · [M,N ].

Definition . A process X is called a continuous semimartingale if it can be written as X =
M + A, where M is a continuous local martingale, and A is a finite variation process. An
Rd-valued process X = (X1, . . . , Xd) is called a continuous vector semimartingale if every Xj

is a continuous semimartingale.
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The local martingales and semimartingales considered in this course are all continuous. So
we will omit the words “continuous”.

We call M + A a canonical decomposition of X. If a semimartingale X has two canonical
decompositions X = M + A = M ′ + A′, then M −M ′ = A′ − A is a local martingale with
locally finite variation starting from 0, which is a.s. 0 by Proposition 15.2. Thus, the canonical
decomposition is a.s. unique.

If X is a semimartingale with canonical decomposition M +A, then for any stopping time
τ , Xτ is a semimartingale with canonical decomposition M τ +Aτ . On the other hand, if there
is a sequence of stopping times τn ↑ ∞ such that for every n, Xτn is a semimartingale, then
X is a semimartingale. In fact, if Mn + An is the canonical decomposition of Xτn , then for
n < m, (Mm)τn +(Am)τn is also a canonical decomposition of Xτn . By the uniqueness, we have
a.s. (Mm)τn = Mn. Then we may define processes M and A such that on an event E with
probability 1, for any n, M τn = Mn, Aτn = An; and on Ec, M = X and A = 0. Then A is a
finite variation process, and for every n, a.s. M τn = Mn, and so M is a local martingale. Since
X = M +A, X is a semimartingale.

For two semimartingales X and X ′ with canonical decompositions X = M + A and X ′ =
M ′ +A′, we define

[X] = [M ], [X,X ′] = [M,M ′].

For a semimartingale X with canonical decomposition M + A, let L(X) = L(M) ∩ L(A).
For V ∈ L(X), we define

V ·X =

∫
V dX = V ·M + V ·A.

So V ·X is a semimartingale with canonical decomposition V ·M + V ·A.

Exercise. Let X and Y be two continuous adapted process, and E ∈ F0. Suppose X = Y on
E, and Y is constant on Ec. Show that if X is a martingale, local martingale, or semimartingale,
then Y is respectively a martingale, local martingale, or semimartingale.

Exercise. Let X and Y be semimartingales. Prove that (i) For any stopping time τ , [Xτ , Y τ ] =
[Xτ , Y ] = [X,Y ]τ . (ii) On any event such that X = Y , a.s. X and Y have the same decompo-
sition, and so [X] = [Y ]. (iii) Almost surely on any interval such that X is constant, [X] is also
constant. To prove (ii), we need to improve Proposition 15.2: If M is a local martingale, then
on any event E such that M has locally finite variation, M is a.s. constant.

Corollary 15.14 (Stochastic Dominated Convergence). Fix a semimartingale X. Let U , V ,
V 1, V 2, · · · ∈ L(X) satisfy a.s. |V n

t | ≤ Ut for all n ∈ N and t ≥ 0, and a.s. V n
t → Vt for all

t ≥ 0 with at most countably many possible exceptions. Then for all t ≥ 0,

(V n ·X − V ·X)∗t = sup
0≤s≤t

|(V n ·X)s − (V ·X)s|
P→ 0.

Proof. Assume that X = M + A. Since U ∈ L(X), U ∈ L(A) and U2 ∈ L([M ]). By DCT for
Stieltjes integral and the fact that dA and d[M ] have no point mass, we have a.s. for all t ≥ 0,
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∫ t
0 |V

n
s −Vs||dA| → 0 and ((V n−V )2 · [M ])t → 0, where the former convergence further implies

that (V n ·A−V ·A)∗t
P→ 0. Since a.s. ((V n−V )2 · [M ])t = [(V n−V ) ·M ]t, by Proposition 15.6,

((V n − V ) ·M)∗t
P→ 0 for all t ≥ 0. Thus, ((V n − V ) ·X)∗t

P→ 0 for all t ≥ 0.

Exercise. Prove that if two semimartingales X and Y agree on an event E, then for any
continuous adapted process V , a.s. V ·X = V · Y on E. Hint: Use predictable step processes
to approximate V , and apply stochastic dominated convergence theorem.

Proposition 15.15 (Chain Rule). Let X be a semimartingale. Let U and V be two progressive
processes such that V ∈ L(X). Then U ∈ L(V · X) iff UV ∈ L(X), in which case, a.s.
U · (V ·X) = (UV ) ·X.

Proof. Assume X = M+A is the canonical decomposition of X. Then V ·X = V ·M+V ·A, and
[V ·M ] = V 2 · [M ]. Now U ∈ L(V ·X) iff U ∈ L(V ·A) and U2 ∈ L([V ·M ]) = L(V 2 · [M ]), which
is further equivalent to UV ∈ L(A) and U2V 2 ∈ L([M ]), which is equivalent to UV ∈ L(X).
We know that U ·(V ·A) = (UV ) ·A. It remains to prove that a.s. U ·(V ·M) = (UV ) ·M . To see
this, note that for any local martingale, a.s. [U · (V ·M), N ] = U · [V ·M,N ] = U · (V · [M,N ]) =
(UV ) · [M,N ] = [(UV ) ·M,N ].

Proposition 15.16 (Optional Stopping). Let X be a semimartingale. Let V ∈ L(X). Let τ
be a stopping time. Then a.s.

(V ·X)τ = V ·Xτ = (1[0,τ ] · V ) ·X.

Proof. The statement is obvious if X is a finite variation process because in that case dXτ =
1[0,τ ]dX. It suffices to prove the statement in the case that X = M is a local martingale. Now
for any local martingale N ,

[(V ·M)τ , N ] = [V ·M,N τ ] = V ·[M,N τ ] = V ·[M τ , N ] = V ·M τ = V ·[M,N ]τ = (1[0,τ ]V ·[M,N ].

This then implies that (V ·M)τ = V ·M τ = (1[0,τ ]V ) ·M .

We briefly recall some basic definition and results.

1. A local martingale is a natural extension of continuous martingale.

2. For local martingales M and N , [M,N ] is the finite variation process such that MN −
[M,N ] is a local martingale.

3. For a finite variation process A, we define U ·A using Stieltjes integral.

4. For a local martingale M and suitable U , U ·M is the local martingale such that for any
local martingale N , [U ·M,N ] = U · [M,N ].

30



5. A semimartingale X is the sum of a local martingale M with a finite variation process A.
We define [X] = [M ] and U ·X = U ·M + U ·A for suitable U .

6. We use localization to gain boundedness assumptions on local martingales.

We are going to prove the celebrated Itô’s formula, which says, if X = (X1, . . . , Xd) is
a vector semimartingale, and if f : Rd → R is C2 differentiable, then Y := f(X) is also a
semimartingale, and a.s.

Y = Y0 +
d∑
j=1

∂jf(X) ·Xj +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(X) · [Xj , Xk].

We will first prove a simple case: f(x, y) = xy. Note that ∂xf = y, ∂yf = x, ∂2
xf = ∂2

yf = 0,
and ∂x∂yf = ∂y∂xf = 1. Later we will use the special case to prove the general result.

Theorem 15.17 (Product Formula). For any two semi-martingales X,Y , their product XY
is also a semi-martingale, and a.s.

XY = X0Y0 +X · Y + Y ·X + [X,Y ].

Proof. By polarization, it suffices to consider the case thatX = Y . First, supposeX = M ∈M2

and M0 = 0. Fix n ∈ N. Define V n and Qn as in the proof of Theorem 15.5: We first define
a sequence of stopping times τnk ↑ 0 by τn0 = 0 and τnk = inf{t ≥ τnk−1 : |Mt −Mτnk−1

| = 2−n},
k ∈ N. Then define V n and Qn by (2.3), i.e.,

V n
t =

∞∑
k=0

Mτnk
1(τnk ,τ

n
k+1](t), Qnt =

∞∑
k=0

(Mt∧τnk+1
−Mt∧τnk )2.

Recall that we have
M2 = 2(V n ·M) +Qn.

Since |V n|t ≤M∗t for all n ∈ N and t ≥ 0, and V n →M , by stochastic dominated convergence,

(V n ·M)t
P→ (M ·M)t for every t ≥ 0. From the proof of Theorem 15.5, for every t ≥ 0,

Qnt
P→ [M ]t. So for any t ≥ 0, a.s. M2

t = 2(M · M)t + [M ]t. By continuity, we get a.s.
M2 = 2(M ·M) + [M ].

Next, assume that X = M is a local martingale and M0 = 0. Let τn = inf{t ≥ 0 : |Mt| ≥ n},
n ∈ N. Then M τn ∈M2. So a.s. for any n ∈ N,

(M2)τn = (M τn)2 = 2(M τn ·M τn) + [M τn ] = (2(M ·M) + [M ])τn ,

which implies that a.s. M2 = 2(M ·M) + [M ].
If X = A is a finite variation process, then we need to show that A2 = 2A · A. To see this,

suppose µ = dA. Then by Fubini Theorem,

A2
t =

∫ ∫
1[0,t]2µ

2(ds1 ⊗ ds2) =

∫ ∫
1∆1µ

2(ds1 ⊗ ds2) +

∫ ∫
1∆2µ

2(ds1 ⊗ ds2)
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=

∫ t

0
As2µ(ds2) +

∫ t

0
As1µ(ds1) = 2(A ·A)t,

where ∆1 = {(s1, s2) ∈ R2 : 0 ≤ s1 ≤ s2 ≤ t}, and ∆2 = {(s1, s2) ∈ R2 : 0 ≤ s2 < s1 ≤ t}.
Suppose X is a semi-martingale with canonical decomposition M + A, and satisfies X0 =

M0 = 0. We already have a.s. M2 = 2M ·M + [M ] and A2 = 2A · A. To prove that a.s.
X2 = 2X ·X + [X], it suffices to show that a.s. AM = A ·M + M · A. Fix t ≥ 0. For n ∈ N,
define processes An and Mn by

An =
∑
k∈N

A(k−1)t/n1((k−1)t/n,kt/n], Mn =
∑
k∈N

Mkt/n1((k−1)t/n,kt/n].

Note that An is adapted, but Mn is not. We have

AtMt = (An ·M)t + (Mn ·A)t, n ∈ N.

To see this, note that

(An ·M)t =

n∑
k=1

A(k−1)t/n(Mkt/n −M(k−1)t/n), (Mn ·A)t =

n∑
k=1

Mkt/n(Akt/n −A(k−1)t/n).

Since |Ans | ≤ (A)∗s and Ans → As, we get a.s. (An ·M)t → (A ·M)t by stochastic dominated
convergence. Since |Mn

s | ≤ M∗t for 0 ≤ s ≤ t, we get (Mn · A)t → (M · A)t by ordinary
dominated convergence. Thus, a.s. (MA)t = (A ·M)t + (M · A)t. By continuity, we then get
a.s. (MA)t = (A ·M)t + (M ·A)t for any t ≥ 0.

Finally, we may remove the assumption that X0 = 0 because from above we have a.s.

(X −X0)2 = 2(X −X0) · (X −X0) + [X −X0] = 2X ·X − 2X0(X −X0) + [X],

which implies that X2 = X2
0 + 2X ·X + [X].

Remark . The theorem justifies the definition of semimartingales because semimartingales are
closed under multiplication, but local martingales are not. We may rewrite the formula in the
above theorem as d(XY ) = XdY +Y dX+d[X,Y ]. If X and Y are positive, then we may write
the formula as

d(XY )

XY
=
dX

X
+
dY

Y
+
d[X,Y ]

XY
.

By induction, this extends to the product of finitely many positive semimartingales:

d
∏n
j=1X

j∏n
j=1X

j
=

n∑
j=1

dXj

Xj
+

∑
1≤j<k≤n

d[Xj , Xk]

XjXk
.

If we move the denominator on the LHS to the right, then the formula holds without assuming
that the Xj are positive or do not take value zero.
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Proposition 15.18. Let X,Y be two semimartingales. Let t > 0. Let ∆n be a sequence of
partitions of [0, t]. For each ∆n = {0 = tn0 < · · · < tnkn}, we define

T∆n
= ζ∆n

(X,Y ) =

kn∑
k=1

(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
). (2.10)

Suppose the mesh size |∆n| → 0. Then T∆n P→ [X,Y ]t.

Proof. We may assume that X0 = Y0 = 0. Introduce the predictable step process

Xn =
n∑
k=1

Xtnk−1
1(tnk−1,t

n
k ], Y n =

n∑
k=1

Ytnk−1
1(tnk−1,t

n
k ].

Then we have
XtYt = (Xn · Y )t + (Y n ·X)t + T∆n

, n ∈ N.

Since Xn → X, Y n → Y , and |Xn
s | ≤ X∗t , |Y n

s | ≤ Y ∗t , 0 ≤ s ≤ t, by the stochastic dominated

convergence, we get (Xn · Y )t
P→ (X · Y )t and (Y n ·X)t

P→ (Y ·X)t. Since by Theorem 15.17,

a.s. XtYt = (X · Y )t + (Y ·X)t + [X,Y ]t, we get T∆n P→ [X,Y ]t.

Remark . This proposition shows that the quadratic variation a.s. does not depend on the
underlying filtration. If F ′ is another filtration w.r.t. which X is also a semimartingale, then
a.s. [X]F

′
= [X]F . This proposition also implies that if under a new measure P′ � P, X is

also a semimartingale, then the quadratic variation of X a.s. does not change. However, the
canonical decomposition of X may be different. See Girsanov Theorem later.

Example . If B is a Brownian motion, then [B]t = t for all t ≥ 0. This follows from Proposition
15.18 and the quadratic variation of Brownian motion. If B′ is another Brownian motion
independent of B, then [B,B′] = 0. To see this, by computing covariance function, we find
that B + B′ equals

√
2 times a Brownian motion. [B + B′]t = 2t for all t ≥ 0. So [B,B′] =

([B +B′]− [B]− [B′])/2 = 0. Below is a more general statement.

Exercise. Suppose thatX and Y are two F-continuous local martingale, which are independent
of each other. Prove that a.s. [X,Y ] = 0, and so XY is also an F-local martingale.
Hint: Since [X,Y ] does not depend on the filtration, it suffices to show that a.s. [X,Y ] = 0
if the filtration is the natural filtration F (X,Y ) generated by (X,Y ). By localization, we may
assume that X and Y are bounded martingales. Then a.s. [X,Y ] = 0 is equivalent to that XY
is a martingale w.r.t. F (X,Y ), which further follows from a monotone class argument.
Remark: It is not easy to prove directly that XY is an F-local martingale. In fact, if X and
Y are independent non-continuous F-martingales, then XY may not be an F-martingale.
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Theorem 15.19 (Itô’s Formula). Let X = (X1, . . . , Xd) be a vector semimartingale. Let
f ∈ C2(Rd,R). Then f(X) is a semimartingale, and a.s.

f(X) = f(X0) +

d∑
j=1

∂jf(X) ·Xj +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(X) · [Xj , Xk]. (2.11)

We will often express the Itô’s formula as a differential form:

df(X) =
d∑
j=1

∂jf(X)dXj +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(X)d[Xj , Xk].

In the case that d = 1, the formula becomes

df(X) = f ′(X)dX +
1

2
f ′′(X)d[X].

Proof. Let Σ denote the set of all f ∈ C2(Rd → R) such that a.s. (2.11) holds. Then Σ
is a vector space, and contains all constant functions and coordinate functions: fj(x) = xj ,
1 ≤ j ≤ d. Suppose f, g ∈ Σ. By Theorem 15.17, a.s.

f(X)g(X) = f(X0)g(X0) + f(X) · g(X) + g(X) · f(X) + [f(X), g(X)]

= (fg)(X0) +

d∑
j=1

f(X)∂jg(X) ·Xj +

d∑
j=1

g(X)∂jf(X) ·Xj+

+
1

2

d∑
j=1

d∑
k=1

f(X)∂j∂kg
′(X)d[Xj , Xk] +

1

2

d∑
j=1

d∑
k=1

g(X)∂j∂kf(X)d[Xj , Xk]

+[
d∑
j=1

∂jf(X)dXj ,
d∑

k=1

∂kg(X)dXk]

= (fg)(X0) +

d∑
j=1

(f(X)∂jg(X) + g(X)∂jf(X)) ·Xj

+
1

2

d∑
j=1

d∑
k=1

(f(X)∂j∂kg(X) + g(X)∂j∂kf(X) + ∂jf(X)∂kg(X) + ∂kg(X)∂jg(X))d[Xj , Xk]

= (fg)(X0) +
d∑
j=1

∂j(fg)(X) ·Xj +
1

2

d∑
j=1

d∑
k=1

∂j∂k(fg)(X)d[Xj , Xk].

Thus, fg ∈ Σ. This means that Σ is closed under multiplication. So Σ contains all polynomials
in x1, . . . , xd. We now prove that if X is uniformly bounded, i.e., there is a constant R < ∞
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such that |Xt| ≤ R for all t ≥ 0, then for any f ∈ C2(Rd,R), (2.11) holds. Recall the (higher-
order) Weierstrass Approximation Theorem: There is a sequence of polynomials qn such that
qn and its up to second order partial derivatives converge to f and its corresponding partial
derivatives, respectively, uniformly on {x ∈ Rd : |x| ≤ R}. For each n ∈ N, since qn ∈ Σ, we
have

qn(X) = qn(X0) +
d∑
j=1

∂jqn(X) ·Xj +
1

2

d∑
j=1

d∑
k=1

∂j∂kqn(X)[Xj , Xk].

Letting n → ∞ and using the ordinary and stochastic dominated convergence theorems, we
then conclude that (2.11) holds.

We intend to use localization to remove the boundedness assumption on X, and define for
each n ∈ N, τn = inf{t ≥ 0 : |Xt| ≥ n}. However, since we did not assume that |X0| ≤ n, we
do not have |Xτn | ≤ n. In fact, if |X0| > n, then τn = 0, and Xτn is a constant value outside
{x : |x| ≤ n}. We observe that Xτn is uniformly bounded on the event {|X0| ≤ n} ∈ F0, and is
constant on {|X0| > n}. This motivates us to slightly relax the boundedness assumption on X.
We claim that, if there is an F0-measurable event E, such that X is uniformly bounded on the
event E, and is constant on the event Ec, then (2.11) holds for any f ∈ C2(Rd,R). To see this,
we may define another process X̃ such that X̃ = X on E and X̃ = 0 on Ec. By an exercise,
X̃ is also a semimartingale. Let f ∈ C2(Rd,R). Since X̃ is uniformly bounded, from the last
paragraph, we see that f(X̃) is a semimartingale, and (2.11) holds for X̃. Now f(X) = f(X̃)
on E, and f(X) is constant on Ec. By the same exercise again f(X) is also a semimartingale.
On the event E, since X = X̃, by another exercise the RHS of (2.11) for X̃ agrees with the
RHS of (2.11) for X. So (2.11) holds for X a.s. on E. Since X is constant on Ec, (2.11) also
holds for X on Ec. Thus, (2.11) holds a.s. for X.

Finally, we consider the general case. For every n ∈ N, let τn = inf{t ≥ 0 : |Xt| ≥ n}. Then
Xτn is uniformly bounded on the event En = {|X0| < n} ∈ F0, and is constant on Ecn. From
the last paragraph, we know that (2.11) holds for Xτn . So (2.11) holds for X up to τn. Since
τn ↑ ∞, we get (2.11) throughout R+.

Remark . 1. Itô’s formula is a very powerful tool. The rest of this course can be viewed as
a non-ending series of applications of Itô’s formula.

2. The differentiability assumption of f can be relaxed. If some component Xj of X is of
locally finite total variation, then we only need that f is C1 in the j-th coordinate. The
proof goes through just the same.

3. Itô’s formula shows that the class of semimartingales is invariant under composition with
C2-functions, which gives a reason for the introduction of semimartingales. If M is a
local martingale, or even a martingale, f(M) is usually not a local martingale, but only
a semimartingale.

Example . We use (t) to denote the process, which equals t at time t. Let B be a Brownian
motion. Then [B] = (t). Let σ and µ be two continuous adapted processes. Let A = µ · (t), i.e.,
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At =
∫ t

0 µsds. Then A is an adapted C1 process with A′t = µt. Then we write dA = µdt Let
M = σ ·B. Then M is a local martingale with [M ] = σ2 · [B] = σ2 · (t). We write dM = σdB.
If a semimartingale X = X0 + σ · B + µ · (t), then we write dX = σdB + µdt. It satisfies
[X] = [σ · B] = σ2 · (t). So we write d[X] = σ2dt. If f ∈ C2(R,R), then Y = f(X) is a
semimartingale that satisfies

Y − Y0 = f ′(X) ·X +
1

2
f ′′(X) · [X] = f ′(X) · (σ ·B + µ · (t)) +

1

2
f ′′(X) · (σ2 · (t))

= (f ′(X)σ) ·B + (f ′(X)µ) · (t) +
1

2
f ′′(X)σ2 · (t) = (f ′(X)σ) ·B + (f ′(X)µ+

1

2
f ′′(X)σ2) · (t).

So dY = f ′(X)µdB + (f ′(X)µ+ 1
2f
′′(X)σ2)dt.

Example . If X = B = (B1, . . . , Bd) is a d-dimensional Brownian motion, and f ∈ C2(Rd,R),
then since [Bj , Bk]t = δj,kt,

df(B) =
d∑
j=1

∂jf(B)dBj +
1

2
∆f(B)dt.

Thus, if f is harmonic, then f(B) is a local martingale.

Example (Complex Itô’s Formula). A complex semimartingale is of the form Z = X + iY ,
where X and Y are real semimartingales. Its quadratic variation is [Z] = [X + iY,X + iY ] =
[X]− [Y ] + 2i[X,Y ]. Suppose f : C→ C is analytic. Then f(Z) is a complex semimartingale,
and satisfies

df(Z) = f ′(Z)dZ +
1

2
f ′′(Z)d[Z].

This also extends to complex vector semimartingales. The details are left as an exercise.

Example . We define the stochastic exponential of a semimartingale M as

E (M) = exp(M − 1

2
[M ]).

Then E (M) satisfies E (M) = eM0 + E (M) ·M , which may be also written as

dE (M)

E (M)
= dM.

If M is a local martingale, then E (M) is also a local martingale. To derive the formula, let
f = ex and X = M − 1

2 [M ], then by Itô’s formula and that f ′′ = f ′ = f ,

dE (M) = f ′(X)dX +
1

2
f ′′(X)d[X] = f(X)(dM − 1

2
d[X]) +

1

2
f(X)d[X] = f(X)dM.

For λ ∈ C, we write E λ(M) for the stochastic exponential of λM , then

E λ(M) = exp(λM − λ2

2
[M ]), E λ(M) = eλM0 + λE λ(M) ·M.

36



So far, all local martingales or semimartingales are defined on R+. We will relax this
assumption and study continuous processes with (possibly finite) random lifetime. Let

Σ =
⋃

T∈(0,∞]

C([0, T ),R).

For every f ∈ Σ, let T (f) ∈ [0,∞] be the lifetime of f , i.e., the domain of f is [0, T (f)). A
continuous stochastic process with a random lifetime is a map X : Ω→ Σ. We may also write X
as Xt, 0 ≤ t < T (X). Note that for each t ≥ 0, Xt is only defined on the event {T (X) > t}. We
say that X is F-adapted if for every t ≥ 0, {T (X) > t} ∈ Ft, and Xt restricted to {T (X) > t}
is Ft-measurable. In this case, T (X) is a stopping time.

Definition . A random map τ : Ω → [0,∞] is called a predictable time if there exists a
sequence of stopping times τn ↑ τ such that τn < τ when τ > 0. The stopping times τn are said
to announce τ .

As an increasing limit of stopping times, a predictable time must be a stopping time. If
τ and σ are predictable times, then so are τ ∧ σ and τ ∨ σ because if τn announce τ and σn
announce σ, then τn ∧ σn and τn ∨ σn announce τ ∧ σ and τ ∨ σ, respectively.

Example . Let X be a continuous process from R+ to Rd, and F be a closed subset of Rd.
Then τF := inf{t ≥ 0 : Xt ∈ F} is a predictable time because there is a sequence of open sets
Gn ↓ F , and so the stopping times τGn := inf{t ≥ 0 : Xt ∈ Gn} announce τF .

Definition . Suppose τ is a positive predictable time. Let X be a continuous stochastic
process with lifetime τ . We say that X is a local martingale (resp. semimartingale) with
lifetime τ , if there is a sequence of stopping times τn announcing τ such that for every n,
Xτn
t = Xτn∧t, 0 ≤ t < ∞, is a local martingale (resp. semimartingale) defined on [0,∞). A

vector semimartingale with lifetime τ is defined similarly.

A continuous process X with lifetime τ is a local martingale (resp. semimartingale) iff for
any stopping time σ < τ , Xσ is a local martingale (resp. semimartingale). The “if” part
is obvious. For the “only if” part, let σ be a stopping time with σ < τ . Suppose τn is a
sequence of stopping times announcing τ such that for every n, Xτn is a local martingale (resp.
semimartingale). Define τ̂n = τn if τn < σ, and τ̂n = ∞ if τn ≥ σ. Then for any t ≥ 0,
{τ̂n < t} = {τn < σ}∩ {τn < t} = {τn < σ ∧ t} ∈ Fσ∧t ⊂ Ft. Thus, τ̂n is a stopping time. Since
τn ≥ σ for n big enough, we have τ̂ ↑ ∞. Since for every n, (Xσ)τ̂n = Xσ∧τ̂n = Xσ∧τn = (Xτ

n)σ

is a local martingale (resp. semimartingale), Xσ is a local martingale (resp. semimartingale).
Thus, the definition of local martingale or semimartingale with lifetime τ does not depend

on the choice of the sequence τn that announce τ ; and the set of local martingales (resp.
semimartingales) with the same lifetime τ form a linear space.

Example . Let τ be a positive predictable time. Let X be a local martingale (resp. semimartin-
gale) on R+. Then X|[0,τ) is a local martingale (resp. semimartingale) with lifetime τ because
for any stopping time σ < τ , (X|[0,τ))

σ = Xσ is a local martingale (resp. semimartingale).
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A lifetime-τ -local martingale M with locally finite total variation must be a.s. constant
because for any stopping time σ < τ , Mσ is a.s. constant by Proposition 15.2.

An adapted stochastic process A with lifetime τ will be simply called a finite variation
process if A0 = 0 and for each t ∈ [0, τ), A has finite total variation on [0, t].

If X is a semimartingale with lifetime τ , then it has an a.s. unique canonical decomposition
X = M + A such that M is a local martingale with lifetime τ , and A is a finite variation
process with lifetime τ . For the existence, suppose τn announce τ . Then for every n, Xτn is
a semimartingale on R+ with canonical decomposition Mn + An. Let n < m ∈ N. By the
a.s. uniqueness of the decomposition of semimartingales on R+, we have a.s. Mn = (Mm)τn

and An = (Am)τn . Thus, we may define M and A with lifetime τ such that on an event E
with probability 1, for each n, M τn = Mn, Aτn = An; and on Ec, M = X and A = 0. Then
X = M +A, where M is a local martingale with lifetime τ , and A is a finite variation process
with lifetime τ .

If M is a local martingale with lifetime τ , then M2 is a semimartingale because for each
stopping time σ < τ , (M2)σ = (Mσ)2 is a semimartingale. Let N + A be a canonical de-
composition of M2. Then we call A the quadratic variation of M , and denote it by [M ]. For
any stopping time σ < τ , Nσ + [M ]σ is a canonical decomposition of (Mσ)2. So we have a.s.
[M ]σ = [Mσ], which is nondecreasing. Thus, [M ] is nondecreasing on [0, τ). For two local
martingales M and N with lifetime τ , we define [M,N ] = ([M +N ]− [M −N ])/4. If X and Y
are lifetime-τ -semimartingales with canonical decomposition M +A and N +B, then we define
[X] = [M ] and [X,Y ] = [M,N ].

For a finite variation process A with lifetime τ , we define L(A) to be the set of progressive
stochastic processes U with lifetime τ , such that for any t ∈ [0, τ),

∫ t
0 |Us||dAs| < ∞. Here

by saying that U is progressive, we man that for any fixed t0 ≥ 0, the set Dt0 := {(ω, t) ∈
Ω × [0, t0] : t < T (U(ω))} ∈ Ft0 × B[0,t0], and U |Dt0 is Ft0 × B[0,t0]-measurable. This is the

case if U is adapted and continuous. For every U ∈ L(A), we may define (U · A)t =
∫ t

0 UsdAs,
0 ≤ t < τ , which is a finite variation process with lifetime τ . Note that for every stopping time
σ < τ , Uσ ∈ L(Aσ), and Uσ ·Aσ = (U ·A)σ.

For a local martingale M with lifetime τ , we define L(M) to be the set of progressive
processes U with lifetime τ such that U2 ∈ L([M ]). If U ∈ L(M), then for every stopping time
σ < τ , (Uσ)2 = (U2)σ ∈ L([M ]σ). So Uσ ∈ L(Mσ), and we may define Uσ ·Mσ. Suppose
τn announce τ . Then the family U τn · M τn , n ∈ N, is consistent, i.e., for any n < m, a.s.
U τn · M τn = (U τm · M τm)τn . So we may define the local martingale U · M with lifetime τ
such that for each n, a.s. (U · M)τn = U τn · M τn . If σ < τ is a stopping time, then a.s.
for any n, ((U ·M)σ)τn = (U τn ·M τn)σ = (Uσ ·Mσ)τn . Since τ = lim τn > σ, we get a.s.
(U ·M)σ = (Uσ) ·Mσ. If N is another local martingale with lifetime τ , a similar argument
shows that a.s. [U ·M,N ] = U · [M,N ].

For a lifetime-τ -semimartingale X with the canonical decomposition M + A, let L(X) =
L(M) ∩ L(A). For U ∈ L(X), we define U · X = U ·M + U · A. Then U · X is a lifetime-τ -
semimartingale with canonical decomposition U ·M + U ·A. It is the a.s. unique process with
lifetime τ that satisfies the property that for any stopping time σ < τ , (U ·X)σ = Uσ ·Xσ.
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Corollary 15.20 (Local Itô’s Formula). Fix an open set D ⊂ Rd. Let f ∈ C2(D,R). Let X be
a vector semimartingale with random lifetime τ such that Xt ∈ D for all t ∈ [0, τ). Then f(X)
is a semimartingale with lifetime τ , and Itô’s formula holds up to τ , i.e., a.s.

f(X) = f(X0) +
d∑
j=1

∂jf(X) ·Xj +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(X) · [Xj , Xk], on [0, τ). (2.12)

Here the meaning of “local” is twofold: first, X is defined not on [0,∞), but on [0, τ);
second, f is not defined on Rd, but on D ⊂ Rd.

Proof. Suppose τn is a sequence of stopping times announcing τ . Let Gn be an increasing
sequence of bounded open subsets of D such that D =

⋃
Gn, and Gn ⊂ D for each n ∈ N. Let

τGn = inf({τ} ∪ {t ≥ 0 : Xt 6∈ Gn}), n ∈ N. Let σn = τn ∧ τGn , n ∈ N. Then σn also announce
τ . For each n, Xσn is contained in Gn on the event En := {X0 ∈ Gn} ∈ F0, and is constant
on Ecn. Pick x0 ∈ G0. For each n, define Y n such that Y n = Xσn on En, and Y n ≡ x0 on
Ecn. Then Y n is contained in Gn. By an exercise, Y n is also a vector semimartingale. We may
define a function fn ∈ C2(Rd,R) such that fn agrees with f in a neighborhood of Gn. Applying
the usual Itô’s formula to Y n and fn and using the fact that f and fn agree in an open set
containing the range of Y n, we find that fn(Y n) = f(Y n) is a semimartingale, and a.s.

f(Y n) = f(Y n
0 ) +

d∑
j=1

∂jf(Y n) · (Y n)j +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(Y n) · [(Y n)j , (Y n)k]. (2.13)

Since f(Y n) agrees with f(Xσn) on En, and f(Xσn) is constant on Ecn. By the exercise again,
f(Xσn) is also a semimartingale. Since Xσn agrees with Y n on the event En, by another
exercise, the RHS of (2.13) agrees a.s. on En with the same formula with Xσn in place of Y n.
Thus, a.s. on En,

f(X)σn = f(X0) +

d∑
j=1

(∂jf(X) ·Xj)σn +
1

2

d∑
j=1

d∑
k=1

∂j∂kf(X) · [Xj , Xk]σn . (2.14)

Since Xσn is constant on Ecn, (2.12) also holds on Ecn. Thus, for any n, (2.14) a.s. holds. This
means that (2.12) a.s. holds on [0, σn). Since σn announce τ , we see that (2.12) a.s. holds
throughout [0, τ).

From now on, a local martingale or semimartingale may have infinite or finite (and random)
lifetime.

Example . The quotient of two semimartingales X/Y is a semimartingale (assuming that Y
does not take value 0). To see this, write X/Y = f(X,Y ), where f(x, y) := x/y is C2 on
R× (R \ {0}).
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Example . Suppose X is a positive semimartingale, and α ∈ R. Then Xα is a semimartingale.
To see this, we apply the above corollary with f(x) = xα and D = (0,∞). Since f ′(x) = α

xf(x)

and f ′′(x) = α(α−1)
x2 f(x), we get

dXα = f ′(X)dX +
1

2
f ′′(X)d[X] =

α

X
XαdX +

1

2

α(α− 1)

X2
Xαd[X].

We may rewrite this formula as

dXα

Xα
= α

dX

X
+

1

2
α(α− 1)

d[X]

X2
.

Example . Let D be a domain in Rd. Let B be a Brownian motion in Rd (started from
x ∈ Rd). Let τ be the first time that B exits D. Let f : D → R be harmonic. Then f(B|[0,τ)

is a local martingale with lifetime τ .

There is another important extension of Itô’s formula. For simplicity, we only state the
one-dimensional case, and omit its proof. See the book “Continuous martingales and Brownian
motion” by Revuz-Yor: Exercise (3.12) of Chapter IV.

Theorem (Itô’s Formula: Semimartingales Composed by Random Functions). Let X be a
one-dimensional vector semimartingale with lifetime T . Let f = f(ω, t, x) be a function defined
on a subset S of Ω× R+ × R such that

(i) For any ω ∈ Ω, the domain of f(ω, ·, ·), i.e., the section S(ω) := {(t, x) ∈ R+ × R :
(ω, t, x) ∈ S} contains {(t,Xt(ω)) : 0 ≤ t < T}, and (t, x) 7→ f(ω, t, x) is C1,2 on S(ω).
This assumption guarantee that the process f(ω, t,Xt(ω)) is well defined up to T .

(ii) For every fixed t ≥ 0 and x ∈ R, the set St,x = {ω ∈ Ω : (ω, t, x) ∈ S} ∈ Ft, and the map
ω 7→ f(ω, t, x) is Ft-measurable. This is the adaptedness assumption on f .

Then Yt(ω) := f(ω, t,Xt(ω)), 0 ≤ t < T (ω), is a semimartingale with lifetime T , and satisfies
the SDE:

dYt = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂2
xf(t,Xt)d[X]t.

Note that if f is a deterministic function, i.e., does not depend on ω, then this formula follows
simply from the traditional Itô’s formula applied to the vector semimartingale (t,Xt). Here we
allow that f to be random, but must be adapted.

We now study time-changes. Let T be a positive predictable time. Suppose u is an adapted,
continuous, and strictly increasing process with lifetime T and u0 = 0. Let S = sup{ut : t ∈
[0, T )}. We define

vs = inf{t ∈ [0, T ) : ut > s}, s ≥ 0. (2.15)

Then v is continuous and strictly increasing on [0, S), and equals ∞ on [S,∞). In fact, v|[0,S)

is the inverse of u. For each s ≥ 0, vs is a stopping time because for every t > 0, {vs < t} =
{T > t} ∩ {ut > s} ∈ Ft. We call the v a time-change.
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For each s ≥ 0, since vs is a stopping time, we have a σ-algebra Fvs . Since vs is increasing
in s, we get a new filtration F̂ := (Fvs)s≥0, called the filtration induced by the time-change

v. Since F is right-continuous, and vsn ↓ vs0 if sn ↓ s, F̂ is also right-continuous. If τ is an
F-stopping time with τ < T , then uτ is an F̂-stopping time. To see this, note that for any
a, b ≥ 0,

{uτ < a} ∩ {va < b} = {uτ < a} ∩ {τ < b} ∩ {a < ub} ∩ {b < T} ∈ Fb.

If τn is a sequence of F-stopping times announcing T , then uτn is a sequence of F̂-stopping
times announcing S. So S is a positive F̂-predictable time.

Suppose X is a left- or right- continuous F-adapted process with lifetime T . Then X is
progressive. By Lemma 6.5, for any s ≥ 0, Xvs is Fvs-measurable. So X ◦ v is F̂-adapted. We
then define the F̂-adapted process X̂ with lifetime S by X̂s = Xvs , 0 ≤ s < S, and call it the
time-change of X via v. Since v is continuous, X̂ = X ◦ v is also a left- or right-continuous
process. On the other hand, now vs, 0 ≤ s < S, is a continuous and strictly increasing F̂-
adapted process with v(0) = 0, and we may use it to construct a time-change by

ũt = inf{s ∈ [0, S) : vs > t}, t ≥ 0.

Then ũ is an extension of u such that ũ =∞ on [T,∞). We will write ũ as u. The time-change
of X̂ via u is just the original X. Moreover, we have F̂u(t) = Ft, t ≥ 0. So the status of the two

triples (X,T,F) and (X̂, S, F̂) are symmetric.

Exercise. Check that F̂u(t) = Ft for any t ≥ 0.

Theorem 15.25 (A modified version). Let X be a semimartingale with lifetime T with canon-

ical decomposition M + A. Let X̂, M̂ , Â, [̂X] be the time-changes of X,M,A, [X], respectively,

via v. Then X̂ is a semimartingale with lifetime S with canonical decomposition M̂+Â, and the

quadratic variation of X̂ is [̂X]. Moreover, if U is a right- or left- continuous F-adapted process
with lifetime T and U ∈ L(X), then Û := U ◦ v ∈ L(X̂), and a.s. Û · X̂ is the time-change of
U ·X though v.

Proof. If A is non-decreasing, then Â is also non-decreasing. Since A can be expressed as the
difference of two non-decreasing functions, so can Â. Thus, Â is a finite variation process. To
prove that M̂ is a local martingale, we may assume M0 = M̂0 = 0. Then we can find a sequence
τn announcing T such that for each n, M τn is uniformly bounded. By Optional Stopping
Theorem (for uniformly integrable martingale), (M̂)

uτn
s = (M τn)vs is an F̂-martingale. Since

uτn announce S, M̂ is a local martingale. Since X̂ = M̂ + Â, X̂ is a semimartingale with

canonical decomposition M̂ + Â. Since [X̂] is the finite variation component of M̂2, we see that
a.s. [X̂] is the time-change of [M ] = [X] via v. Then we immediately get that if X and Y are
semimartingales with lifetime T , and X̂ = X ◦ v and Ŷ = Y ◦ v, then [X̂, Ŷ ] = [X,Y ] ◦ v.

Let U be a right- or left- continuous F-adapted process with lifetime T . Then Û is right-

or left- continuous F̂-adapted process. For any 0 ≤ s < S,
∫ s

0 |Û ||dÂ| =
∫ v(s)

0 |U ||dA| since
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the signed measure µ̂ on [0, S) determined by Â is related to the signed measure µ on [0, T )
determined by A by µ̂ = µ ◦ v. Thus, if U ∈ L(A), then Û ∈ L(Â) and Û · Â = (U ·A) ◦ v.

If U ∈ L(M), then U2 ∈ L([M ]), and so Û2 ∈ L([̂M ]) = L([M̂ ]). So Û ∈ L(M̂). Moreover,
if N̂ is a local martingale with lifetime S, then N := N̂ ◦ u is a local martingale with lifetime
T , and

[(U ·M) ◦ v, N̂ ] = [U ·M,N ] ◦ v = (U · [M,N ]) ◦ v = Û · ([M,N ] ◦ v) = Û · ([M̂, N̂ ]).

Thus, a.s. Û ·M̂ = (U ·M)◦v. So if U ∈ L(X) = L(A)∩L(M), then Û ∈ L(Â)∩L(M̂) = L(X̂),
and a.s. Û · X̂ = (U ·X) ◦ v.

3 Continuous Martingales and Brownian Motion

Theorem 16.3 (Lévy’s Characterization of Brownian Motion). For a continuous d-dimensional
adapted process X = (X1, . . . , Xd) with X0 = 0, the following are equivalent.

(i) X is a d-dimensional F-Brownian motion.

(ii) X is a local martingale, and [Xj , Xk]t = δj,kt, t ≥ 0, for every 1 ≤ j, k ≤ d.

Proof. We already know that (i) implies (ii). Suppose (ii) is true. Fix v = (v1, . . . , vd) ∈ Rd
and t1 ≥ 0. Let Xv = (v,X) =

∑d
j=1 vjX

j . Then Xv is a local martingale, and [Xv]t =∑d
j=1 v

2
j [X

j , Xj ]t = |v|2t. Let

Mt = E i(Xv
t ) = exp

(
iXv

t +
1

2
|v|2t

)
, t ≥ 0.

Then M is the stochastic exponential of iXv, and so is also a local martingale. We have
|Mt| = e

1
2
|v|2t. So for any t1 ≥ 0, M is uniformly bounded on [0, t1]. So M is a true martingale.

Let t0 ∈ [0, t1] and A ∈ Ft0 . From E[Mt1 |Ft0 ] = Mt0 , we see that

E[1A exp(−i(v,Xt0) exp(i(v,Xt1) +
1

2
|v|2t1)] = E[1A exp(−i(v,Xt0) exp(i(v,Xt0) +

1

2
|v|2t0)],

which implies that

E[1A exp(i(v,Xt1 −Xt0))] = exp
(
− 1

2
|v|2(t1 − t0)

)
P[A].

Since this holds for any v ∈ Rd and A ∈ Ft0 , (v,Xt1 − Xt0) is independent of Ft0 , and has a
Gaussian distribution N(0, |v|2(t1− t0)). This implies that Xt1 −Xt0 is a Gaussian vector with
covariation matrix (t1 − t0)Id independent of Ft0 . Since this holds for any t1 ≥ t0 ≥ 0, X is a
d-dimensional F-Brownian motion.

Remark . If we do not assume that X0 = 0, then (ii) is equivalent to that X is an F-Brownian
motion started from some point.
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If B is a d-dimensional Brownian motion, and T is a positive predictable time, then X :=
B|[0,T ) is a vector local martingale with lifetime T , and for any 1 ≤ j, k ≤ d, [Xj , Xk]t = δj,kt,

0 ≤ t < T . On the other hand, if X = (X1, . . . , Xd) is a d-dimensional local martingale with
lifetime T such that for any 1 ≤ j, k ≤ d, [Xj , Xk]t = δj,kt, 0 ≤ t < T . A natural question to
ask is whether X a.s. extends to a d-dimensional Brownian motion. In general, the answer is
no. It is simply because the probability space may not be big enough to support a Brownian
motion with full range. However, we may overcome the issue by expanding the probability
space and filtration.

Recall that we have been working on the filtered probability space (Ω,F ,P) throughout,
where F = (Ft)t≥0 is a filtration. By an enlargement of (Ω,F ,P), we mean another filtered

probability space (Ω̂, F̂ , P̂) together with a map π : Ω̂ → Ω such that P = P̂ ◦ π−1, and for
any t, π−1(Ft) ⊂ F̂t. A process X defined on Ω may be viewed as defined on Ω̂ by setting
X̂(ω̂) = X(π(ω)). Since π is (F̂t,Ft)-measurable, if X is F-adapted, then X̂ is F̂-adapted. For
any event E,

P̂ ◦ X̂−1 = P̂ ◦ (X ◦ π)−1(E) = P̂ ◦ π−1 ◦X−1(E) = P ◦X−1(E).

So X̂ (with underlying measure P̂) has the same law as X (with underlying measure P).

Theorem . For the above vector local martingale X with [Xj , Xk]t = δj,kt, 0 ≤ t < T , there is

an enlargement (Ω̂, F̂ , P̂) of (Ω,F ,P), and a d-dimensional F̂-Brownian motion B defined on
Ω̂ such that a.s. Xt = X0 +Bt, 0 ≤ t < T .

Proof. We may assume that X0 = 0. First, we show that X a.s. extends to a continuous
martingale Y with lifetime ∞ without enlarging the probability space. We will show that on
the event T <∞, a.s. limt↑T Xt converges, and if we define Yt = Xt on [0, T ), and Yt = limt↑T Xt

on [T,∞), then Y is a continuous vector martingale.
There is a sequence of stopping times τn that announce T such that for each n, |Xτn | is

bounded by n. Fix j ∈ {1, . . . , d} and m ∈ N. For any n1 < n2 ∈ N,

[(Xj)m∧τn2 − (Xj)m∧τn1 ]t = [(Xj)m∧τn2 ]t − [(Xj)m∧τn1 ]t = m ∧ τn2 ∧ t−m ∧ τn1 ∧ t.

Thus, [(Xj)m∧τn2 − (Xj)m∧τn1 ]∞ ≤ m ∧ τn2 − m ∧ τn1 . As n1, n2 → ∞, τn1 , τn2 → T . By
Dominated Convergence Theorem, E[(Xj)m∧τn2 − (Xj)m∧τn1 ]∞ → 0 as n1, n2 → ∞. Since for
M ∈M2, ‖M‖2M2 = E[M2

∞] = E[M ]∞, (Xj)m∧τn , n ∈ N, form a Cauchy sequence in M2. Let

Y j,m ∈ M2 be its limit. Then for each t ≥ 0, (Xj)m∧τn
P→ Y j,m

t as n → ∞. We see that Y j,m

a.s. agrees with Xj on [0, T ∧m) since for t ∈ [0, T ∧m), if n is big enough, then m ∧ τn > t,
and so (Xj)m∧τnt = Xj

t . Since for each n ∈ N, (Xj)m∧τn , n ∈ N, takes (random) constant value
on [T,∞), the same is true a.s. for Y j,m.

Now we still fix j, but let m vary. For m1 ≤ m2, from (Xj)m1∧τn = ((Xj)m2∧τn)m1 we get
a.s. Y j,m1 = (Y j,m2)m1 . This means that the family Y j,m, m ∈ N, are consistent, and we may
define a process Y j on R+ such that for any m ∈ N, Y j |[0,m] a.s. agrees with Y j,m|[0,m]. Since
each Y j,m is a continuous martingale on R+, Y j is also a continuous martingale on R+. Since
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each Y j,m a.s. takes constant value on [T,∞), so does Y j . Since for every m, Y j,m a.s. agrees
with Xj on [0, T ∧m), we see that Y j a.s. agrees with Xj on [0, T ). Then Y = (Y 1, . . . , Y d)
is the extension that we want. Since a.s. Y agrees with X on [0, T ), and is constant on [T,∞),
we have

[Y j , Y k]t = δj,kt ∧ T, 1 ≤ j, k ≤ d, t ≥ 0. (3.1)

Let (Ω̃, F̃ , P̃) be a filtered probability space that supports a d-dimensional Brownian motion
β̃ = (β̃1, . . . , β̃d). Consider the product space

Ω̂ = Ω× Ω̃, F̂t = Ft × F̃t, P̂ = P× P̃.

Then (Ω̃, F̃ , P̃) with the map π(ω, ω̃) = ω is the enlargement of (Ω,F ,P) that we need. The
process Y on Ω is then viewed as a process defined on Ω̂ by Yt(ω, ω̃) = Yt(ω). By the indepen-
dence of F and F̃ , we see that the new Y is a still a martingale. By Proposition 15.18, the new
Y also satisfies (3.1). Define β̂ on Ω̂ by β̂(ω, ω̃) = β̃(ω̃). Then β̂ is an F̂-Brownian motion on
Ω̂ independent of Y . So for any 1 ≤ j, k ≤ d,

[β̂j , β̂k]t = δj,kt, [β̂j , Y k]t = 0, t ≥ 0.

Since T is an F-stopping time, it is also an F̂-stopping time. So for 1 ≤ j, k ≤ d and t ≥ 0,
(β̂k)T is a local martingale, and

[β̂j , (β̂k)T ] = [(β̂j)T , (β̂k)T ] = δj,kt ∧ T, [(β̂j)T , Y k]t = [β̂j , Y k]Tt = 0,

which implies that

[β̂j − (β̂j)T , β̂k − (β̂k)T ]t = δj,k(t− t ∧ T ), [β̂j − (β̂j)T , Y k] = 0.

Define B = Y + (β̂ − β̂T ). Then B is an F̂-vector local martingale with lifetime ∞, and for
1 ≤ j, k ≤ d,

[Bj , Bk]t = [Y j , Y k]t + [β̂j − (β̂j)T , β̂k − (β̂k)T ]t = δj,kt, t ≥ 0.

By Lévy’s Characterization of Brownian Motion, B is an F̂-Brownian motion. Since β̂− β̂T = 0
on [0, T ), B agrees with Y on [0, T ), which a.s. agrees with X on [0, T ).

Because of this theorem, we may call a vector local martingale Xt, 0 ≤ t < T , that satisfies
[Xj , Xk]t = δj,kt, 0 ≤ t < T , for any 1 ≤ j, k ≤ d, a stopped d-dimensional Brownian motion.

Suppose now M is a (one-dimensional) local martingale with lifetime T such that [M ] is
strictly increasing, i.e., M does not take constant value on any time interval. Let ut = [M ]t.
Then u is a continuous and strictly increasing adapted process. Let v be the inverse of u,
and let M̂ be the time-change of M via v. Then M̂ is a local martingale with lifetime S :=
sup0≤t<T [M ]t, and [M̂ ]s = [M ]vs = uvs = s, 0 ≤ s < S. By the above theorem, we know

that in an enlarged probability space, M̂ extends to a Brownian motion. So we may view
the original M as a time-change of a stopped Brownian motion. Since a Brownian motion B
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is continuous on [0,∞) and satisfies that a.s. lim supt→∞Bt = ∞ and lim inft→∞Bt = −∞,
we can then conclude that a.s. on the event that sup0≤t<T [M ]t = ∞, lim supt↑T Mt = ∞ and
lim inft↑T Mt = −∞, and on the event that sup0≤t<T [M ]t <∞, limt↑T M(t) converges to a finite
number. Thus, on the event that M is bounded from either above or below, a.s. limt↑T M(t)
converges.

The above result also holds if M does take constant values on some intervals. In that case,
we still define ut = [M ]t, and define vs by vs = inf{t : ut > s} Now v may not be continuous.
However, since every discontinuity of v corresponds to an interval of constancy of u = [M ],

on which M is constant. So M̂s := Mvs is still a continuous local martingale. We then still

have [M̂ ]s = s, 0 ≤ s < S, and so M̂ is a stopped Brownian motion. Then the original M is
a time-change of a stopped Brownian motion with pauses. The last sentence of the previous
paragraph still holds. We also note that even if the lifetime of M is ∞, after a time-change,
the new process M̂ has a random lifetime. This is the reason why we need local martingales
with random lifetime. We can not always transform a vector local martingale to a stopped
(multi-dimensional) Brownian motion using a time-change.

Suppose that M is a local martingale such that [M ] is C1 with positive derivative. Besides
time-change, there is another way to obtain a (stopped) Brownian motion from M , which is
a stochastic integral against M . Let σt =

√
[M ]′t > 0, and define Bt =

∫ t
0 σ
−1
s dMs. Then

we have d[B]t = σ−2
t d[M ]t = 1 (up to its lifetime). So B is a stopped Brownian motion, and

M = M0 + σ ·B. We may then write dM = σdB.
We are interested in the kind of semimartingales X (with lifetime T ) with canonical de-

composition M + A such that there are continuous adapted processes σ and µ such that
M = M0 + σ ·B and A = µ · (t). Then we may express X in the following form:

dXt = σtdBt + µtdt.

If X takes values in an open set U ⊂ R, and f ∈ C2(R,R), then by Itô’s formula, Yt := f(Xt)
satisfies the equation

dYt = f ′(Xt)σtdBt + (f ′(Xt)µt +
1

2
f ′′(Xt)σ

2
t )dt.

Let ut, 0 ≤ t < T , be a continuous and strictly increasing adapted process with u0 = 0,
and we define the time-change v as the inverse of u. Suppose u is C1, and u′ is positive.
Then the same is true for v. Let X̂, M̂ , Â be the time-changes of X,M,A via v. Then from
Â = A ◦ v, we find that dÂs = µvsv

′
sds. From M̂ = M ◦ v, we find that [M̂ ] = [M ] ◦ v, and so

d[M̂ ]s = d[M ]vsv
′
sds = σ2

vsv
′
sds. So there is another Brownian motion B̂ such that X̂ satisfies

the SDE:
dX̂s = σvs

√
v′sdB̂s + µvsv

′
sds.

Note the the factor before dB̂s is
√
v′s, while the factor before ds is v′s.

A two-dimensional Brownian motion B = (B1, B2) may also be viewed as a complex Brow-
nian motion: Bt = B1

t + iB2
t .
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Theorem (Conformal Invariance of Complex Brownian Motion). Let U ⊂ C be open, and
let f : U → C be analytic and injective. Let B be a complex Brownian motion started from
some point in z0 ∈ U . Let τU be the first time that B exits U . Then f(Bt), 0 ≤ t < τU , is a
time-change of a complex Brownian motion started from f(z0), and killed when it exits f(U).

Proof. Write f = a + ib and X = f(B) = a(B1, B2) + ib(B1, B2). By Itô’s formula, a(B) and
b(B) satisfy the SDEs: (We write ax for ∂xa(B))

da(Bt) = (axdB
1
t + aydB

2
t ) +

1

2
axxd[B1]t +

1

2
ayyd[B2]t + axyd[B1, B2]t = axdB

1
t + aydB

2
t ;

db(Bt) = (bxdB
1
t + bydB

2
t ) +

1

2
bxxd[B1]t +

1

2
byyd[B2]t + bxyd[B1, B2]t = bxdB

1
t + bydB

2
t .

Here we used the fact that [B1] = [B2], [B1, B2] = 0, and axx+ayy = bxx+ byy = 0. So we have

d[a(Bt)] = ax(B)2dt+ ay(B)2dt = |f ′(B)|2dt, d[b(Bt)] = bx(B)2dt+ by(B)2dt = |f ′(B)|2dt,

d[a(Bt), b(Bt)] = (ax(B)bx(B) + ay(B)by(B))dt = 0.

Here we use that [B1]t = [B2]t = t, [B1, B2] = 0, a2
x+a2

y = b2x+ b2y = |f ′|2, and axbx+ayby = 0.

If we define ut =
∫ t

0 |f
′(Bs)|2ds, 0 ≤ t < τU , and let the time-change v be its inverse, then

the time-change of X = f(B) = a(B) + ib(B) via v, i.e., f(Bvs) = a(Bvs) + ib(Bvs) satisfies
[a(Bv·)]t = [b(Bv·)]t = dt, and [a(Bv·), b(bv·)] = 0. So f(Bvs), 0 ≤ s < τU , is a stopped complex
Brownian motion. Since Bt → ∂D as t→ τU , we have f(Bvs)→ ∂f(D) as s→ S = u(τU ). So
v(τU ) corresponds to the time that the complex Brownian motion in f(D) exits f(D). Then
we get the conclusion.

Corollary . For an open set U ⊂ C and z ∈ U , we use SD,z to denote the image of a complex
Brownian motion Bz started from z up to the time that it exits U , i.e, SD,z = {Bz

t : 0 ≤ t < τU}.
This is a random set, whose law satisfies conformal invariance. If f maps U conformally onto
U ′, and f(z) = z′, then f(SD,z) has the same law as SD′,z′.

Example . Brownian bridge is a semimartingale. This is not obvious from the original def-
inition: Xt = Bt − tB1, 0 ≤ t ≤ 1, where B is a Brownian motion. However, we know that
Xt, 0 ≤ t < 1, has the same distribution as the process Xt := (1 − t)Bt/(1−t), 0 ≤ t < 1, for a
Brownian motion B. We know that Bt/(1−t) is a local martingale since it is a time-change of
Brownian motion. Then its product with 1 − t is a semimartingale. We write Yt = Bt/(1−t).
Then [Y ]t = t/(1− t), 0 ≤ t < 1, and by Itô’s formula,

dXt = (1− t)dYt − Ytdt = dB̃t −
Xt

1− t
dt,

where B̃ := (1− t) · Y is a local martingale with [B̃]t =
∫ t

0 (1− s)2[Y ]′sds = t, 0 ≤ t < 1. So B̃
is a stopped Brownian motion
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Example (Bessel Processes). Let B = (B1, . . . , Bδ) be a Brownian motion in Rδ started from
some x0 6= 0. Let τ be the first time that B reaches 0. Then |B| =

√
(B1)2 + · · ·+ (Bδ)2

restricted to [0, τ) is a semimartingale.

We now do the calculation. Write f(x1, . . . , xδ) =
√
x2

1 + · · ·+ x2
δ . Then

∂jf =
xj

(x2
1 + · · ·+ x2

δ)
1/2

, ∂2
j f =

1

(x2
1 + · · ·+ x2

δ)
1/2
−

x2
j

(x2
1 + · · ·+ x2

δ)
3/2

, ∆f =
δ − 1

|x|
.

So

d|B| =
δ∑
j=1

∂jf(B)dBj +
1

2
∆f(B)dt =

δ∑
j=1

BjdBj

|B|
+

1

2

δ − 1

|B|
dt.

Since [
∑δ

j=1
Bj ·Bj
|B| ]t =

∑δ
j=1(B

j

|B|)
2[Bj ]t = t, by Lévy’s characterization of Brownian motion,∑δ

j=1
Bj ·Bj
|B| is a one-dimensional Brownian motion. Denote it by B̃. Then X = |B| satisfies

the stochastic differential equation:

dXt = dB̃t +
(δ − 1)/2

Xt
dt, X0 = |x0|.

The lifetime of X is τ = inf{t ≥ 0 : Xt = 0}.

Definition . Let B be a (one-dimensional) Brownian motion, x0 > 0, and δ ∈ R. The
semimartingale X that satisfies the stochastic differential equation (SDE)

dXt = dBt +
(δ − 1)/2

Xt
dt, X0 = x0, (3.2)

is called a Bessel process of dimension δ started from x0.

We may transform this SDE into an ODE. We let Yt = Xt −Bt. Then Yt satisfies

Y ′t =
(δ − 1)/2

Yt +Bt
, Y0 = x0.

The solution exists and is unique. Suppose [0, T ) is the maximal interval of solution. Then
during [0, T ), Yt + Bt > 0, and so Y is monotone increasing or decreasing depending on the
sign of δ − 1. If T < ∞, it can not happen that Yt → ∞ or Yt → −∞ as t ↑ T . If that is the
case, since limt↑T B(t) converges to B(T ), we see that for some ε > 0, 1/(Yt + Bt) is bounded
on (T − ε, T ). Then from the ODE, we get that Y is bounded on (T − ε, T ), a contradiction.
Since the solution of the ODE blows up at the time T , we must have Yt + Bt → 0 as t ↑ T .
By the ODE theory, we also know that the solution Y depends continuously on B. So Y is
adapted to B. Let Xt = Yt +Bt, 0 ≤ t < T . Then X is a semimartingale that solves the Bessel
SDE. We also know that, if T <∞, then limt↑T Xt = 0.

We claim that when T =∞, a.s. X is unbounded on [0,∞). If δ ≥ 1 and X ≤ R for some

R < ∞, then from Xt = x0 + Bt +
∫ t

0
(δ−1)/2
Xs

ds ≥ X0 + Bt we get Bt ≤ Xt − x0 ≤ R, which
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contradicts that a.s. lim supt→∞Bt = ∞. If δ < 1 and X ≤ R for some R < ∞, then we have
Xt ≤ X0 + Bt, which implies that Bt ≥ Xt − x0 ≥ −x0, t ≥ 0, which contradicts that a.s.
lim inft→∞Bt = −∞. So on the event T =∞, X is a.s. not bounded.

From the strong Markov property of Brownian motion and the property of solutions of ODE,
we see that a Bessel process also satisfies strong Markov property: if X is a Bessel process of
dimension δ, and τ is a stopping time less than the lifetime of X, then conditionally on Fτ , the
law of Xτ+· is a Bessel process started from Xτ . To see this, note that if X solves (3.2), then

Xτ+t = Xτ + (Bτ+t −Bτ ) +

∫ t

0

(δ − 1)/2

Xτ+s
ds, t ≥ 0,

and recall that the conditional law of B̃τ+· − B̃τ given Fτ is that of a Brownian motion.

Theorem (Transience and Recurrence of Bessel Processes). Let X be a Bessel process of
dimension δ started from x > 0. Let T be its lifetime. Then

(i) If δ ≥ 2, then a.s. T =∞.

(ii) If δ < 2, then a.s. T <∞ and limt→T Xt = 0.

(iii) If δ > 2, then a.s. limt→∞Xt =∞.

(iv) If δ = 2, then a.s. lim supt→∞Xt =∞ and lim inft→∞Xt = 0.

Remark . The strategy of the proof will be used many times later. First, we construct a local
martingale using Itô’s formula. Second, we obtain a true martingale from the local martingale
using stopping and boundedness. Third, we use the martingale to derive some equality or
inequality about the probability of some event.

Proof. Using Itô’s formula, we may construct a function f defined on R+ such that f(Xt) is a
local martingale. Since

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)dt = f ′(Xt)dBt + (f ′(Xt)

(δ − 1)/2

Xt
+

1

2
f ′′(Xt))dt,

we need f to make the drift term vanish, i.e., f ′(x) (δ−1)/2
x + 1

2f
′′(x) = 0. Solving this ODE, we

may choose f ′(x) = x1−δ. For δ = 2, we let f(x) = log(x); for δ 6= 2, let f(x) = x2−δ.
We use Px to denote the law of a Bessel process of dimension δ started from x, and use Ex

to denote the corresponding expectation. Fix R > x > r. Let τr = inf{t ≥ 0 : Xt ≤ r} and
σR = inf{t ≥ 0 : Xt ≥ R}. Then Px-a.s. τr ∧ σR < T , i.e., X does exit the interval (r,R). This
is because if T <∞, then Xt → 0 as t ↑ T , which implies that τr <∞; and if T =∞, then X
is a.s. unbounded, which implies that σR <∞.

Since Yt := f(Xt) is a local martingale, and is bounded before τr ∧σR, Y τr∧σR
t is a bounded

martingale. At the time τr ∧ σR, Xt equals either r or R. So

f(r)Px[τr < σR] + f(R)Px[σR < τr] = Ex[f(Xτr∧σR)] = f(X0) = f(x).
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Combining this formula with Px[τr < σR] + Px[σR < τr] = 1, we get

Px[τr < σR] =
f(R)− f(x)

f(R)− f(r)
, Px[σR < τr] =

f(x)− f(r)

f(R)− f(r)
. (3.3)

If δ ≥ 2, |f(r)| = r2−δ or | log(r)| → ∞ as r → 0+. So

Px[
⋂

r∈(0,x)

{τr < σR}] = lim
r↓0

Px[τr < σR] = 0.

If T < ∞, then limt↑T Xt = 0, and X([0, T )) is bounded. So there is R ∈ N with R > x such
that τr < σR for any r ∈ (0, x). This means that

{T <∞} ⊂
⋃

R∈N:R>x

⋂
r∈(0,x)

{τr < σR}.

Thus, Px[T <∞] ≤ P[
⋃
R∈N:R>x

⋂
r∈(0,x){τr < σR}] = 0. So we get (i).

If δ < 2, then f(r) = r2−δ → 0 as r → 0+ and f(R)→∞ as R→∞. So

Px[
⋂

r∈(0,x)

{τr < σR}] = lim
r↓0

Px[τr < σR] =
f(R)− f(x)

f(R)
,

and

Px[
⋃
R>x

⋂
r∈(0,x)

{τr < σR}] = lim
R→∞

f(R)− f(x)

f(R)
= 1.

This means that a.s. there is R > x such that for any r ∈ (0, x), τr < σR. This means that X
is bounded. So we get Px-a.s. T <∞ and limt→∞Xt = 0. This means that (ii) holds.

(iii) If δ > 2, then we already know that a.s. T = ∞ and X is unbounded on [0,∞), i.e.,
lim supt→∞Xt = ∞. Since Y = X2−δ is a positive local martingale, we have a.s. limt→∞ Yt
converges. From 2− δ < 0 and that a.s. lim supt→∞Xt =∞ we get a.s. lim inft→∞ Yt = 0. So
a.s. limt→∞ Yt = 0, which implies that limt→∞Xt =∞.

(iv) Let δ = 2. We know that Y = log(X) is a local martingale. If it does not hold that
lim supt→∞Xt =∞ and lim inft→∞Xt = 0, then it does not hold that lim supt→∞ Yt =∞ and
lim inft→∞ Yt = −∞. Since Y is a time-change of a Brownian motion up to some stopping time,
we then have a.s. limt→∞ Yt converges. So limt→∞Xt converges, which contradicts that X is
unbounded because T =∞.

Theorem (Transience and Recurrence of Multidimensional Brownian Motion). Let B =
(B1, . . . , Bd) be a Brownian motion in Rd, with d ≥ 2, started from some x0. For each x ∈ Rd
and r > 0, let τx = inf{t ≥ 0 : Bt = x} and τx,r = inf{t ≥ 0 : |Bt − x| ≤ r}. Then

(i) For all d ≥ 2, if x 6= x0, then a.s. τx =∞.
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(ii) If d ≥ 3, a.s. |Bt| → ∞; and for any x ∈ Rd and r > 0 such that |x − x0| > r, the
probability that τx,r =∞ is positive.

(ii) If d = 2, for any x ∈ Rd, a.s. lim inft→∞ |Bt − x| = 0.

Proof. This follows from the previous theorem and the fact that for any x 6= x0, |B − x| is a
Bessel process of dimension d started from |x−x0|. Note that {τx <∞} is the event that |B−x|
reaches 0, {τx,r <∞} is the event that |B − x| reaches r, and |Bt| → ∞ iff |Bt − x| → ∞.

Because of this theorem, we say that Brownian motions of dimensions ≥ 3 are transient, and
the Brownian motion of dimension 2 is neighborhood recurrent (but not actually recurrent).
By Fubini Theorem, we see that for d ≥ 2, a.s. the range of a Brownian motion of dimension d
has Lebesgue measure zero.

Example . We may now construct a positive local martingaleX, which is not a true martingale,
and for any t ≥ 0, Xt is integrable. Let B be a Brownian motion in R3 started from 0. Let
v = (1, 0, 0). We know that B a.s. does not pass through v. Since |B − v| is a Bessel process
of dimension 3, X := |B − v|−1 is a local martingale. We may show that E[Xt] < 1 = X0 by
calculation using the density of Bt. Note that the density of Bt is spherically symmetric. We
then use the fact that the average of 1/|x − v| over the surface |x| = R equals 1/|v| = 1 is
R < |v|; and equals 1/R if R > |v|. The first statement follows from that f(x) := 1/|x − v| is
harmonic on R3 \ {v}; the second statement follows from the harmonicity of the same f and
the fact that 1/|x− v| = R/|x− v̂|, if |x| = R, where v̂ = (R2, 0, 0).

Exercise Provide details of the above example.

Exercise Let Xt, 0 ≤ t < ∞, be a nonnegative local martingale with E[X0] < ∞. Prove the
following. (i) X is a supermartingale. Hint: Use Fatou’s lemma. (ii) If E[X∞] = E[X0], then
X is a uniformly integrable martingale. (iii) If for some stopping time T , E[XT ] = E[X0], then
XT is a uniformly integrable martingale.

Example (Brownian motion with a linear drift). Let B be a one-dimensional Brownian motion.
Let a > 0 and Xt = Bt− at. By the law of iterated logarithm, we have limt→∞Xt/t = −a < 0.
So limt→∞Xt = −∞. Since X0 = 0, ζ := supt≥0Xt is a positive finite random number. We
wish to find the distribution of ζ. For b > 0, let τb denote the first time that Xt ≥ b. Then
ζ ≥ b iff τb <∞. We now compute P[τb <∞]. The X satisfies the SDE:

dXt = dBt − adt.

We may find f such that f(X) is a local martingale. Since

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)dt = f ′(Xt)dBt + (

1

2
f ′′(Xt)− af ′(Xt))dt,
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we need f that satisfies 1
2f
′′(x)− af ′(x) = 0. Then f(x) = e2ax is a solution. Thus, Y := e2aX

is a local martingale. For t ≤ τb, we have Xt ≤ b, which implies that 0 < Yt ≤ e2ab. Thus, Y τb is
uniformly integrable, and we have 1 = Y0 = E[Yτb ]. Note that on the event τb <∞, Yτb = e2ab,
and on the event τb = ∞, from limt→∞Xt = −∞, we get Y∞ = 0. Thus, 1 = e2abP[τb <
∞] + 0 · P[τb =∞], which implies that P[τb <∞] = e−2ab. Then we get P[ζ ≥ b] = e−2ab. So ζ
has an exponential distribution with rate 2a.

Actually, we proved the following probability: for any a, b > 0,

P[Bt < at+ b,∀t ≥ 0] = 1− e−2ab.

4 Girsanov’s Theorem and Applications

At the beginning of the lecture, we fixed a space Ω, a right-continuous filtration F , and a
probability measure P. We also assumed that F is P-complete. When we did a time-change,
we changed the filtration. We now fix Ω and F , but change the probability measure using a
Girsanov transformation.

Consider two different probability measures P and Q on (Ω,F). Suppose for each t ≥ 0,
Q � P on Ft, i.e., A ∈ Ft and P [A] = 0 implies Q[A] = 0. We assume that F is P -complete.
Then it is also Q-complete. By Radon-Nikodym Theorem, there is a positive Ft-measurable
random variable Zt such that Q = Zt · P , i.e., Q[A] =

∫
A ZtdP for any A ∈ Ft. Such Zt is

P -a.s. unique, and we call it the RN process from P to Q.
The next lemma describes the relation between P -martingales and Q-martingales.

Lemma 16.15. Suppose Q = Zt · P on Ft for each t ≥ 0. Then Z is a P -martingale. It
is further P -uniformly integrable iff Q � P on F∞ := ∨t≥0Ft. Any adapted process X is a
Q-martingale iff XZ is a P -martingale.

Proof. For any adapted process X, we note that Xt is Q-integrable iff XtZt is P -integrable.
If this holds for all t ≥ 0, then X is a Q-martingale iff for any t > s ≥ 0 and A ∈ Fs,∫
AXtdQ =

∫
AXsdQ. Since A ∈ Fs ⊂ Ft, this equality becomes∫

A
XtZtdP =

∫
A
XsZsdP,

which is equivalent to that XZ is a P -martingale. Taking X ≡ 1, we see that Z is a P -
martingale.

If Q � P on F∞, let Z∞ ∈ F∞ be the RN derivative. For any t ≥ 0 and A ∈ Ft ⊂ F∞,
from Q = Zt · P on Ft and Q = Z∞ · P on F∞, we get Q(A) =

∫
A ZtdP =

∫
A Z∞dP . So we

have Zt = EP [Z∞|Ft], t ≥ 0, which implies that Z is uniformly integrable.
Now suppose Z is uniformly integrable. Then Zt → Z∞ as t → ∞ in L1, and Zt =

EP [Z∞|Ft] for all t ≥ 0. Especially, EP [Z∞] = EP [Zt] = 1. So we may define a probability
measure Q̃ on F∞ by Q̃ = Z∞ · P . For any t ≥ 0 and A ∈ Ft, since EP [Z∞] = Zt, Q̃[A] =∫
A Z∞dP =

∫
A ZtdP = Q[A]. So Q̃ agrees with Q on Ft for each t ≥ 0. By a monotone class

argument, we conclude that Q̃ = Q on F∞. So Q� P on F∞.
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By Theorem 6.27, every martingale on F has an rcll version. We now assume that Z is rcll.

Lemma 16.16. Suppose Q = Zt ·P on Ft for each t ≥ 0, and Z is rcll. Then for any stopping
time τ , Q = Zτ ·P on Fτ ∩{τ <∞}, i.e., if A ∈ Fτ and A ⊂ {τ <∞}, then Q[A] =

∫
A ZτdP .

Furthermore, an rcll process X is a Q-local martingale iff XZ is a P -local martingale.

Proof. By Optional Stopping Theorem, EP [Zt|Fτ∧t] = Zτ∧t for any t ≥ 0. Fix t ≥ 0 and
A ∈ Fτ∧t ⊂ Ft. We have

Q[A] =

∫
A
ZtdP =

∫
A
Zτ∧tdP.

Let A ∈ Fτ . For t ≥ 0, let At = A ∩ {τ ≤ t} ∈ Fτ∧t. Here we used that Fτ ∩ {τ ≤ t} =
Fτ ∩ {τ ≤ τ ∧ t} ⊂ Fτ∧t. So we have

Q[At] =

∫
At

Zτ∧tdP =

∫
At

ZτdP,

where in the last equality we used that τ = τ ∧ t on At ⊂ {τ ≤ t}. If A ⊂ {τ < ∞}, then
A =

⋃
t≥0At. By Monotone Convergence Theorem, we get Q[A] =

∫
A ZτdP .

To prove the last assertion, it suffices to show that for any stopping time τ , Xτ is a Q-
martingale iff (XZ)τ is a P -martingale. By the last paragraph, for any t ≥ 0, Q = Zτ∧t · P on
Fτ∧t. We also note that, under P , Xτ is an F-martingale iff Xτ is an Fτ -martingale, where
Fτt = Fτ∧t, t ≥ 0. To see this, note that since X is rcll and F-adapted, Xτ is both Fτ and
F-adapted. Now suppose Xτ is an F-martingale. Let t ≥ s ≥ 0 and A ∈ Fτ∧s. Then A ∈ Fs,
and so

∫
AX

τ
t dP =

∫
AX

τ
s dP . Thus, Xτ is also an Fτ -martingale. Next, suppose Xτ is an

Fτ -martingale. Let t ≥ s ≥ 0 and A ∈ Fs. Then A ∩ {s ≤ τ} = A ∩ {s ≤ τ ∧ s} ∈ Fτ∧s. So∫
A∩{s≤τ}

Xτ
t dP =

∫
A∩{s≤τ}

Xτ
s dP.

Since Xτ
t = Xτ

s = Xτ on the event {τ < s}, we have∫
A∩{τ<s}

Xτ
t dP =

∫
A∩{τ<s}

Xτ
s dP.

Combining the last two displayed formulas, we get
∫
AX

τ
t dP =

∫
AX

τ
s dP . Thus, Xτ is also an

F-martingale. Similarly, under Q, XτZτ = (XZ)τ is an F-martingale iff it is an Fτ -martingale.
Applying Lemma 16.15 to Fτ in place of F , we then get the desired statement.

Lemma 16.17. For every t ≥ 0, Q-a.s. infs∈[0,t] Zs > 0.

Proof. For any t ≥ 0, Q[{Zt = 0}] =
∫
{Zt=0} ZtdP = 0. So Q-a.s. Zt > 0. Let τn = inf{t ≥ 0 :

Zt < 1/n}, n ∈ N. Then each τn is a stopping time. By right-continuity of Z, Zτn ≤ 1/n on the
event τn < ∞. Moreover, we have infs∈[0,t] Zs = 0 iff τn ≤ t for each n. By Optional Stopping
Theorem,

Q[τn ≤ t] = EQ[1{τn≤t}] = EP [1{τn≤t}Zt] = EP [1{τn≤t}Zτn ] ≤ 1/n.

So we get Q[{infs∈[0,t] Zs = 0}] = limn→∞Q[τn ≤ t] = 0.
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Theorem 16.19 (Girsanov Theorem). Suppose Q = Zt · P on Ft for each t ≥ 0, and Z is

continuous. Then for any continuous local P -martingale M , the process M̃ = M−Z−1 ·[M,Z]P

is a continuous Q-local martingale.

Proof. First assume that Z > 0 and Z−1 is bounded. Then M̃ is a continuous P -semimartingale,
and by Proposition 15.15 (Chain Rule) and Theorem 15.17 (Product Formula),

M̃Z − M̃0Z0 = M̃ · Z + Z · M̃ + [M̃, Z]P

= M̃ · Z + Z ·M − [M,Z]P + [M̃, Z]P = M̃ · Z + Z ·M.

So M̃Z is a continuous P -local martingale. By Lemma 16.16, M̃ is a continuous local Q-
martingale.

For general case, define τn = inf{t ≥ 0 : Zt ≤ 1/n}. Then Zτn > 0 and (Zτn)−1 is bounded.

Since M̃ τn = M τn − (Zτn)−1 · [M τn , Zτn ]P , by the last paragraph, M̃ τn is a Q-local martingale.

By Lemma 16.17, Q-a.s. τn ↑ ∞. So by Lemma 15.1, M̃ is a Q-local martingale.

From now on, we assume that Z is continuous. We add superscript P or Q to [X], L(X)
and V ·X to indicate the dependence on P or Q.

Proposition 16.20. Any P -semimartingale X is also a Q-semimartingale, and for any semi-
martingales X and Y , Q-a.s. [X]P = [X]Q and [X,Y ]P = [X,Y ]Q. Furthermore, for any
V ∈ Lp(X), Q-a.s. V ∈ LQ(X), and (V ·X)P = (V ·X)Q. Finally, if M is a P -local martin-

gale, then Q-a.s. ˜(V ·M) = V · M̃ whenever either side exists.

Proof. Let M +A be the P -decomposition of X. Since M = M̃ +Z−1 · [M,Z]P , M̃ is a Q-local

martingale, and Z−1 ·[M,Z]P is a finite variation process, we see that X = M̃+Z−1 ·[M,Z]P +A
is a Q-semimartingale. From Proposition 15.18, we see that Q-a.s., [X]P = [X]Q. In fact, for
any fixed t0 > 0 and a sequence ∆n = {0 = tn0 < · · · < tnkn = t0} of partitions of [0, t0] with

mesh size tending to 0, we have T∆n
X :=

∑kn
j=1 |Xtnj

−Xtnj−1
|2 tends to [X]Pt0 in probability w.r.t.

P . Since Q � P on Ft0 , the convergence also holds w.r.t. Q. By polarization, we then have
Q-a.s. [X,Y ]P = [X,Y ]Q. From now on, we drop the superscript P or Q after [·].

Let V ∈ LP (X). Then V ∈ LP (A) and V 2 ∈ LP ([M ]) = LP ([M̃ ]). For a finite variation
process A, L(A) does not depend on the underlying probability. So LP (A) = LQ(A) and

LP ([M̃ ]) = LQ([M̃ ]). Thus, V ∈ LQ(A) ∩ LQ(M̃). To prove that V ∈ LQ(X), it remains to

show that Q-a.s. V ∈ L(Z−1·[M,Z]). This is true because Q-a.s. Z > 0, V 2 ∈ L([M̃ ]) = L([M ]),
and by Proposition 15.10,∫ t

0
|VsZ−1

s ||d[M,Z]s| ≤
(∫ t

0
V 2
s d[M ]s

)
·
(∫ t

0
Z−2
s d[Z]s

)
<∞, ∀t ≥ 0.

We now prove that Q-a.s., (V · X)P = (V · X)Q. The equality is trivial if X is a finite
variation process. It remains to prove the case that X is the local martingale M . Recall
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that (under any measure) if M is a local martingale, then V ·M is the local martingale such
that for any local martingale N , [V ·M,N ] = V · [M,N ]. The statement is also true if N is
any semimartingale since the finite variation part of N does not contribute to the quadratic
covariation. Now M̃ = M−Z−1 · [M,Z] is a Q-local martingale. To prove (V ·M)Q = (V ·M)P ,

it suffices to show that (V ·M̃)Q = (V ·M)P−V ·(Z−1 ·[M,Z]). Since M̃ is a Q-local martingale,
for that purpose, we need to show (i) (V ·M)P −V · (Z−1 · [M,Z]) is a Q-local martingale; and
(ii) for any semimartingale N ,

[(V ·M)P − V · (Z−1 · [M,Z]), N ] = V · [M̃,N ].

For (i), by Lemma 16.16 we need to show that Z((V ·M)P − V · (Z−1 · [M,Z])) is a P -local
martingale. This follows from a straightforward Itô’s calculation. The finite variation part
comes from the first term is [Z, V ·M ] = V · [Z,M ], while the finite variation part comes from
the second term is −Z · (V · (Z−1 · [M,Z])) = −V · [M,Z]. So (i) is proved. Part (ii) also follows
from a straightforward calculation:

[(V ·M)P − V · (Z−1 · [M,Z]), N ] = [(V ·M)P , N ] = V · [M,N ] = V · [M̃,N ].

From now on, we drop superscripts P and Q after stochastic integral.
Suppose M is a P -local martingale. Then M̃ is a Q-local martingale, and so is V · M̃ . We

know that V ·M − V · M̃ = V Z−1 · [M,Z] is a finite variation process. We also know that

V ·M − Ṽ ·M is a finite variation process. So the difference of the two Q-local martingales

V · M̃ and Ṽ ·M differ by a finite variation process. Thus, Q-a.s. ˜(V ·M) = V · M̃ .

We now explain how to remove the drift term of a semimartingale using Girsanov Theorem.

Theorem . Suppose B is a Brownian motion under P , and f ∈ L(B), i.e., f is a progressive
and

∫ t
0 f

2
s ds <∞ for all t ≥ 0. Recall that the E(f ·B) given by

E(f ·B)t = exp
(∫ t

0
fsdBs −

1

2

∫ t

0
f2
s ds
)

is a local martingale. Suppose further that E(f · B) is a uniformly integrable true martingale.
Then E[E(f ·B)∞] = 1, and we may define another probability measure Q by dQ = E(f ·B)∞dP .
Let ht =

∫ t
0 fsds. Then under the new measure Q, B̃ = B − h is a Brownian motion.

Proof. Let Z = E(f ·B). Recall that we have Z = (fZ) ·B. So Z−1 · [B,Z] = Z−1 · (fZ · (t)) =
f · (t) = h. Here we use (t) to denote the process Xt = t for all t ≥ 0. Since Zt = E[Z∞|Ft],
we have Q = Zt · P on Ft for each t ≥ 0. So by Theorem 16.19, B̃ = B − h = B − Z−1 · [B,Z]
is a local martingale under Q. By Theorem 16.20, [B̃]Q = [B]Q = [B]P = (t). By Levy’s
characterization of Brownian motion, B̃ is a Brownian motion under Q.

Remark . The above theorem also holds for d-dimensional, in which case B = (B1, . . . , Bd) is
a d-dimensional Brownian motion, f = (f1, . . . , fd), h = (h1, . . . , hd), and hjt =

∫ t
0 f

j
sds. Now
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the RN process Z = E(f · B), where f · B is understood as
∑d

j=1 f
j · Bj . We have Z − Z0 =∑

j f
jZ ·Bj . So Z−1 · [Bj , Z] = fj ·(t) = hj . Thus, for any j, B̃j := Bj−hj = Bj−Z−1 · [Bj , Z]

is a local martingale. Since [B̃j , B̃k] = [Bj , Bk] = δj,k(t), by Levy’s characterization, B̃ = B−h
is a d-dimensional Brownian motion under Q.

When the conditions in the above theorem is satisfied, under the new measure Q, which is
absolutely continuous w.r.t. P , the original Brownian motion B is no longer a Brownian motion.
Instead, B̃ := B−h is a Brownian motion. We now let PB denote the law of a Brownian motion;
and let PB−h denote the law of B̃ = B − h under P . This means PB−h = P ◦ B̃−1. Since B̃
is a Brownian motion under Q, we have Q ◦ B̃−1 = PB. Since Q � P , we conclude that
PB � PB−h. If we further know that P -a.s. E(f · B)∞ > 0, then we also have P � Q, and so
PB−h � PB. In that case, we can say that B − h satisfies every almost surely property of a
Brownian motion. For example, we can say that B − h is a.s. Hölder continuous of any order
less than 1/2, a.s. lim supt→∞Bt − ht =∞ and lim inft→∞Bt − ht = −∞, and a.s.

lim sup
t↓0

Bt − ht√
2t log log(1/t)

= lim sup
t→∞

Bt − ht√
2t log log(t)

= 1.

We may loose the conditions on f . Now we still assume that f ∈ L(B), but do not assume
that Z = E(f · B) is a uniformly integrable. Then in general, the law of B − h may not be
absolutely continuous w.r.t. that of B. For example, if h = (t), then the law of B − h and the
law of B are singular to each other. To see this, note that by the law of iterated logarithm, we
have a.s. limt→∞Bt/t = 0 and limt→∞(Bt − t)/t = −1. But we may use localization method
to conclude that the path of B − h is locally similar to that of B.

For n ∈ N, let τn = inf{t ≥ 0 : | logZt| ≥ n}. Then τn ↑ ∞, and for each n, Zτn =
E(1[0,τn]f ·B) is a bounded martingale. So EP [Zτn ] = 1. Then we may define a new probability
measure Qn by dQn = ZτndP . Now Qn � P and P � Qn because Zτn > 0. Under the new
measure Qn, Bt −

∫ t
0 1[0,τn]fsds = Bt − ht∧τn is a Brownian motion. So we know that the law

of B − h·∧τn is absolutely continuous w.r.t. that of B. Since B − h·∧τn agrees with B − h up to
τn, we know that PB−h � PB on Fτn . Since τn →∞, we know that B − h satisfies the almost
surely local property of B. For example, from that B is a.s. locally Hölder continuous on R+,
we can conclude that B − h is also a.s. Hölder continuous on R+.

For the completeness of the theory, we need a criterion to check when E(f ·B) is a uniformly
integrable martingale so that we do not need to do localization.

Theorem 16.23 (Nivikov condition). Let M be a local martingale with M0 = 0 and

E[e[M ]∞/2] <∞.

Then E(M) = exp(M − 1
2 [M ]) is a uniformly integrable martingale.

If M =
∑d

j=1 σ
j · Bj for a Brownian motion B = (B1, . . . , Bd), then the Nivikov condition

becomes
E[e

1
2

∫∞
0

∑d
j=1(σjs)2ds] <∞.
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Lemma . Let B be a Brownian motion. Then E(B)t = eBt−t/2 is a martingale.

Proof. Fix t > s ≥ 0. Since Bt −Bs |= Fs, we have eBt−Bs |= Fs. So

E[eBt−Bs |Fs] = E[eBt−Bs ] =

∫
R

exe
− x2

2(t−s)√
2π(t− s)

dx = e(t−s)/2,

which implies that E[eBt−t/2|Fs] = eBs−s/2.

Lemma 16.22. Suppose Ω = C(R+,R), and P0 is the law of Brownian motion. This means
that the coordinate process under P0 is a Brownian motion. Let B denote this coordinate process.
Let F be the P0-complete filtration generated by the coordinate process. Let Pt denote the law
of B + t. Then for any t ≥ 0, Pt = E(B)t · P0 on Ft.

Proof. Let Z = E(B). Then Z is a martingale by the lemma. Fix t0 ≥ 0. Then Zt0 = E(1[0,t0]B)
is a uniformly integrable martingale. If we define a new probability measure Qt0 on Ω by

dQt0/dP0 = Zt0∞ = Zt0 , then under the new measure Qt0 , B̃
(t0)
t = Bt−

∫ t
0 1[0,t0](s)ds = Bt−t ∧ t0

is a Brownian motion. In other words, under Qt0 , up to the time t0, B is the sum of a Brownian
motion B̃ and the function t, i.e., the law of B under Qt0 is that of B + t under P . Since
Qt0 = Zt0 · P0, and Zt0 is Ft0-measurable, we get the conclusion.

Theorem 16.23 (Nivikov condition). Let M be a local martingale with M0 = 0 and

E[e[M ]∞/2] <∞.

Then E(M) = exp(M − 1
2 [M ]) is a uniformly integrable martingale.

Lemma 16.24. Let B be a Brownian motion. Let τ be a stopping time such that E[eτ/2] <∞.
Then E[E(B)τ ] = E[eBτ−

τ
2 ] = 1.

Proof. We may suppose that Ω = C(R+,R), B is the coordinate process, and P is the law
of a Brownian motion (so that B is a Brownian motion under P). Let Q denote the law of a
Brownian motion plus the function t. From Lemma 16.22, for any t ≥ 0, Q = Zt ·P on Ft, where
Zt := eBt−t/2. By Lemma 16.16, if τ is a stopping time, then Q� P on Fτ ∩{τ <∞}, and the
Radon-Nikodym derivative is Zτ . If τ is such that Q[τ <∞] = 1, we then have E[Zτ ] = 1.

Fix b > 0 and let τb be the first time that Bt− t = −b. Then Q[τb <∞] = 1 since under Q,
Bt − t has the law of a Brownian motion, which is recurrent. So we get

E[exp(Bτb −
τb
2

)] = E[Zτb ] = 1.

Since Z is a supermartingale, from E[Zτb ] = 1 we know that Zτb is a uniformly integrable
martingale. Thus, by Optional Stopping Theorem,

1 = E[Zτbτ ] = E[Zτb∧τ ] = E[1{τ≤τb}e
Bτ−τ/2] + E[1{τb<τ}e

Bτb−τb/2]. (4.1)
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By the definition of τb, Bτb − τb/2 = τb − b− τb/2 = τb/2− b. So

E[1{τb<τ}e
Bτb−τb/2] = e−bE[1{τb<τ}e

τb/2] ≤ e−bE[1{τb<τ}e
τ/2]→ 0

as b→∞ because E[eτ/2] <∞. Letting b→∞ in (4.1) we get E[eBτ−τ/2] = 1.

Proof of Theorem 16.23. Let ut = [M ]t, S = sup{ut : t ≥ 0} = [M ]∞, and vs = inf{t ≥ 0 :
ut > s}. Then in an enlarged probability space Mvs , 0 ≤ s < S, extends to a Brownian motion
B, and S is a stopping time for B. By the assumption, we have E[eS/2] <∞. By Lemma 16.24,
E[eM∞−[M ]∞/2] = E[eBS−S/2] = 1. Thus, eM−[M ]/2 is a uniformly integrable martingale.

5 Stochastic Differential Equations

A stochastic differential equation (SDE) has the following general form.

dXi
t =

δ∑
j=1

σij(t,X)dBj
t + bi(t,X)dt, 1 ≤ i ≤ d.

or equivalently,

Xi
t −Xi

0 =
∑
j

∫ t

0
σij(s,X)dBj

s +

∫ t

0
bi(s,X)ds, 1 ≤ i ≤ d.

Here X = (X1, . . . , Xd) is a continuous vector semimartingale and B = (B1, . . . , Bδ) is a δ-
dimensional Brownian motion. The σij and bi, 1 ≤ i ≤ d, 1 ≤ j ≤ δ, are real valued functions
defined on

R+ × C(R+,Rd),

which are progressive in the sense that for any fixed t0 > 0, σij and bi restricted to the subspace

[0, t0]× C(R+,Rd)

are measurable w.r.t. B([0, t0])×Fct0 , where Fct0 is the σ-algebra on C(R+,R) generated by the
coordinate process up to t0. This means that, for a fixed t, the values of σij(t, w) and bi(t, w)

depend only on the values of w before t. Note that there are no randomness in σij and bi. We

write σ = (σij) and b = (bi), which are Rd×δ-valued and Rd-valued, respectively. We often write
the SDE in the vector form:

dXt = σ(t,X) ◦ dBt + b(t,X)dt, (5.1)

or

Xt −X0 =

∫ t

0
σ(s,X) ◦ dBs +

∫ t

0
b(s,X)ds. (5.2)
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A simple case of σ and b is that there exist measurable functions σ : R+ × Rd → Rd×δ and
b : R+ × Rd → Rd such that σ(t, w) = σ(t, wt) and b(t, w) = b(t, wt). If σ and b further
do not depend on t, then the equation is said to be time-homogeneous. There are also other
possibilities such as b(t, w) =

∫ t
0 wsds.

We call (5.1) or (5.2) SDE(σ, b). If we further require that X0 = x for some x ∈ Rd, then
the equation is called SDEx(σ, b). The x may also be replaced by a random variable ζ, which
must be independent of B, or a probability measure µ on Rd.

There are two kinds of solutions of SDE(σ, b): strong solution and weak solution. For both
kinds of solutions, we are given the functions σ and b.

For the strong solution, besides σ and b, we are also given a d-dim Brownian motion B on
some probability space and an initial value, which is a deterministic point x ∈ Rd or a random
vector ζ in Rd independent of B. We require that the solution X to be adapted to FB,X0 , the
complete filtration generated by B and X0. The stochastic integral is also w.r.t. FB,X0 .

For the weak solution, besides σ, b, we are only given the initial value x ∈ Rd or an initial
distribution µ on Rd. We are not given the Brownian motion or the probability space. A weak
solution of the SDEµ(σ, b) is a package:

(Ω,F ,P), B, X,

where (Ω,F ,P) is a filtered space such that F is complete, B is a d-dim F-Brownian motion,
X is a d-dim F-semimartingale with X0 = x or X0 ∼ µ, and (5.2) a.s. holds w.r.t. the filtration
F . This mean that the space and the Brownian motion are also parts of the solution.

The relations between the two kinds of solutions are (i) a strong solution is always a weak
solution; (ii) if (F , B,X) is a weak solution, and X is FB,X0-adapted, then X is a strong
solution. This condition does not hold in general.

We will discuss the uniqueness of the solution. The uniqueness of the strong solution means
that if X and X ′ both solve SDE(σ, b) on [0,∞) w.r.t. the same Brownian motion and the same
initial value, then a.s. X = X ′. We may allow that a solution to have a finite lifetime. In that
case, the uniqueness means that if Xt, 0 ≤ t < T , and X ′t, 0 ≤ t < T ′, are solutions of the
same equation with the same Brownian motion and the same initial value, then a.s. X = X ′

on [0, T ∧ T ′). If the uniqueness holds, then for a given Brownian motion and initial value,
there exists an a.s. unique solution with the maximal interval so that all other solutions are
its restrictions. There are two kinds of uniqueness for weak solutions. We say that pathwise
uniqueness holds if for any two weak solutions (B,X) and (B′, X ′) of SDE(σ, b) defined on the
same filtered space (Ω,F ,P) such that B = B′ and X0 = X ′0, we have a.s. X = X ′ (or they
a.s. agree on the common time interval). We say that uniqueness in law holds if any two weak
solutions (B,X) and (B′, X ′) of SDEµ(σ, b) with the maximal interval have the same joint finite
dimensional distribution.

Example (A trivial example). Let d = δ, σij ≡ δi,j and bi ≡ 0. The SDE(σ, b) becomes

dXt = dBt.

For ζ independent of B, X = ζ +B is a strong solution of the SDE with initial value ζ.
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Example . Let d = δ = 1, σ(t, w) = wt, and b ≡ 0. The SDE(σ, b) becomes

dXt = XtdBt.

The stochastic exponential E(B)t = eBt−t/2 is a strong solution of the SDE with initial value
1. For ζ independent of B, X = ζE(B) is a strong solution of the SDE with initial value ζ.

Example . Bessel process of dimension δ is the solution of the SDE:

dXt = dBt +
δ − 1

2Xt
dt.

We got the existence and uniqueness of the solution by transforming it into an ODE.

Example (Brownian motion on the unit circle). Let B be a 1-dimensional Brownian motion.
Let X = cos(B) and Y = sin(B). Then (X,Y ) takes values in the unit circle {(x, y) : x2 + y2 =
1}, and the argument runs as a Brownian motion. It is called a Brownian motion on the unit
circle. Itô’s formula shows that they satisfy the SDE:

dXt = −YtdBt −
1

2
Xdt;

dYt = XtdBt −
1

2
Y dt.

On the other hand, if (X,Y ) solves the SDE, then X2 + Y 2 is constant because

d(X2
t + Y 2

t ) = 2XtdXt + 2YtdYt + Y 2
t dt+X2

t dt = 0.

Example (A weak solution not a strong solution). Let d = δ = 1. Let W be a 1-dimensional
Brownian motion. Let

Bt =

∫ t

0
sign(Wt)dWt, t ≥ 0,

where sign(x) ∈ {1, 0,−1} depending on the sign of x. Then B is a local martingale with
[B]t =

∫ t
0 sign(Ws)

2ds = t, t ≥ 0. Here we used the fact that the set B−1(0) has Lebesgue
measure zero. By Levy’s characterization of Brownian motion, B is also a Brownian motion.
Since Wt =

∫ t
0 sign(Wt)dBt, t ≥ 0, (W,B) is a weak solution of

dW = sign(W )dB, W (0) = 0.

Here the underlying filtration is FW generated byW . This solution does not satisfy the pathwise
uniqueness. In fact, (−W,B) is also a weak solution.

We claim that W is not a strong solution, i.e., W is not adapted to the filtration FB
generated by B. For the proof take a sequence of convex even C2 functions Fn such that
Fn(x) = |x| if |x| ≥ 1/n, and for each x ∈ R, Fn(x) ↓ |x|. Let fn = F ′n. Then |fn| ≤ 1 and
fn(x)→ sign(x) on R. By Itô’s formula, for any n,

Fn(Wt)− Fn(W0) =

∫ t

0
fn(Ws)dWs +

1

2

∫ t

0
F ′′n (Ws)ds, t ≥ 0.
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Let n→∞. Then Fn(Wt)−Fn(W0)→ |Wt|. By dominated convergence theorem for stochastic
integral,

∫ t
0 fn(Ws)dWs →

∫ t
0 sign(Ws)dWs = Bt. Since F ′′n is even, we get

Bt = |Wt| − lim
n→∞

1

2

∫ t

0
F ′′n (|Ws|)ds, t ≥ 0.

This means that B is adapted to the filtration F |W | generated by |W |. If W is adapted to FB,
then FW ⊂ FB ⊂ F |W | ⊂ FW . We should have FW = F |W |. However, for a Brownian motion
W , FW 6= F |W | because for any fixed t0 > 0, then event {W (t0) > 0} belongs to FW but not
F |W |. This is a contradiction.

Remark . Let Lt = limn→∞
1
2

∫ t
0 F
′′
n (|Ws|)ds, t ≥ 0. Then

|W | = B + L.

Since for each n, F ′′n ≥ 0, L is increasing. So L is a finite variation process, |W | is a semimartin-
gale with

d|Wt| = dBt + dLt = sign(Wt)dWt + dLt.

The equation is called Itô-Tanaka equation, and L is called the local time of the Brownian
motion W . Since F ′′n (x) for |x| ≥ 1/n, we know that L stays constant on each open interval on
which W 6= 0. So it increases only at the time when W = 0.

Example . Consider the d-dimensional SDE

dXt = dBt + b(t,Xt)dt, (5.3)

where b : [0,∞) × Rd → Rd. Under certain conditions, we may use Girsanov Theorem to
construct a weak solution. First let B be a Brownian motion on (Ω,F ,P). Define a local
martingale Z by

Zt = exp
(∫ t

0

d∑
j=1

bj(s,Bs)dB
j
s −

1

2

d∑
j=1

∫ t

0
bj(s,Bs)

2ds
)
, t ≥ 0.

Suppose that there are conditions on b such that
∫ t

0

∑d
j=1 b

j(s,Bs)dB
j
s satisfies the Nivikov

condition, i.e.,

E
[

exp
(1

2

∫ ∞
0
‖b(s,Bs)‖2ds

)]
<∞.

This is the case, for example, if there is a function b ∈ L2(R+, λ) such that ‖b(t, x)‖ ≤ |b(t)|
for each t ≥ 0 and x ∈ Rd. Then Z is a uniformly integrable martingale. We define another
probability measure P̃ on (Ω,F) such that P̃ = Z∞ ·P. Then P̃ = Zt ·P on Ft for each t ≥ 0. By
Girsanov Theorem, under the new measure P̃, B̃t := Bt−

∫ t
0 b(s,Bs)ds, t ≥ 0, is a d-dimensional

Brownian motion. Now B and B̃ satisfy

dBt = dB̃t + b(t, Bt)dt.

Thus, (B, B̃) on (Ω,F , P̃) is a weak solution of (5.3).
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5.1 Strong solution: existence and uniqueness

We now consider the existence and uniqueness of the strong solution of the following SDE

Xt −X0 =

∫ t

0
σ(s,Xs) · dBs +

∫ t

0
b(s,Xs)ds, (5.4)

where σ = (σij) ∈ C(R+ × Rd,Rd×δ) and b = (bi) ∈ C(R+ × Rd,Rd). The theory parallels the
main existence/uniqueness result for ordinary differential equations.

We use L2 to denote the space of random vectors ζ in Rd such that E[‖ζ‖2] <∞. The norm
of ζ ∈ L2 is denoted by ‖ζ‖2 = E[‖ζ‖2]1/2.

Theorem 18.3 (A simplified version). Fix a d-dimensional Brownian motion B. Suppose that
there is K > 0 such that for any t ∈ R+ and x, y ∈ Rd,

‖σ(t, x)‖+ ‖b(t, x)‖ ≤ K(1 + ‖x‖); (5.5)

‖σ(t, x)− σ(t, y)‖+ ‖b(t, x)− b(t, y)‖ ≤ K‖x− y‖. (5.6)

Then we have the following.

(i) For any ζ ∈ L2 independent of B, a strong solution Xζ of SDEζ(σ, b) (with initial value

ζ) exists, and Xζ
t ∈ L2 for any t ≥ 0.

(ii) The strong solution in (i) is unique, and a weak solution of SDEζ(σ, b) with (initial value)
ζ ∈ L2 is a strong solution.

(iii) We may choose a version of the solution Xx with initial value x for each x ∈ Rd such that
Rd×R+ 3 (x, t) 7→ Xx

t is continuous. This means that the solution depends continuously
on the initial value.

(iv) Let Xx
t , x ∈ Rd, t ∈ R+, be as in (iii). Then for any ζ ∈ L2, Xx|x=ζ is a strong solution

of SDEζ(σ, b). In other words, the solution Xζ in (i) a.s. equals Xx|x=ζ .

Lemma 18.4 (Gronwall). Let a, b > 0. Let f ∈ C(R+,R+) such that

f(t) ≤ a+ b

∫ t

0
f(s)ds, t ≥ 0.

Then f(t) ≤ aebt for all t ≥ 0.

Proof. Let F (t) =
∫ t

0 f(s)ds, t ≥ 0. Then F ∈ C1(R+,R), and F ′ = f ≤ a + bF . Let
G(t) = e−btF (t). Then G′(t) = e−bt(F ′(t) − bF (t)) ≤ ae−bt and G(0) = 0. So G(t) ≤∫ t

0 ae
−bsds = a(1−e−bt)/b. Thus, F (t) = ebtG(t) ≤ a(ebt−1)/b, and f(t) ≤ a+bF (t) ≤ aebt.

61



Let F be a filtration, and B be an F-Brownian motion. For any continuous F-adapted
process X in Rd, we define an F-vector semimartingale S(X) in Rd by

S(X)t =

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs) ◦ dBs, t ≥ 0.

If X = X0 +S(X), then (X,B) is a weak solution of SDE(σ, b). If we further have F = FB,X0 ,
then X is a strong solution.

Lemma 18.5. Let X and Y be adapted continuous processes in Rd such that Xt, Yt ∈ L2 for
all t ≥ 0. (i) If σ and b satisfy (5.5), then

E[ sup
0≤s≤t

‖S(X)s‖2] ≤ 4K2(t+ 4)(t+

∫ t

0
E[‖Xs‖2]ds). (5.7)

(ii) If σ and b satisfy (5.6), then

E[ sup
0≤s≤t

‖S(X)s − S(Y )s‖2] ≤ 2K2(t+ 4)

∫ t

0
E[‖Xs − Ys‖2]ds. (5.8)

Proof. (i) Using that (x+ y)2 ≤ 2x2 + 2y2, we get

E[ sup
0≤s≤t

‖S(X)s‖2] ≤ 2E[ sup
0≤s≤t

‖
∫ s

0
b(u,Xu)du‖2] + 2E[ sup

0≤s≤t
‖
∫ s

0
σ(u,Xu) ◦ dBu‖2].

For the first term on the RHS, since ‖b(t, x)‖ ≤ K(1 + ‖x‖),

E[ sup
0≤s≤t

‖
∫ s

0
b(u,Xu)ds‖2] ≤ E[(

∫ t

0
‖b(s,Xs)‖ds)2] ≤ E[t

∫ t

0
‖b(s,Xs)‖2ds]

= t

∫ t

0
E[‖b(s,Xs)‖2]ds ≤ t

∫ t

0
E[K2(1 + ‖Xs‖)2]ds ≤ 2K2t

∫ t

0
(1 + E[‖Xs‖2]ds). (5.9)

For the second term on the RHS, since ‖σ(t, x)‖ ≤ K(1 + ‖x‖), using Doob’s martingale
inequality, we get

E[ sup
0≤s≤t

‖
∫ s

0
σ(u,Xu) ◦ dBu‖2] ≤ 4E[‖

∫ t

0
σ(s,Xs) ◦ dBs‖2]

= 4E[
d∑
i=1

(

∫ t

0

δ∑
j=1

σij(s,Xs)dB
j
s)

2] = 4
d∑
i=1

E[

∫ t

0

δ∑
j=1

σij(s,Xs)
2ds]

= 4

∫ t

0
E[‖σ(s,Xs)‖2]ds ≤ 4

∫ t

0
E[(K(1 + ‖Xs‖))2]ds ≤ 8K2

∫ t

0
(1 + E[‖Xs‖2])ds. (5.10)

Combining (5.9) with (5.10) we get (5.7).
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(ii) We have

E[‖S(X)t − S(Y )t‖2] ≤ 2E[‖
∫ t

0
b(s,Xs)− b(s, Ys)ds‖2] + 2E[‖

∫ t

0
(σ(s,Xs)− σ(s, Ys)) ◦ dBs‖2].

For the first term, using a similar argument as in (5.9) and that ‖b(t, x)− b(t, y)‖ ≤ K‖x− y‖,
we get

E[‖
∫ t

0
b(s,Xs)− b(s, Ys)ds‖2] ≤ K2t

∫ t

0
E[‖Xs − Ys‖2]ds.

For the second term, using a similar argument as in (5.10) and that ‖σ(t, x) − σ(t, y)‖ ≤
K‖x− y‖, we get

E[‖
∫ t

0
(σ(s,Xs)− σ(s, Ys)) ◦ dBs‖2] ≤ 4K2

∫ t

0
E[‖Xs − Ys‖2]ds.

Combining the two displayed formulas, we get (5.8).

Corollary . Suppose σ and b satisfy (5.5,5.6). If (X,B) is a weak solution of (5.4) such that
X0 ∈ L2, then for any t ≥ 0,

E[‖Xt‖2] ≤ (2E[‖X0‖2] + 8K2(t+ 4)t)e8K2(t+4)t <∞, (5.11)

and so Xt ∈ L2. If (Y,B) is another weak solution of (5.4) with Y0 ∈ L2, then for any t ≥ 0,

E[ sup
0≤s≤t

‖Xs − Ys‖2] ≤ 2E[‖X0 − Y0‖2]e4K2(t+4)t. (5.12)

In particular, the weak solution of (5.4) with L2-initial value satisfies pathwise uniqueness.

Proof. Fix R > 0. Let τR be the first t ≥ 0 such that ‖Xt‖ ≥ R. Let σR(t, x) = 1‖x‖<Rσ(t, x)
and bR(t, x) = 1‖x‖<Rb(t, x). Then XτR is a solution of SDEX0(σR, bR), which means that
Xt∧τR = X0 + SR(X·∧τR), where

SR(X)t :=

∫ t

0
bR(s,Xs)ds+

∫ t

0
σR(s,Xs) ◦ dBs, t ≥ 0.

Note that Xt∧τR ∈ L2 for all t ≥ 0 because ‖Xt∧τR‖ ≤ R∨‖X0‖. Since σR and bR satisfy (5.5),
by Lemma 18.5 (i), (5.7) holds for SR. Since Xt∧τR = X0 + SR(X·∧τR)t, we get

E[‖Xt∧τR‖
2] ≤ 2‖X0‖2 + 2E[‖SR(X·∧τR)t‖2] ≤ 2‖X0‖2 + 8K2(t+ 4)(t+

∫ t

0
E[‖Xs∧τR‖

2]ds.

Let fR(t) = E[‖Xt∧τR‖2]. Then fR is continuous by Dominated convergence theorem. By the
displayed formula, we have for any T > 0,

fR(t) ≤ 2‖X0‖2 + 8K2(T + 4)T + 8K2(T + 4)

∫ t

0
f(s)ds, 0 ≤ t ≤ T.
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By Gronwall’s lemma, fR(T ) ≤ (2‖X0‖2 + 8K2(T + 4)T )e8K2(T+4)T , T ≥ 0. Since Xt∧τR → Xt

as R→∞, by Fatou’s lemma, we get (5.11), so Xt ∈ L2 for all t ≥ 0.
Since Xt = X0 + S(X)t and Yt = Y0 + S(Y )t, we get

E[ sup
0≤s≤t

‖Xs − Ys‖2] ≤ 2E[‖X0 − Y0‖2] + 2E[ sup
0≤s≤t

‖S(X)s − S(Y )s‖2]

≤ 2E[‖X0 − Y0‖2] + 4K2(T + 4)

∫ t

0
E[‖Xs − Ys‖2]ds, 0 ≤ t ≤ T

If we let f(t) = E[sup0≤s≤t ‖Xs − Ys‖2], then f(t) ≤ 2E[‖X0 − Y0‖2] + 4K2(T + 4)
∫ t

0 f(s)ds.
Then we get (5.12) using Gronwall’s lemma.

If X0 = Y0, then (5.12) implies that a.s. X = Y . So we get the pathwise uniqueness.

Proof of Theorem 18.3. (i) For the existence, we use the well-known Picard iteration for ODE.
Let the δ-dimensional Brownian motion B and a random vector ζ ∈ L2 be fixed such that
ζ |= B. A solution X of SDEζ(σ, b) satisfies that X = ζ + S(X). Define a sequence of FB,ζ-
semimartingales (Xn) such that X0 ≡ ζ, and for any n ≥ 0, Xn+1 = ζ+S(Xn). If the sequence
converges to some process X in some sense, then we expect that X = ζ + S(X).

Fix T > 0. Let C1 = 4K2(T + 4)T (1 + E[‖ζ‖2]) and C2 = 2K2(T + 4). We will prove by
induction that for any n ≥ 0,

E[ sup
0≤s≤t

‖Xn+1
s −Xn

s ‖2] ≤ C1
(C2t)

n

n!
, ∀0 ≤ t ≤ T. (5.13)

For n = 0, we have X1 −X0 = S(X0) = S(ζ). By (5.7) we get (5.13) for n = 0. Assume that
(5.13) holds for n− 1. Since Xn+1 −Xn = S(Xn)− S(Xn−1), by (5.8),

E[ sup
0≤s≤t

‖Xn+1
s −Xn

s ‖2] ≤ C2

∫ t

0
E[‖Xn

s −Xn−1
s ‖2]ds ≤ C2

∫ t

0
C1

(C2s)
n−1

(n− 1)!
ds = C1

(C2t)
n

n!
.

Thus, (5.13) holds for all n ≥ 0. By Chebyshev’s inequality,

P[ sup
0≤s≤T

‖Xn+1
s −Xn

s ‖2 > 4−n] ≤ C1
(4C2T )n

n!
, n ≥ 0.

Since
∑∞

n=0C1
(4C2T )n

n! <∞, by Borel-Cantelli Lemma,

P[for infinitely many n, sup
0≤s≤T

‖Xn+1
s −Xn

s ‖ > 2−n] = 0.

Thus, a.s. there is a random number N such that for n ≥ N , sup0≤s≤T ‖Xn+1
s −Xn

s ‖ ≤ 2−n.
Since

∑∞
n=0 2−n < ∞, this implies that a.s. Xn|[0,T ] converges as n → ∞ uniformly on [0, T ].

The limit is a continuous process on [0, T ]. Then we can conclude that a.s. for every N ∈ N,
limn→∞X

n|[0,N ] converges uniformly on [0, N ] to some X(N). If N < N ′, then we have a.s.
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X(N) = X(N ′)|[0,N ]. Thus, outside a null event, we have X(N) = X(N ′)|[0,N ] for any N < N ′ ∈ N.

So there is a continuous process X on [0,∞) such that a.s. X(n) converges to X uniformly on
[0, T ] for any T > 0. Since each Xn is FB,ζ-adapted, so is X. By (5.13), for every t ≥ 0, Xn

t

converges in L2. So Xt ∈ L2 is the L2-limit of (Xn
t ). By (5.13) we also get

E[ sup
0≤s≤t

‖Xs −Xn
s ‖2]1/2 ≤

∞∑
m=n

(
C1

(C2t)
m

m!

)1/2
. (5.14)

We now prove that a.s. ζ+S(X) = X. Since E[sup0≤s≤T ‖Xn
s −Xn+1

s ‖2]1/2 gives a distance
between Xn and Xn+1, by (5.14),

E[ sup
0≤s≤T

‖Xs −Xn+1
s ‖2] ≤

( ∞∑
m=n+1

(
C1

(C2t)
m

m!

)1/2)2

which tends to 0 as n→∞. Since Xn+1 = ζ + S(Xn), by (5.8) and (5.14),

E[ sup
0≤s≤T

‖ζ + S(X)s −Xn+1
s ‖2] = E[ sup

0≤s≤T
‖S(X)s − S(Xn)s‖2]

≤ 2K2(T + 4)

∫ T

0
E[‖Xs −Xn‖2s]ds ≤ 2K2(T + 4)

∫ T

0

( ∞∑
m=n

(
C1

(C2s)
m

m!

)1/2)2
ds,

which also tends to 0 as n → ∞. Thus, by sending n → ∞, we get E[sup0≤s≤T ‖ζ + S(X)s −
Xs‖2] = 0, i.e., a.s. ζ + S(X) = X on [0, T ]. Since this holds for any T > 0, we get a.s.
ζ + S(X) = X. So X is a solution of the SDEζ(σ, b). Since X is FB,ζ-adapted, it is a strong
solution.

(ii) The uniqueness of the strong solution with initial value in L2 follows from the pathwise
uniqueness of the weak solution since every strong solution is also a weak solution. By the
pathwise uniqueness of the weak solution and the existence of the strong solution, a weak
solution with initial value in L2 should also be a strong solution.

(iii) We will apply Theorem 2.23. It is about the existence of a continuous version of
a process with given finite dimensional distribution. We used it to prove the existence of
continuous Brownian motion. It says that if Xt, t ∈ Rd, is a process taking values in a complete
metric space (S, ρ), and there exists a, b, C > 0 such that for any s, t ∈ Rd,

E[ρ(Xs, Xt)
a] ≤ C‖s− t‖d+b,

then X has a continuous version. Here X can be defined only on a subdomain of Rd. When X
is Rd-valued, ρ(Xs, Xt) is simply ‖Xs−Xt‖. We apply Theorem 2.23 here to Xx

t with index set
(x, t) ∈ Rd × R+. It suffices to prove the estimate for a bounded region, i.e., for any R, T > 0,
there exists a, b, C > 0 such that

E[‖Xx
s −X

y
t ‖a] ≤ C(‖x− y‖+ |s− t|)d+b, ‖x‖, ‖y‖ ≤ R, s, t ∈ [0, T ]. (5.15)
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When this holds, we get the existence of a continuous version of Xx
t on {x ∈ Rd : ‖x‖ ≤

R} × [0, T ]. Letting R, T → ∞, we then get the continuous version of Xx
t on Rd × R+. In

the lemma and the corollary before this proof, we have estimates on E[‖Xx
t −X

y
t ‖2]. It is not

strong enough for the purpose here. We now need to improve the estimates so that we get
upper bounds of E[‖Xx

t −X
y
t ‖p] for big p. The proof requires BDG inequality, which we have

skipped. So we now skip the technical part of the proof of (iii).
(iv) Suppose now Xx

t , x ∈ Rd, t ∈ R+, is jointly continuous in x and t, and for every x, Xx

is the strong solution of SDEx(σ, b). Let ζ ∈ L2 be independent of B. We want to show that
the solution Xζ of SDEζ(σ, b) is a.s. equal to Xx|x=ζ . First, suppose ζ takes countably many
values. Recall that when we constructed the solution Xζ by successively defined a sequence
of processes Xn, which a.s. converges to Xζ locally uniformly. We now write them as Xζ,n to
emphasize the dependence on ζ. Similarly, for any x ∈ Rd, we have a sequence Xx,n, which a.s.
converges to the solution Xx with initial value x. We can prove by induction that for any n, on
the event {ζ = x}, a.s. Xζ,n = Xx,n. Thus, as their limits, we have a.s. Xζ = Xx on the event
{ζ = x}. Since ζ takes countably many values, we then get a.s. Xζ = Xx|x=ζ . For a general

ζ, we may define a sequence (ζm), m ∈ N, such that when ζ lies in the cube
∏δ
j=1[

kj
2m ,

kj+1
2m )

for some (k1, . . . , kd) ∈ Zd, ζm takes values ( k1
2m , . . . ,

km
2m ). Then each ζm takes countably many

values, belongs to L2 and is independent of B, and as m → ∞, ζm → ζ pointwise and in L2.
Now for each m, we have a.s. Xζm = Xx|x=ζm . Fix t ≥ 0. By the continuity of Xx

t in both x
and t, we know that Xx

t |x=ζm converges to Xx
t |x=ζ as m → ∞. By the previous corollary we

know that Xζm
t → Xζ

t in L2, which implies that (Xζm
t ) has a subsequence, which converges a.s.

to Xζ
t . Thus, we get a.s. Xζ

t = Xx
t |x=ζ . Since both sides are continuous in t, we then get a.s.

Xζ = Xx|x=ζ .

Remark . The condition of Theorem 18.3 is somewhat too strong because σ and b have to be
defined on R+×Rd, and the Lipschitz condition should hold throughout. However, we may use
localization and Lipschitz extension to weaken the assumptions. We may assume that σ and b
are defined on R+ ×U , where U is a domain in Rd containing the initial value x0, and σ and b
are locally bounded and locally Lipschitz continuous in x. The weaker assumption is satisfied
if σ and b are continuous and continuously differentiable in x. In that case, we may not have a
solution defined on [0,∞). But for any initial value x0 ∈ U , the solution Xx0 exists up to some
positive random lifetime T . If Yt, 0 ≤ t < S, also solves the initial value problem, then a.s. Y
is a restriction of Xx0 . Moreover, if T <∞, then as t ↑ T , either ‖Xx0

t ‖ → ∞ or Xx0
t → ∂U .

5.2 Weak solution and martingale problem

Suppose (X,B) defined on the filtered space (Ω,F ,P) is a weak solution of

dXt = σ(t,Xt) ◦ dBt + b(t,Xt)dt

for two measurable functions σ : R+ × Rd → Rd×δ and b : R+ × Rd → Rd. We assume that
σ and b are locally bounded, i.e., for any R > 0 and T > 0, ‖σ‖ and ‖b‖ are bounded on
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[0, T ] × {x ∈ Rd : ‖x‖ ≤ R}. Let C2
K(Rd,R) denote the space of C2 functions on Rd with

compact supports. For f ∈ C2
K(Rd,R), by Itô’s formula, we have

df(Xt) =
d∑
i=1

∂if(Xt)dX
i
t +

1

2

d∑
j=1

d∑
k=1

∂j∂kf(Xt)d[Xj , Xk]t

=
d∑
i=1

δ∑
j=1

∂if(Xt)σ
i
j(t,Xt)dB

j
t +

d∑
i=1

∂if(Xt)b
i(t,Xt)dt

+
1

2

d∑
j=1

d∑
k=1

∂j∂kf(Xt)
d∑
i=1

σji (t,Xt)σ
k
i (t,Xt)dt.

Let aj,k =
∑δ

i=1 σ
j
i σ

k
i , i.e., as matrixes, a = σσ′. Define

Mf
t := f(Xt)− f(X0)−

∫ t

0
Asf(Xs)ds, t ≥ 0, (5.16)

where

Atf(x) =
d∑
i=1

bi(t, x)∂if(x) +
1

2

d∑
j=1

d∑
k=1

aj,k(t, x)∂j∂kf(x).

Then Mf is an F-local martingale. We will see that Mf is in fact a true martingale.
Since f ∈ C2

K(Rd,R), we know that f , ∂if , and ∂j∂kf are all bounded, and there are R > 0
such that ∂if and ∂j∂kf vanish outside {x ∈ Rd : |x| < R}. Since b and a = σσ′ are locally
bounded, we can then conclude that for any T > 0, t 7→ supx∈Rd |Atf(x)| is bounded on [0, T ].

Thus, Mf
t is bounded on [0, T ] for any T ∈ R+. So Mf is a true F-martingale. In fact, we do

not need to mention F because Mf is a martingale w.r.t. the natural filtration generated by
itself.

We say that X solves the martingale problem (a, b) if for any f ∈ C2
K(Rd,R) with a compact

support, the Mf defined by (5.16) is a martingale (w.r.t. the natural filtration generated by
itself). Thus, if (X,B) is a weak solution of SDE(σ, b), then X solves the martingale problem
(a, b) with a = σσ′.

Theorem 18.7. The SDE(σ, b) has a weak solution (X,B) if and only if X solves the martingale
problem for (a, b) with a = σσ′.

Proof. We have proved the “only if” part. For the “if” part, suppose X is such that for any
f ∈ C2(R,R) with compact support, Mf is a local martingale. Fix i ∈ {1, . . . , d}. For any
R > 0, there is a function fR ∈ C2(R,R) with compact support such that f iR(x) = xi for
|x| ≤ R. Note that f ′′R(x) = 0 for |x| ≤ R. By localization, we see that for any i,

M i
t := Xi

t −Xi
0 −

∫ t

0
bi(s,Xs)ds
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is a local martingale. A similar argument (with f j,kR (x) = xjxk) for |x| ≤ R in place of f iR)
shows that for any j, k (with a = σσ′),

M j,k
t := Xj

tX
k
t −X

j
0X

k
0 −

∫ t

0
bj(s,Xs)X

k
s ds−

∫ t

0
bk(s,Xs)X

j
sds−

∫ t

0
aj,k(s,Xs)ds

is a local martingale. Now we have

dXi
t = dM i

t + bi(t,Xt)dt;

dXj
tX

k
t = dM j,k

t + bj(t,Xt)X
k
t dt+ bk(t,Xt)X

j
t dt+ aj,k(t,Xt)

2dt.

Applying the product formula to the first group of SDE, we get

dXj
tX

k
t = Xj

t dM
k
t +Xk

t dM
j
t + bj(t,Xt)X

k
t dt+ bk(t,Xt)X

j
t dt+ d[M j ,Mk]t.

Compared it with the second equation, we get d[M j ,Mk]t =
∑d

i=1 σ
j
i (t,Xt)σ

k
i (t,Xt)dt. Finally,

using Theorem 16.12, a theorem which was skipped, we know that in an enlarged probability
space, there exists d-dimensional Brownian motion B such that M i

t =
∑δ

j=1 σ
i
j(t,Xt)dB

j
t for

all 1 ≤ i ≤ d. Then we get

dXi
t = dM i

t + bi(t,Xt)dt =
δ∑
j=1

σij(t,Xt)dB
j
t + bi(t,Xt)dt.

We are not going to prove Theorem 16.12. Instead, we briefly explain the idea of its proof in
the simplest case: d = δ = 1. In that case, we have d[M ]t = σ(t,Xt)

2dt. If σ(t,Xt) never
vanishes, then we may define Bt =

∫ t
0 σ(s,Xs)

−1dMs. Then dMt = σ(t,Xt)dBt, and by Levy’s
characterization of Brownian motion, we can then conclude that B is a Brownian motion. For
the general case, we first enlarge the probability space such that there exists a Brownian motion
W in the enlarged space independent of M . Then we define B by

Bt =

∫ t

0
1σ(s,Xs)6=0σ(s,Xs)

−1dMs +

∫ t

0
1σ(s,Xs)=0dWs, t ≥ 0.

This means we compensate the interval on which σ(t,Xt) = 0 by integrating an independent
Brownian motion. Then B is the Brownian motion that we need.

5.3 Diffusion and Markov property

We will focus on the SDE of the kind

dXt = σ(Xt) ◦ dBt + b(Xt)dt, X0 = x, (5.17)

where σ ∈ C(Rd,Rd×δ) and b ∈ C(Rd,Rd) satisfy the conditions in Theorem 18.3, i.e., there is
a constant K > 0 such that for any x, y ∈ Rd,

‖σ(x)− σ(y)‖+ ‖b(x)− b(y)‖ ≤ K‖x− y‖.
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The (unique) strong solution Xx of the SDE with initial value x is called a diffusion process.
Let P x denote the law of Xx. Since we can find a version of Xx for each x ∈ Rd such that Xx

t

is continuous in both t and x, x→ P x is a probability kernel.

Theorem . The strong solution X of (5.17) with any initial value ζ ∈ L2 is a time-homogeneous
Markov process w.r.t. the complete filtration FB generated by B, and the transition kernel is
x 7→ P x. This means that for any fixed t0 ≥ 0, Law[Xt0+·|FBt0 ] = PXt0 .

Proof. Fix t0 ≥ 0. By Theorem 18.3, Xt0 ∈ L2. Define Bt0+
t = Bt0+t−Bt0 and FB,t0+

t = FBt0+t,

t ≥ 0. Then Bt0+ is an FB,t0+-Brownian motion independent of FBt0 . Let Xt0+
t = Xt0+t, t ≥ 0.

Since X satisfies (5.17), we have for any t ≥ 0,

Xt0+
t −Xt0+

0 =

∫ t0+t

t0

σ(Xs) ◦ dBs +

∫ t0+t

t0

b(Xs)ds

=

∫ t

0
σ(Xt0+

s ) ◦ dBt0+
s +

∫ t

0
b(Xt0+

s )ds.

Thus, (Xt0+, Bt0+) w.r.t. the filtration FB,t0+ is a weak solution of (5.17) with initial value
X(t0). By Theorem 18.3, this weak solution is a strong solution. Moreover, there is a family of
Rd-valued random vectors Z(x, t), x ∈ Rd, t ∈ R+, such that

(i) For each x ∈ Rd, Z(x, t), t ≥ 0, is a strong solution of (5.17) with Z(x, 0) = x and with
Bt0+ in place of B.

(ii) The map Rd × R+ 3 (x, t) 7→ Zxt is continuous.

(iii) Almost surely Xt0+
· = Z(X(t0), ·).

For each x ∈ Rd, the conditional law of Z(x, ·) given FBt0 is its unconditional law P x since
Z(x, ·) is measurable w.r.t. Bt0+, which is independent of FBt0 . From the facts that a.s. Xt0+

· =
Z(X(t0), ·) and that X(t0) is FBt0 -measurable, we then know that the conditional law of Xt0+

given FBt0 is PXt0 .

6 Connections with Partial Differential Equations

In this section we study diffusion processes from the perspective of their Markov properties,
and connect them with the partial differential equations. The material of this section is chosen
from multiple references.

6.1 Transition kernel and operator

We now briefly review the notation of probability kernels and Markov process needed here. A
probability kernel from Rd to Rd is map µ defined on the product space Rd × B(Rd) such that
for any x ∈ Rd, µ(x, ·) is a probability measure on Rd, and for any Borel measurable set A ⊂ Rd,
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µ(·, A) is a Borel measurable function on Rd. If µ and ν are two probability kernels from Rd to
Rd, then we may define a new probability kernel µν from Rd to Rd, which is defined by

µν(x,A) =

∫
µ(x, dy)ν(y,A), x ∈ Rd, A ∈ B(Rd).

The formula means that we integrate the measurable function ν(·, A) on Rd against the measure
µ(x, ·). We have the associative law: (µν)λ = µ(νλ), but not the commutative law.

An F-adapted Rd-valued process Xt, t ∈ R+, is called F-Markov if there is a family of
probability kernels µs,t, 0 ≤ s ≤ t <∞, from Rd to Rd, such that for any 0 ≤ s ≤ t,

Law[Xt|Fs] = Law[Xt|Xs] = µs,t(Xs, ·).

This means that if f : Rd → R is bounded and measurable, then

E[f(Xt)|Fs] =

∫
f(y)µs,t(Xs, dy).

The family µs,t must satisfy the Chapman-Kolmogorov relation:

µr,sµs,t = µr,t 0 ≤ r ≤ s ≤ t.

If µs,t depends only on t−s, i.e., there is a one parameter family µt, t ∈ R+, such that µs,t = µt−s,
then X is called time-homogeneous, and the Chapman-Kolmogorov relation becomes

µsµt = µs+t, s, t ≥ 0.

Recall that the diffusion processes are time-homogeneous Markov processes.
For every kernel µ in Rd, we associate it with an operator Tµ defined by

Tµf(x) =

∫
f(y)µ(x, dy),

where f is a bounded measurable function from Rd to R. Then |Tµf | is bounded by any upper
bound of |f |. If f = 1A for some A ∈ B(Rd), then Tµf = µ(·, A) is measurable. Thus, for any
measurable simple function f , Tµf is measurable. By approximation, Tµf is measurable for
any bounded measurable function f .

If µ and ν are two kernels in Rd, then we have the following equality

Tµ ◦ Tν = Tµν

because for any f ,

Tµ ◦ Tνf(x) =

∫
Tνf(y)µ(x, dy) =

∫ ∫
f(z)ν(y, dz)µ(x, dy) =

∫
f(z)µν(x, dz).
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Suppose (µt) is a family of probability kernels in Rd associated with a time-homogeneous
Makrov process X in Rd. Let Tt = Tµt . Then from Chapman-Kolmogorov relation, we get

Ts ◦ Tt = Ts+t, s, t ≥ 0.

Thus, {Tt : t ≥ 0} forms a semigroup of operators on the space of bounded measurable functions
on Rd. If Xx is the Markov process starting from x, then for any t ≥ 0, the law of Xx

t is µt(x, ·).
Then the integral

∫
f(y)µt(x, dy) is exactly the expectation of f(Xt). So we get an expression

of Tt in terms of Xx:
Ttf(x) = E[f(Xx

t )] = Ex[f(Xt)],

where Ex means the expectation w.r.t the law of the Markov process started from x.

6.2 Infinitesimal generator and parabolic PDE

We now consider the case that X is a diffusion process as strong solutions of (5.17). For a fixed
bounded continuous function f , we define

u(t, x) = Ttf(x) = E[f(Xx
t )] = Ex[f(Xt)].

Note that u(0, x) = f(x). Since f is bounded, u is bounded on R+ × Rd. Since Xx
t is jointly

continuous in x and t, by dominated convergence theorem, u(t, x) is jointly continuous in t and
x.

The infinitesimal generator A associated to the SDE is

Af(x) = lim
t↓0

(Ttf)(x)− f(x)

t
= lim

t↓0

1

t
(u(t, x)− u(0, x)), x ∈ Rd.

Let DA denote the set of all bounded continuous functions f on Rd such that the limit exists
for every x ∈ Rd. For f ∈ DA, Af is a well-defined measurable function on Rd.

Let a = σσ′. Define the second order differential operator A by

Af(x) =
d∑
i=1

bi(x)∂if(x) +
1

2

d∑
j,k=1

aj,k(x)∂j∂kf(x)

Theorem . The space C2
K(Rd) belongs to DA, and for any f ∈ C2

K(Rd),

Af(x) = Af(x). (6.1)

Proof. Let f ∈ C2
K(Rd). Since Xx solves the martingale problem (a, b),

Mx
t := f(Xx

t )− f(x)−
∫ t

0
Af(Xx

s )ds
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is a martingale. From E[Mx
t ] = E[Mx

0 ] = 0, we get

1

t
(E[f(Xx

t )]− f(x)) = E
[1

t

∫ t

0
Af(Xx

s )ds
]
.

The quantity inside the square bracket on the RHS is uniformly bounded because ∂if and
∂j∂kf have compact supports, and bi and aj,k are locally bounded. Letting t ↓ 0, by dominated
convergence theorem, the RHS tends Af(x). So f ∈ DA, and (6.1) holds.

From the expression of Mx
t and its martingale property, we get the Dynkin’s forrmula

Theorem (Dynkin’s formula). For any bounded stopping time τ , if f ∈ C2
K(Rd), then

E[f(Xx
τ )] = f(x) + E[

∫ τ

0
Af(Xx

s )ds].

Remark . If τ is the less than τU , which is the first time that X exits a bounded domain U ,
then Dynkin’s formula holds for any f ∈ C2(Rd) with Af replaced by Af . This is because we
may find another function f0 ∈ C2

K(Rd) such that f = f0 on U .

When τ in the theorem is a deterministic time t, Dynkin’s formula becomes

u(t, x) = f(x) +

∫ t

0
E[Af(Xx

s )]ds = u(0, x) +

∫ t

0
uA(s, x),

where uA(t, x) is defined in the same way as u(t, x) except with Af in place of f . Since
Af = Af ∈ CK(Rd), uA(t, x) is continuous in t and x. So u is differentiable in t, and

∂tu(t, x) = ∂tTtf(x) = uA(t, x) = Tt ◦Af(x), f ∈ C2
K(Rd). (6.2)

Theorem (Kolmogorov’s backward equation). For f ∈ C2
K(Rd), u(t, ·) ∈ DA for each t > 0;

and u satisfies the following equation with initial value{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd;
u(0, x) = f(x), x ∈ Rd. (6.3)

Here the operator A acts on the second variable x.

Proof. Clearly, u(0, x) = f(x), x ∈ Rd. Fix t > 0. Let g(x) = u(t, x). Since u is differentiable
in t, using the Markov property of X we get for small r,

1

r
(Ex[g(Xr)]− g(x)) =

1

r
(Ex[EXr [f(Xt)]]− Ex[f(Xt)])

=
1

r
(Ex[Ex[f(Xr+t)|Fr]]− Ex[f(Xt)])

=
1

r
Ex[f(Xr+t)− f(Xt)] =

1

r
(u(r + t, x)− u(t, x))→ ∂tu, r ↓ 0.

Hence

Au = lim
r↓0

1

r
(Ex[g(Xr)]− g(x)), exists and equals ∂tu.
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We have proved that A = A on C2
K(Rd). If we know that Au = Au. Then Equation (6.3)

becomes the following second-order parabolic PDE{
∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd;
u(0, x) = f(x), x ∈ Rd. (6.4)

The PDE is parabolic since the coefficient matrix (aj,k)1≤j,k≤d is semi-positive definite (because
a = σσ′). At this moment we can not immediately say that u(t, x) := Ex[f(Xt)] gives the
solution of (6.4) because we have not shown that Au = Au. However, we have the following
theorem, which says that such u is the only bounded candidate of the solution. We let C1,2

b (R+×
Rd) denote the space of bounded functions defined on R+ × Rd, which are once continuously
differentiable in the first variable, and twice continuously differentiable in all other variables.

Theorem . If u ∈ C1,2
b (R+ × Rd) is a solution of the PDE (6.4), then u(t, x) = Ex[f(Xt)].

Proof. Fix t0 > 0 and x ∈ Rd. We want to show that u(t0, x) = Ex[f(Xt0)]. Let X be a strong
solution of the SDE(σ, b) started from x. Define

Mt = u(t0 − t,Xx
t ), 0 ≤ t ≤ t0.

Then M is a semimartingale, and by Itô’s formula, we calculate

dMt = −∂tu(t0 − t,Xt) +

d∑
i=1

∂iu(t0 − t,Xt)dX
i
t +

1

2

d∑
j,k=1

∂j∂ku(t0 − t,Xt)d[Xj , Xk]t.

Since X is a strong solution of SDE(σ, b), we have

dXi
t =

δ∑
j=1

σij(Xt)dB
j
t + bi(Xt)dt,

and

d[Xj , Xk]t =

δ∑
i=1

σji (Xt)σ
k
i (Xt)dt = aj,k(Xt)dt.

Thus,

dMt =
d∑
i=1

∂iu(t0 − t,Xt)
δ∑
j=1

σij(Xt)dB
j
t − ∂tu(t0 − t,Xt)dt+Au(t0 − t,Xt)dt.

The drift term disappears because ∂tu = Au. So M is a local martingale. Since u is bounded,
M is a true martingale. So E[Mt0 ] = M0. From the definition of M , we get E[f(Xt0)] =
E[u(0, Xt0)] = E[Mt0 ] = M0 = u(t0, x).
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Example . Suppose d = δ, σ is the identity matrix, and so is a, and b = 0. Then the SDE
becomes dXt = dBt. So the solutions are Xx

t = x+Bt. We then have

Ttf(x) = E[f(x+Bt)], Af(x) = lim
t↓0

1

t
(E[f(x+Bt)]− f(x)), Af(x) =

1

2
∆f(x),

where ∆ is the Laplacian operator. So the PDE is the heat equation:

∂tu(t, x) =
1

2
∆xu(t, x), t > 0. (6.5)

In this particular case, we can show directly that, if f is a continuous function on Rd with
compact support, then u(t, x) := E[f(x+Bt)] is a solution of the above PDE with initial value
u(0, x) = f(x). The argument uses the fact that, for t > 0, Bt has a density function:

pt(y) =
1

(2πt)n/2
e−
‖y‖2

2t .

One can check directly that pt(y) also solves the heat equation (6.5). Now u(t, x) = E[f(x+Bt)
can be expressed by

u(t, x) = E[f(x+Bt)] =

∫
Rd
f(x+ y)pt(y)dy =

∫
Rd
f(y)pt(x− y)dy.

Since f ∈ CK(Rd),

∆xu(t, x) =

∫
Rd
f(y)∆xpt(x− y)dy; (6.6)

∂tu(t, x) =

∫
Rd
f(y)∂tpt(x− y)dy. (6.7)

Since ∂tpt(x− y) = 1
2∆xpt(x− y), we get (6.5).

Remark . The assumption that f ∈ CK(Rd) in the above example is used to guarantee that
the differentiation operators commute with the integral. These results follow from Fubini’s
theorem and the integrability of f(y)∂xjpt(x − y) and f(y)∂2

xjpt(x, y). For that purpose, we
may loosen the assumption on f . For example, it suffices to assume that f is a bounded
continuous function.

In this example, the diffusion process has a transition density, which solves the PDE for u.
This is a coincidence. In the general case, if the density is smooth, then it satisfies the PDE
with A replaced by its adjoint A∗. This is Kolmogorov’s forward equation.

For the operator A defined by

A =
1

2

d∑
j,k=1

aj,k(x)∂j∂k +
d∑
i=1

bi(x)∂i,
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we define its adjoint A∗ by

A∗g(x) =
1

2

d∑
j,k=1

∂j∂k(a(x)j,kg(x))−
d∑
i=1

∂i(bi(x)g(x)), g ∈ C2(Rd).

Note that ∆∗ = ∆. It is called the adjoint of A because∫
Rd
Af(x)g(x)dx =

∫
Rd
f(x)A∗g(x)dx, f ∈ C2

K(Rd), g ∈ C2(Rd).

This fact follows from integration by parts (and that f vanishes outside a bounded set).

Theorem (Kolmogorov’s forward equation). Assume that the diffusion process X has a tran-
sition density pt(x, y), i.e.,

Ex[f(Xt)] =

∫
Rd
f(y)pt(x, y)dy, f ∈ C2

K(Rd),

and pt(x, y) is C2 in y for every t > 0 and x ∈ Rd. Then pt(x, y) satisfies the Kolmogorov’s
forward equation:

∂tpt(x, ·) = A∗ypt(x, ·), t > 0,

where A∗y acts on the second variable of pt(x, y).

Proof. Let f ∈ C2
K(Rd). By Dynkin’s formula, Ex[f(Xt)] = f(x) +

∫ t
0 Ex[Af(Xs)]ds. By the

definition of density function, for t2 > t1 > 0,∫
Rd
f(y)(pt2(x, y)− pt1(x, y))dy =

∫ t2

t1

∫
Rd
Af(y)ps(x, y)dyds =

∫
Rd
f(y)

∫ t2

t1

A∗yps(x, y)dsdy.

Since the equality holds for any f ∈ C2
K(Rd), we get

pt2(x, y)− pt1(x, y) =

∫ t2

t1

A∗yps(x, y)ds, t2 > t1 > 0.

So the conclusion holds.

6.3 The Feynman-Kac formula

Let the diffusion processes Xx
t , the infinitesimal generator A, and differential operator A be as

before. Suppose f, q ∈ Cb(Rd). Consider the following equation:{
∂tu = Au+ qu, t > 0, x ∈ Rd;
u(0, x) = f(x), x ∈ Rd. (6.8)
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Theorem . If u is a solution of (6.8) such that for any t0, u is bounded on [0, t0]× Rd, then

u(t, x) = Ex
[
f(Xt) exp

(∫ t

0
q(Xs)ds

)]
, t ≥ 0, x ∈ Rd. (6.9)

Proof. Fix t0 > 0. Define N(t) = u(t0 − t,Xt), 0 ≤ t ≤ t0. By Itô’s formula,

dNt = −∂tu(t0 − t,Xt)dt+
d∑
i=1

∂iu(t0 − t,Xt)dX
i
t +

1

2

d∑
j,k=1

∂j∂ku(t0 − t,Xt)d[Xj , Xk]t

=

d∑
i=1

∂iu(t0 − t,Xt)
δ∑
j=1

σij(Xt)dB
j
t − ∂tu(t0 − t,Xt)dt+Au(t0 − t,Xt)dt

=
d∑
i=1

∂iu(t0 − t,Xt)
δ∑
j=1

σij(Xt)dB
j
t − q(Xt)u(t0 − t,Xt)dt.

Let

Mt = Nt exp
(∫ t

0
q(Xs)ds

)
.

By product formula,

dMt = exp
(∫ t

0
q(Xs)ds

)
dNt +Mtq(Xt)dt

= exp
(∫ t

0
q(Xs)ds

) d∑
i=1

∂iu(t0 − t,Xt)

δ∑
j=1

σij(Xt)dB
j
t .

Thus, M is a local martingale. Since u is bounded on [0, t0]× Rd and q is bounded, M is also
bounded. Thus, M is a true martingale. We then get E[Mt0 ] = E[M0]. Since M0 = u(t0, x)
and Mt0 = f(Xt0) exp(

∫ t0
0 q(Xs)ds), we get (6.9).

We call (6.9 the Feynman-Kac formula. If we define u by (6.9), we can not immediately say
that u solves (6.8). Instead we have the following theorem.

Theorem . Let f ∈ C2
K(Rd). Define u by (6.9). Then u satisfies the equation{

∂tu = Au+ qu, t > 0, x ∈ Rd;
u(0, x) = f(x), x ∈ Rd. (6.10)

Proof. Let Yt = f(Xt) and Zt = exp(
∫ t

0 q(Xs)ds). Then Z is an adapted C1 process, and
dZt = Ztq(Xt)dt. Since q is bounded, say by R, we have 0 < Zt ≤ eRt for any t ≥ 0. Recall
that for some local martingale Lt, Yt satisfies the SDE:

dYt = dLt +Af(Xt)dt.
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Since Zt is a C1 adapted process,

d(YtZt) = YtdZt + ZtdYt = ZtdLt + Zt(Af(Xt) + q(Xt)Yt)dt.

Thus, the M defined by

Mt = YtZt − Y0Z0 −
∫ t

0
Zs(Af(Xs) + q(Xs)f(Xs))ds

is a local martingale. Fixed t0 > 0. Since Z is uniformly bounded on [0, t0], and Y =
f(X),Af(X), q(X)f(X) are all uniformly bounded, M is uniformly bounded on [0, t0]. So
M is a true martingale. Thus, E[Mt] = E[M0] = 0, which implies that

u(t, x) = Ex[YtZt] = f(x) +

∫ t

0
Ex[Zs(Af(Xs) + q(Xs)f(Xs))]ds

is differentiable in t.
Let r ≥ 0. We have Zr+t/Zr = exp(

∫ t
0 q(Xr+s)ds). By the Markov property of X, we have

Ex[Yr+tZr+t|Fr] = ZrEx[f(Xr+t) exp(

∫ t

0
q(Xr+s)ds)|Fr] = ZrEXr [YtZt] = Zru(t,Xr).

Thus,
u(r + t, x) = Ex[Yr+tZr+t] = Ex[Ex[Yr+tZr+t|Fr]] = Ex[Zru(t,Xr)].

Since Tru(t, x) = Ex[u(t,Xr)], we get

1

r
(Tru(t, x)− u(t, x)) =

1

r
(Ex[u(t,Xr)]− u(r + t, x)) +

1

r
(u(r + t, x)− u(t, x))

= Ex[u(t,Xr)
1

r
(1− Zr)] +

1

r
(u(r + t, x)− u(t, x)).

As r ↓ 0, the second term on the RHS tends to ∂tu(t, x). By dominated convergence theorem,
the first term tends to −q(x)u(t, x). So we get Au = ∂tu− qu.

6.4 Boundary value problem

Let Ω be a bounded domain of Rd. Let σ = (σij) ∈ C(Ω,Rd×δ) and b = (bi) ∈ C(Ω,Rd). Let

a = (aj,k) = σσ′ ∈ C(Ω,Rd×d). Let B = (B1, . . . , Bδ) be a Brownian motion. Suppose Xx
t ,

0 ≤ t < τ , solves the SDE
dXt = σ(Xt) ◦ dBt + b(Xt)dt

with initial value x ∈ Ω, and in the case that τ <∞, as t ↑ τ , Xt tends to ∂Ω.
Let A be the differential operator

A =
1

2

d∑
j,k=1

aj,k(x)∂j∂k +
d∑
i=1

bi(x)∂i.
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Let C0(Ω) denote the space of continuous functions on Ω, which vanish on ∂Ω. Let f ∈ C0(Ω).
Consider the following parabolic PDE with initial value and boundary value :

∂tu = Au, t > 0, x ∈ Ω;

u(0, x) = f(x), x ∈ Ω.
u(t, x) = 0, t > 0, x ∈ ∂Ω.

(6.11)

Theorem . If u is a solution of (6.11), then u can be expressed by

u(t, x) = Ex[1{τ>t}f(Xt)]. (6.12)

Proof. Fix t0 > 0. Define Mt, 0 ≤ t ≤ t0, by Mt = u(t0 − t,Xt), if t < τ , and Mt = 0, t ≥ τ .
Then M is continuous on [0, t0] since if τ ≤ t0, as t ↑ τ , Xt → ∂Ω, and so u(t0− t,Xt)→ 0. By
Itô’s formula, M is a local martingale up to τ ∧ t0. Since M is constant on [τ ∧ t0, t0], it is a
local martingale on [0, t0]. By continuity, u is bounded on [0, t0]×Ω. So M is a true martingale.
Thus, E[Mt0 ] = E[M0] = u(t0, x). On the other hand, Mt0 = 1{τ>t0}u(0, Xt0) = 1{τ>t0}f(Xt0).
So we get (6.12).

Suppose further that q ∈ C0(Ω). Consider the PDE
∂tu = Au+ qu, t > 0, x ∈ Ω;

u(0, x) = f(x), x ∈ Ω.
u(t, x) = 0, t > 0, x ∈ ∂Ω.

(6.13)

Then we have the following theorem, whose proof is left as an exercise.

Theorem . If u is a solution of (6.11), then u can be expressed by

u(t, x) = Ex
[
1{τ>t}f(Xt) exp

(∫ t

0
q(Xs)ds

)]
.

6.5 Feller semigroup

We will learn some abstract theory in this subsection. It has a flavor of operator theory in
Functional Analysis. Let (Tt)t≥0 be a semigroup of transition operators associated with a
time-homogeneous Markov process X, i.e.,

Ttf(x) = Ex[f(Xt)]

for bounded measurable function f . Recall that Ttf is also a bounded measurable function.
Now we let C0 = C0(Rd) denote the space of continuous functions f on Rd, which satisfy that
f(x) → 0 as ‖x‖ → ∞. The space C0 is a Banach space equipped with the uniform norm
‖f‖ = sup |f(x)|.

Definition . We call (Tt)t≥0 a Feller semigroup, and X a Feller process if
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(F1) TtC0 ⊂ C0, t ≥ 0,

(F2) For any f ∈ C0, (t, x) 7→ Ttf(x) is continuous on [0,∞)× Rd.

By the definition of Tt, it is clear that each Tt is a contraction map, i.e., ‖Ttf‖ ≤ ‖f‖.

Example . Let σ ∈ C(Rd,Rd×δ) and b ∈ C(Rd,Rd) be Lipschitz continuous. Let B be a
δ-dimensional Brownian motion. Consider the SDE

dXx
t = σ(Xx

t ) ◦ dBt + b(Xx
t )dt, Xx

0 = x.

We have known that the solution exists uniquely, and we may choose a version of Xx for every
x ∈ Rd such that Xx

t is jointly continuous in x and t. Now we further assume that σ and b
are bounded. Then X is a Feller process. In fact, for f ∈ C0, since Xx

t is jointly continuous
in x and t, by dominated convergence theorem, Ttf(x) = E[f(Xx

t )] is jointly continuous in x
and t. We also know that Ttf is continuous for every t ≥ 0. It remains to show that for any
t > 0, E[f(Xx

t )] → 0 as ‖x‖ → ∞. Fix t > 0. By dominated convergence theorem and the

fact that f ∈ C0, it suffices to show that ‖Xx
t ‖

P→ ∞ as ‖x‖ → ∞. This holds because by the
boundedness assumption on σ and b, ‖Xx

t − x‖ = ‖
∫ t

0 σ(Xx
s ) ◦ dBs +

∫ t
0 b(X

x
s )ds‖ is bounded

in L2 by a constant independent of x. Finally, since T0f = f , we get (F2).

Recall that we say that (Tt) is a semigroup because it satisfies Tt◦Ts = Tt+s. A semigroup of
operators on a Banach space B may be obtained from exponential of bounded linear operators.
For a bounded linear operator A on B, its exponential is the bounded linear operator eA defined
by

eA =

∞∑
n=0

An

n!
,

where A0 is the identity I, A1 = A, and An+1 = A ◦ An. The series converges in the operator
norm because ‖An‖ ≤ ‖A‖n. It is easy to see that etA ◦ esA = e(t+s)A. So (etA)t≥0 form a
semigroup. We say that A is the infinitesimal generator of this semigroup, and may recover A
from (etA)t≥0 because

1

t
(etA − I) =

1

t

∞∑
n=1

tnAn

n!
= A+ t

∞∑
n=2

tn−2An

n!
→ A, as t ↓ 0.

So we make the following definition for the Feller semigroup.

Definition . For a Feller semigroup (Tt), its infinitesimal generator A is defined by

Af = lim
t↓0

1

t
(Ttf − f), f ∈ DA,

where DA is the set of all f ∈ C0 such that the above limit converges in the norm topology.
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It turns out that A is not defined on the whole space C0, and is not a bounded linear
operator. We can not thus express Tt as etA. But we can still do something on it.

Proposition . If f ∈ DA, then (i) Ttf ∈ DA for every t ≥ 0; (ii) the function t 7→ Ttf is
strongly differentiable in C0, and

∂tTtf = TtAf = ATtf ;

(iii) Ttf − f =
∫ t

0 TsAfds =
∫ t

0 ATsfds.

Proof. For fixed t ≥ 0, using the semigroup property, we get

lim
r↓0

1

r
[TrTtf − Ttf ] = lim

r↓0
Tt[

1

r
(Trf − f)] = TtAf.

So we get Ttf ∈ DA, which is (i), and ATtf = TtAf . Since TrTt = Tr+t, the above shows that
t 7→ Ttf has right-hand derivative TtAf = ATtf . Since Af ∈ C0, TtAf is continuous in t. So
the right-hand derivative is actually the two-sided derivative, and (ii) and (iii) both hold.

An operator A with domain DA on a Banach space B is called closed if its graph {(f,Af) :
x ∈ DA} is a closed subset of B2. This is a natural extension of bounded linear operators. An
operator A is closed if and only if for any sequence (fn) in DA, the two conditions “fn → f in
B” and “Afn → g in B” together imply that f ∈ DA and Af = g.
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Proposition . The domain DA of the infinitesimal generator A of a Feller semigroup is dense
in C0, and A is a closed operator.

Proof. Set Ahf = 1
h(Thf − f) and Bsf = 1

s

∫ s
0 Ttfdt. Then Ah and Bs are bounded operators

on C0, and
AhBs = BsAh = AsBh = BhAs.

Here the first and the third “=” follows easily from the fact hat Th commutes with Tt. The
second “=” follows from

BsAhf =
1

hs

∫ s

0
Tt(Thf − f)dt =

1

hs

∫ s

0
(Tt+hf − Ttf)dt =

1

hs

(∫ h+s

h
Ttfdt−

∫ s

0
Ttfdt

)

=
1

hs

(∫ h+s

s
Ttfdt−

∫ h

0
Ttfdt

)
= AsBhf.

For every f ∈ C0, we have Bhf → f as h ↓ 0. Thus, for s > 0,

AhBsf = AsBhf → Asf, h ↓ 0.

So Bsf ∈ DA. Since Bsf → f as s ↓ 0, DA is dense in C0.
Let (fn) be a sequence in DA converging to f , and suppose Afn → g. Then

Bsg = lim
n→∞

BsAfn = lim
n→∞

Bs lim
h↓0

Ahfn = lim
n→∞

lim
h↓0

BsAhfn

= lim
n→∞

lim
h↓0

AsBhfn = lim
n→∞

Asfn = Asf.

It follows that f ∈ DA, and Af = lims↓0Asf = lims↓0Bsg = g. So A is closed.

Remark . For the Feller semigroup obtained from the SDE dXt = σ(Xt) ◦ dBt + b(Xt)dt,
we have known that the infinitesimal generator A agrees with the second order differential
operator A = 1

2

∑
j,k a

j,k∂j∂k +
∑

i b
i∂i on C2

K . From the above proposition, we know that,

for any f ∈ C0, if there is a sequence (fn) in C2
K such that fn → f and Afn → g ∈ C0, then

f ∈ DA and Af = g.

Let λ > 0, we define

Rλf(x) =

∫ ∞
0

e−λtTtf(x)dt.

Since Ttf ∈ C0 and ‖Ttf‖ ≤ ‖f‖ for all t ≥ 0, by dominated convergence theorem, Rλf ∈ C0.
By triangle inequality, ‖Rλf‖ ≤

∫∞
0 e−λt‖f‖dt = 1

λ‖f‖, i.e., ‖Rλ‖ ≤ 1
λ , and λRλ is a contraction

operator on C0. Each Rλ is called a resolvent of the Feller semigroup.

Proposition . For any λ > 0, the operator λI−A from DA to C0 is one-to-one and onto, and
its inverse is Rλ.
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Proof. For f ∈ DA,

Rλ(λI −A)f =

∫ ∞
0

e−λtTt(λf −Af)dt

= λ

∫ ∞
0

e−λtTtfdt−
∫ ∞

0
e−λt∂t(Ttf)dt

= −
∫ ∞

0
∂t(e

−λt)Ttfdt−
∫ ∞

0
e−λt∂t(Ttf)dt

= −
∫ ∞

0
∂t(e

−λtTtf)dt = −e−λtTtf |∞0 = T0f = f.

Conversely, if f ∈ C0, then

AhRλf = RλAhf =

∫ ∞
0

e−λtTt
1

h
(Thf − f)dt =

1

h

∫ ∞
0

e−λt(Th+tf − Ttf)dt

1

h

∫ ∞
0

e−λtTh+tfdt−
1

h

∫ ∞
h

e−λtTtfdt−
1

h

∫ h

0
e−λtTtfdt

=
1

h

∫ ∞
0

(e−λt − e−λ(t+h))Th+tfdt−
1

h

∫ h

0
e−λtTtfdt.

As h ↓ 0, the LHS tends to ARλf , while the RHS tends to
∫∞

0 λe−λtTtfdt− f = λRλf − f . So
Rλf ∈ DA and ARλf = λRλf − f , which implies that (λI −A)Rλf = f .

From this proposition we see that the infinitesimal generator A determines all resolvents
Rλ. Since λ 7→ Rλf is the Laplace transform of t 7→ Ttf , the resolvents in turn determine the
Feller semigroup (Tt).

Proposition (Resolvent identity). (i) For any λ, µ > 0,

Rλ −Rµ = (µ− λ)RλRµ = (µ− λ)RµRλ.

(ii) For any f ∈ C0, ‖λRλf − f‖ → 0 as λ→∞.

Proof. (i) From Rλ = (λI −A)−1 we get

R−1
µ −R−1

λ = µI − λI.

Composing Rλ on the left of both sides, and composing Rµ from the right of both sides, we get
Rλ −Rµ = (µ− λ)RλRµ. Switching Rλ and Rµ, we get Rλ −Rµ = (µ− λ)RµRλ.

(ii) First suppose f ∈ DA. Let g = (I −A)f ∈ C0. Then f = R1g, and

λRλf − f = λRλR1g −R1g = RλR1g −Rλg = Rλ(R1g − g)→ 0

in the norm topology because R1g − g ∈ C0, and ‖Rλ‖ ≤ 1/λ. For a general f ∈ C0, since DA
is dense in C0, we may find a sequence (fn) in DA such that fn → f . For each n, λRλfn → fn
as λ→∞. Since λRλ is a contraction for each λ > 0, λRλfn → λRλf as n→∞ uniformly in
λ. So we have λRλf → f as λ→∞.
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6.6 One-dimensional diffusion process

At the end, we focus on the solution of the following SDE

dXt = σ(Xt)dBt + b(Xt)dt, (6.14)

where σ, b ∈ C1(I,R) is positive, and I is an open interval on R. Since σ and b are locally
Lipschitz continuous, the strong solution Xx with any initial value x ∈ I exists uniquely, which
may blow up at some random finite time. When that happens, Xx

t tends to one end point of I
(which could be +∞ or −∞) at that time.

We may simplify the SDE as follows. Suppose Y = f(X) for some f ∈ C2(I). By Itô’s
formula, Y satisfies the SDE:

dYt = f ′(Xt)σ(Xt)dBt + f ′(Xt)b(Xt)dt+
1

2
f ′′(Xt)σ(Xt)

2dt.

If f is strictly increasing and satisfies the equation

f ′(x)b(x) +
1

2
f ′′(x)σ(x)2 = 0, (6.15)

then the SDE for Y simplifies to

dYt = (σf ′) ◦ f−1(Yt)dBt, (6.16)

and so Y is a local martingale.
Solving (6.15), we get f ′′(x)/f ′(x) = 2b(x)/σ(x)2. Since f ′′/f ′ = d

dx(log f ′), we get
log f ′(x) = C +

∫ x
x0

2b(s)/σ(s)2ds, where x0 is any point in I, and C ∈ R is a constant.

So f ′(x) = exp(
∫ x
x0

2b(s)/σ(s)2ds) is one solution. Integrating f ′, we get f . Since f ′ is C1 and

positive, f is C2 and strictly increasing. Since σ ∈ C1, we see that (σf ′) ◦ f−1 ∈ C1. So we can
reduce (6.14) to the equation

dXt = σ(Xt)dBt, (6.17)

where σ ∈ C1(I,R) is positive.

Lemma . Let a < b ∈ I. The process X that satisfies (6.14) does not stay in [a, b] during its
life period [0, T ).

Proof. By applying a function f ∈ C2(I), we may assume that X satisfies (6.17). Then X
is a local martingale, and so is a time-change of a full or stopped Brownian motion. This
means that there is a Brownian motion W defined on an extended probability space such that
Xt = W[X]t , 0 ≤ t < T . Then almost surely either [X]∞ = ∞ and lim supt↑T Xt = +∞ and
lim inft↑T Xt = −∞, or [X]T < ∞ and limt↑T Xt converges to W[X]T . Suppose Xt ∈ [a, b] for
0 ≤ t < T . Then the first case can not happen, and we have [X]T <∞ and limt↑T Xt converges
to some x0 ∈ [a, b]. If T < ∞, then Xt approaches some end point of I. So we must have
T = ∞. But now [X]T =

∫∞
0 σ(Xt)

2 = ∞ because limt↑∞ σ(Xt) = σ(x0) > 0, which is a
contradiction.
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Proposition . For the solution X of (6.17), if a < x < b ∈ I, then

Px[τa < τb] =
b− x
b− a

, Px[τb < τa] =
x− a
b− a

. (6.18)

where τa and τb are the first time that X reaches a and b, respectively.

Proof. We know that it does not happen that X([0, T )) ⊂ [a, b]. So τa ∧ τb < T . Since X is a
local martingale, and X is bounded on [0, τa ∧ τb], we get

x = Xx
0 = E[Xx

τa∧τb ] = aPx[τa < τb] + bPx[τb < τa].

Since Px[τa < τb] + Px[τb < τa] = 1, we get (6.18).

Corollary . For the solution X of (6.14) and an injective C2 function f on I such that f(X)
is a local martingale, if a < x < b ∈ I, then

Px[τa < τb] =
f(b)− f(x)

f(b)− f(a)
, Px[τb < τa] =

f(x)− f(a)

f(b)− f(a)
. (6.19)

Proof. If X starts from x, then Y := f(X) satisfies (6.16) and starts from f(x). The time
that X reaches a or b is the time that Y reaches f(a) or f(b). Then we apply the previous
proposition to Y .

The increasing function f with the property of (6.19) is called a scale function for X. Such
scale function is unique up to an affine map. If f(x) = x is a scale function, then X is a local
martingale, and we say that X is on a natural scale.

For X on a natural scale, the behavior of X at its terminal time, i.e., the limit of Xt as
t ↑ T , is determined by the interval I. This is the statement of the following proposition.

Proposition . Suppose X solves (6.17) on an interval I, and starts from x ∈ I.

(i) If I = R, then a.s. T =∞, lim supt↑T Xt = +∞ and lim inft↑T Xt = −∞.

(ii) If I = (a,∞) or (−∞, a) for some a ∈ R, then a.s. limt↑T Xt = a.

(iii) If I = (a, b) for some a < b ∈ R, then

Px[lim
t↑T

Xt = a] =
b− x
b− a

, Px[lim
t↑T

Xt = b] =
x− a
b− a

.

Proof. Since X is a local martingale, on an extended probability space there is a Brownian
motion W such that Xt = W[X]t , 0 ≤ t < T . So a.s. either Case 1: [X]T < ∞ and limt↑T Xt

converges, or Case 2: [X]T = ∞, lim supt↑T Xt = +∞ and lim inft↑T Xt = −∞. When I = R,

Case 1 can not happen because if limt↑T Xt = x0 ∈ R, then [X]T =
∫ T

0 σ(Xs)
2ds < ∞, which

implies that T < ∞. But T < ∞ implies that Xt → +∞ or −∞ as t ↑ T , a contradiction. So
Case 2 must happen, i.e., [X]T = ∞, lim supt↑T Xt = +∞ and lim inft↑T Xt = −∞. We then
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get a.s. T =∞ because if T <∞, then Xt tends to ∞ or −∞ as t ↑ T . So we get (i). For (ii)
and (iii), Case 2 can not happen because I 6= R, and so a.s. limt↑T Xt converges. The limit must

be a boundary point because if it is x0 ∈ I, then from [X]T =
∫ T

0 σ(Xs)
2ds <∞ we get T <∞,

which implies that Xt tends to an end point of I, a contradiction. So we get (ii). For (iii), we
have Px[limt↑T Xt = a] + Px[limt↑T Xt = b] = 1. Then we may compute P[limt↑T Xt = a] using
the martingale property of X.

Corollary . Suppose X solves (6.14) on an interval I with a scale function f , and starts from
x ∈ I.

(i) If f(I) = R, then a.s. T =∞, lim supt↑T Xt = sup I and lim inft↑T Xt = inf I.

(ii) If f(I) = (a,∞) for some a ∈ R, then a.s. limt↑T Xt = inf I; if f(I) = (−∞, a) for some
a ∈ R, then a.s. limt↑T Xt = sup I.

(iii) If f(I) is bounded, then

Px[lim
t↑T

Xt = inf I] =
sup f(I)− f(x)

sup f(I)− inf f(I)
, Px[lim

t↑T
Xt = sup I] =

f(x)− inf f(I)

sup f(I)− inf f(I)
.

Suppose X is on a natural scale, i.e., solves (6.17). We are specially interested in the case
that I = R. In this case, X visits every point infinitely many times, and is recurrent. We
call ν = σ(x)−2dx the speed measure for X. The name comes from the following ergodicity
theorem. We will not work on its proof.

Theorem . Suppose X is a diffusion on R on a natural scale with speed measure ν. Then for
any two nonnegative measurable functions f and g on I with νf < ∞ and νg > 0, and any
x ∈ R, we have Px-a.s.

lim
t→∞

∫ t
0 f(Xs)ds∫ t
0 g(Xs)ds

=
νf

νg
.

In particular, if ν is a finite measure, and we normalize it to a probability measure P0 = ν/|ν|,
then we get by choosing g ≡ 1,

lim
t→∞

1

t

∫ t

0
f(Xs)ds =

∫
f(x)P0(dx).

Moreover, if the process X starts with initial distribution P0, then it is a stationary process.
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