Stochastic Loewner evolution in doubly connected domains

Received: 12 October 2003 / Revised version: 19 January 2004 /
Published online: 25 March 2004 - (C) Springer-Verlag 2004

Abstract

This paper introduces the annulus SLE $_{\kappa}$ processes in doubly connected domains. Annulus SLE_{6} has the same law as stopped radial SLE_{6}, up to a time-change. For $\kappa \neq 6$, some weak equivalence relation exists between annulus $\operatorname{SLE}_{\kappa}$ and radial $\operatorname{SLE}_{\kappa}$. Annulus SLE_{2} is the scaling limit of the corresponding loop-erased conditional random walk, which implies that a certain form of SLE_{2} satisfies the reversibility property. We also consider the disc SLE $_{\kappa}$ process defined as a limiting case of the annulus SLE's. Disc SLE $_{6}$ has the same law as stopped full plane SLE_{6}, up to a time-change. Disc SLE $_{2}$ is the scaling limit of loop-erased random walk, and is the reversal of radial SLE $_{2}$.

1. Introduction

Stochastic Loewner evolution (SLE), introduced by O. Schramm in [16], is a family of random growth processes of plane sets in simply connected domains. The evolution is described by the classical Loewner differential equation with the driving term being a one-dimensional Brownian motion. SLE depends on a parameter $\kappa>0$, the speed of the Brownian motion, and behaves differently for different value of κ. See [15] by S. Rohde and O. Schramm for the basic fundamental properties of SLE.

Schramm's processes turned out to be very useful. On the one hand, they are amenable to computations, on the other hand, they are related with some statistical physics models. In a series of papers [5]-[9], G. F. Lawler, O. Schramm and W. Werner used SLE to determine the Brownian motion intersection exponents in the plane, identified SLE_{2} and SLE_{8} with the scaling limits of LERW and UST Peano curve, respectively, and conjectured that SLE $_{8 / 3}$ is the scaling limit of SAW. S. Smirnov proved in [17] that SLE_{6} is the scaling limit of critical site percolation on the triangular lattice.

For various reasons, a similar theory should also exist for multiply connected domains and even for general Riemann surfaces. We expect that the definition and some study of general SLE will give us better understanding of SLE itself and its physics background. The definition of SLE in simply connected domains uses the fact that the complement of SLE stopped at a finite time in a simply connected domain other than \mathbb{C} is still simply connected, so it is conformally equivalent to

[^0]the whole domain. But this property does not hold for general domains. That is the main difficulty in our definition of general SLE.

As a start, we consider SLE in the most simple non-simply connected domains: doubly connected domains. We show that the corresponding processes, the annulus SLE_{κ}, have features similar to those in the simply connected case. More specifically, we prove that annulus SLE_{6} has locality property; and for all $\kappa>0$, annulus SLE_{κ} is equivalent to radial SLE_{κ}. We also justify this definition by proving that annulus SLE_{2} is the scaling limit of the corresponding loop-erased conditional random walk.

After these, we define disc SLE in simply connected domains, which is the limit case of annulus SLE. Disc SLE $_{6}$ also has locality property, so its final hull has the same law as the hull generated by a plane Brownian motion stopped on hitting the boundary. Disc SLE_{2} is the scaling limit of the corresponding loop-erased random walk. It then follows that disc SLE_{2} is the reversal of radial SLE_{2} started from a random point on the boundary with harmonic measure.

1.1. SLE in simply connected domains

For $\kappa \geq 0$, the standard radial SLE_{κ} is obtained by solving the Loewner differential equations:

$$
\partial_{t} \varphi_{t}(z)=\varphi_{t}(z) \frac{1+\varphi_{t}(z) / \chi_{t}}{1-\varphi_{t}(z) / \chi_{t}}, 0 \leq t<\infty, \quad \varphi_{0}(z)=z
$$

where

$$
\chi_{t}=\exp (i B(\kappa t)),
$$

and $B(t)$ is a standard Brownian motion on \mathbb{R} started from 0 . Let K_{t} be the set of points z in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ such that the solution $\varphi_{s}(z)$ blows up before or at time t. Then $D_{t}:=\mathbb{D} \backslash K_{t}$ is a simply connected domain, $0 \in D_{t}$, and φ_{t} maps D_{t} conformally onto \mathbb{D} with $\varphi_{t}(0)=0$ and $\varphi_{t}^{\prime}(0)=e^{t}$. The family of hulls $\left(K_{t}, 0 \leq t<\infty\right)$ grows in \mathbb{D} from 1 to 0 , and is called the standard radial SLE_{κ}. If Ω is a simply connected domain (other than \mathbb{C}), a a prime end, $b \in \Omega$, then $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow b)$, radial SLE_{κ} in Ω from a to b, is defined as the image of the standard radial SLE_{κ} under the conformal map $(\mathbb{D} ; 1,0) \rightarrow(\Omega, a, b)$. By construction, radial SLE is conformally invariant.

Suppose $\left(K_{t}\right)$ is a radial $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow b)$. Then for any fixed $s \geq 0$, the law of a certain conformal image of $\left(K_{s+t} \backslash K_{s}\right)$ is the same as the law of $\left(K_{t}\right)$, and is independent of $\left(K_{r}\right)_{0 \leq r \leq s}$. In other words, radial SLE $_{\kappa}$ has "i.i.d." increments, in the sense of conformal equivalence. This property, together with the symmetry of the law in $(\mathbb{D} ; 1,0)$ w.r.t. complex conjugation, characterizes radial SLE up to κ.

Chordal SLE_{κ} processes are defined in a similar way. In this case, the family of hulls $\left(K_{t}\right)$ grows in a simply connected domain from one boundary point (prime end) to another. Once again, the properties of conformal invariance, "i.i.d." increments, and the corresponding symmetry property determine a one-parameter family of such processes.

Radial SLE and chordal SLE are equivalent in the following sense. Suppose Ω is a simply connected domain, a and c are two distinct prime ends, and $b \in \Omega$. For a fixed $\kappa>0$, let $\left(K_{t}\right)$ be a radial $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow b)$ and $\left(L_{s}\right)$ a chordal $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow c)$. Let T be the first time that K_{t} swallows c, S the first time that L_{s} swallows b. We set T or S to be ∞ by convention if the corresponding hitting time does not exist. If $\kappa=6$, up to a time-change, the law of $\left(K_{t}\right)_{0 \leq t \leq T}$ is the same as the law of $\left(L_{s}\right)_{0 \leq s \leq s}$. If $\kappa \neq 6$, there exist two sequences of stopping times $\left\{T_{n}\right\}$ and $\left\{S_{n}\right\}$ such that $T=\vee_{n} T_{n}, S=\vee_{n} S_{n}$, and for each $n \in \mathbb{N}$, up to a time-change, the laws of $\left(K_{t}\right)_{0 \leq t \leq T_{n}}$ and $\left(L_{s}\right)_{0 \leq s \leq S_{n}}$ are equivalent. In other words, they have positive density w.r.t. each other. The strong equivalence relation of radial and chordal SLE_{6} is related to the so-called locality property: the SLE $_{6}$ hulls do not feel the boundary before hitting it.

The equivalence property ensures that for the same κ, radial SLE_{κ} and chordal SLE_{κ} behave similarly. For instance, if $\kappa \leq 4$, and $\left(K_{t}\right)$ is a radial or chordal SLE_{κ} in Ω, then a.s. there is a simple path $\beta:(0, \infty) \rightarrow \Omega$ such that for any $t \in[0, \infty)$, we have $K_{t}=\beta(0, t]$. If $\kappa>4$ and $\partial \Omega$ is locally connected, then a.s. there is a non-simple path $\beta:(0, \infty) \rightarrow \bar{\Omega}$ such that for any $t \in[0, \infty), K_{t}$ is the hull generated by $\beta(0, t]$. This path β is called the $\operatorname{SLE}_{\kappa}$ trace.

Full plane $\mathrm{SLE}_{\kappa}:\left(K_{t},-\infty<t<\infty\right)$ grows in $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ from 0 to ∞. For any fixed $s \in \mathbb{R}$, the law of a certain conformal image of ($K_{s+t} \backslash K_{s}$) is the same as the law of the standard radial SLE_{κ}, and is independent of $\left(K_{r}\right)_{-\infty<r \leq s}$. Full plane SLE can be viewed as the limit of radial $\operatorname{SLE}_{\kappa}(\widehat{\mathbb{C}} \backslash \varepsilon \overline{\mathbb{D}} ; \varepsilon \rightarrow \infty)$ as $\varepsilon \rightarrow 0^{+}$.

1.2. Definition of annulus SLE

For $p>0$, we denote by \mathbf{A}_{p} the standard annulus of modulus p :

$$
\mathbf{A}_{p}=\left\{z \in \mathbb{C}: e^{-p}<|z|<1\right\}
$$

Every doubly connected domain D with non-degenerate boundary is conformally equivalent to a unique \mathbf{A}_{p}, and $p=M(D)$ is the modulus of D. We may first define SLE on the standard annuli, and then extend the definition to arbitrary doubly connected domains via conformal maps.

Denote

$$
\mathbf{S}_{p}(z)=\lim _{N \rightarrow \infty} \sum_{-N}^{N} \frac{e^{2 k p}+z}{e^{2 k p}-z}
$$

For $\chi \in \partial D$, let

$$
\mathbf{S}_{p}(\chi, z)=\mathbf{S}_{p}(z / \chi)
$$

The function $\mathbf{S}_{p}(\chi, \cdot)$ is a Schwarz kernel of \mathbf{A}_{p} in the sense that if f is an analytic function in \mathbf{A}_{p}, continuous up to the boundary, and constant on the circle $\mathbf{C}_{p}:=\left\{z \in \mathbb{C}:|z|=e^{-p}\right\}$, then for any $z \in \mathbf{A}_{p}$,

$$
f(z)=\int_{\mathbf{C}_{0}} f(\chi) \mathbf{S}_{p}(\chi, z) d \mathbf{m}+i C,
$$

where \mathbf{m} is the uniform probability measure on $\mathbf{C}_{0}=\partial \mathbb{D}$, and C is some real constant. Note that the Schwarz kernels are not unique. The choice of $\mathbf{S}_{p}(\chi, \cdot)$ here satisfies the rotation symmetry and reflection symmetry.

Let $\chi:[0, p) \rightarrow \mathbf{C}_{0}$ be a continuous function. Consider the following Loew-ner-type differential equation:

$$
\begin{equation*}
\partial_{t} \varphi_{t}(z)=\varphi_{t}(z) \mathbf{S}_{p-t}\left(\chi_{t}, \varphi_{t}(z)\right), 0 \leq t<p, \quad \varphi_{0}(z)=z . \tag{1.1}
\end{equation*}
$$

For $0 \leq t<p$, let K_{t} be the set of $z \in \mathbf{A}_{p}$ such that the solution $\varphi_{s}(z)$ blows up before or at time t. Let $D_{t}=\mathbf{A}_{p} \backslash K_{t}, 0 \leq t<p$. We call $K_{t}\left(\varphi_{t}\right.$, resp.), $0 \leq t<p$, the standard annulus LE hulls (maps, resp.) of modulus p driven by $\chi_{t}, 0 \leq t<p$. We will see that for each $0 \leq t<p, \varphi_{t}$ maps D_{t} conformally onto \mathbf{A}_{p-t}, and maps \mathbf{C}_{p} onto \mathbf{C}_{p-t}.

If we replace $\mathbf{S}_{p-t}\left(\chi_{t}, \varphi_{t}(z)\right)$ in formula (1.1) by

$$
\widehat{\mathbf{S}}_{p-t}\left(\chi_{t}, \varphi_{t}(z)\right):=\mathbf{S}_{p-t}\left(\chi_{t}, \varphi_{t}(z)\right)-\operatorname{Im} \mathbf{S}_{p-t}\left(\chi_{t}, e^{t-p}\right)
$$

and let $\widehat{\varphi}_{t}(z)$ be the corresponding solutions. Then we have $\widehat{\varphi}_{t}\left(e^{-p}\right)=e^{t-p}$, $0 \leq t<p$, since $\widehat{\mathbf{S}}_{p-t}\left(\chi_{t}, e^{t-p}\right) \equiv 1$. Actually $\widehat{\mathbf{S}}_{p}$ is the Schwarz kernel in [18]. We will use it in the proof of Proposition 2.1. We prefer \mathbf{S}_{p} to $\widehat{\mathbf{S}}_{p}$ in the definition of SLE because if we use $\widehat{\mathbf{S}}_{p}$ then the driving function must contain a drift term besides a Brownian motion. See the definition of SLE_{6} in [3].

We define standard annulus SLE_{κ} of modulus p to be the solution of (1.1) with $\chi_{t}=\exp (i B(\kappa t)), 0 \leq t<p$. The family of hulls grows from 1 to \mathbf{C}_{p}. Via a certain conformal map, we may extend the definition to $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow B)$ where Ω is a doubly connected domain with non-degenerate boundary, B is a boundary component, and a is a boundary point (prime end) on the other boundary component. Note that the conformal type of $\Omega \backslash K_{t}$ is always changing, so the annulus SLE_{κ} hulls cannot have identical increments in the sense of conformal equivalence. We may only require that for any fixed $s \in[0, p)$, the conformal image of $\left(K_{s+t} \backslash K_{s}\right)_{0 \leq t<p-s}$ has the same law as the annulus SLE hulls of modulus $p-s$. This together with the symmetry property does not determine the driving process up to a single parameter. However, it turns out that $\exp (i B(\kappa t))$, a Brownian motion on \mathbf{C}_{0} started from 1 with constant speed κ, is a reasonable choice for the driving process. The main goal of the paper is to justify this claim.

Two facts of doubly connected domains are used in the above definition of annulus SLE. First, the conformal type of a doubly connected domain can be described by a single number, which is the modulus. So we use the time parameter to describe the modulus. Second, given a boundary component B and a prime end P on the other boundary component of some doubly connected domain D, there is a self-con-jugate-conformal map of $(D ; B, P)$. This is clear when D is the standard annulus. We actually assume that the law of annulus $\operatorname{SLE}_{\kappa}(D ; P \rightarrow B)$ is invariant under that map. Because of these, our definition of annulus SLE can be expressed by some nice differential equations. However, these two facts do not hold for n-connected domains when $n>2$. Some other methods are needed to define the SLEs. The extensions of SLE to multiply connected domains and Riemann surfaces are now in preparation, and will appear elsewhere.

1.3. Main results

Suppose Ω is a simply connected domain, a is a prime end, and b is an interior point. Suppose $F \supsetneqq\{b\}$ is a contractible compact subset of Ω. Then $\Omega \backslash F$ is a doubly connected domain with two boundary components $\partial \Omega$ and ∂F. We call F a hull in Ω w.r.t. b. For a fixed $\kappa>0$, let $\left(K_{t}\right)$ be a radial $\operatorname{SLE}_{\kappa}(\Omega ; a \rightarrow b)$, and $\left(L_{s}\right)$ an annulus $\operatorname{SLE}_{\kappa}(\Omega \backslash F ; a \rightarrow \partial F)$. Then we have

Theorem 1.1. (i) If $\kappa=6$, the law of $\left(K_{t}\right)_{0 \leq t<T_{F}}$, is equal to that of $\left(L_{s}\right)_{0 \leq s<p}$, up to a time-change.
(ii) If $\kappa \neq 6$, there exist two sequences of stopping times $\left\{T_{n}\right\}$ and $\left\{S_{n}\right\}$ such that $T=\vee_{n} T_{n}, p=\vee_{n} S_{n}$, and for each $n \in \mathbb{N}$, the law of $\left(K_{t}\right)_{0 \leq t \leq T_{n}}$ is equivalent to that of $\left(L_{s}\right)_{0 \leq s \leq S_{n}}$, up to a time-change.

The second main result of the paper concerns the convergence of a loop-erased conditional random walk (LERW) with appropriate boundary conditions to an annulus SLE_{2}. For any plane domain Ω, and $\delta>0$, let Ω^{δ} denote the graph defined as follows. The vertex set $V\left(\Omega^{\delta}\right)$ consists of the points in $\delta \mathbb{Z}^{2} \cap \Omega$ and the intersection points of $\partial \Omega$ with edges of $\delta \mathbb{Z}^{2}$. The edge set $E\left(\Omega^{\delta}\right)$ consists of the unordered vertex pairs $\{u, v\}$ such that the line segment $(u, v) \subset \Omega$, and there is an edge of $\delta \mathbb{Z}^{2}$ that contains (u, v) as a subset.

Suppose D is a doubly connected domain with boundary components B_{1} and $B_{2}, 0 \in B_{1}$ and there is some $a>0$ such that the line segment $(0, a]$ is contained in D. This line segment determines a prime end in D on B_{1}, denoted by 0_{+}. We may assume that δ is sufficiently small so that 0 and δ are adjacent vertices of D^{δ}, and there is a lattice path on D^{δ} connecting δ and $V\left(D^{\delta}\right) \cap B_{2}$.

Now let RW be a simple random walk on D^{δ} started from δ and stopped on hitting ∂D. Let CRW be RW conditioned on the event that RW hits B_{2} before B_{1}. Let LERW be the loop-erasure of CRW, which is obtained by erasing the loops of CRW in the order that they appear. See [4] for details. Then LERW is a random simple lattice path on D^{δ} from δ to B_{2}. We may also view LERW as a random simple curve in D from δ to B_{2}. Taking with the segment $[0, \delta]$, we obtain a random simple curve in D from 0 to B_{2}. We parameterize this curve by $\beta^{\delta}[0, p]$ so that $\beta^{\delta}(0)=0, \beta^{\delta}(p) \in B_{2}$, and $M\left(D \backslash \beta^{\delta}(0, t)\right)=p-t$, for $0 \leq t<p$.

Now let $\left(K_{t}^{0}\right)_{0 \leq t<p}$ be an annulus $\operatorname{SLE}_{2}\left(D ; 0_{+} \rightarrow B_{2}\right)$. From Theorem 1.1 and the existence of radial SLE_{κ} traces, we know that a.s. there exists a random simple path $\beta^{0}(t), 0<t<p$, such that $K_{t}^{0}=\beta^{0}(0, t]$, for $0 \leq t<p$.

Theorem 1.2. For every $q \in(0, p)$ and $\varepsilon>0$, there is a $\delta_{0}>0$ depending on q and ε such that for $\delta \in\left(0, \delta_{0}\right)$ there is a coupling of the processes β^{δ} and β^{0} such that

$$
\mathbf{P}\left[\sup \left\{\left|\beta^{\delta}(t)-\beta^{0}(t)\right|: t \in[q, p)\right\}>\varepsilon\right]<\varepsilon
$$

Moreover, if the impression of the prime end 0_{+}is a single point, then the theorem holds with $q=0$.

Here a coupling of two random processes A and B is a probability space with two random processes A^{\prime} and B^{\prime}, where A^{\prime} and B^{\prime} have the same law as A and B,
respectively. In the above statement (as is customary) we don't distinguish between A and A^{\prime} and between B and B^{\prime}. The impression (see [13]) of a prime end is the intersection of the closure of all neighborhoods of that prime end.

For $\kappa=2,8$ and $8 / 3$, chordal $\operatorname{SLE}_{\kappa}$ satisfies the reversibility property. That means the reversal of chordal $\operatorname{SLE}_{\kappa}(D ; a \rightarrow b)$ trace has the same law as chordal $\operatorname{SLE}_{\kappa}(D ; b \rightarrow a)$ trace, up to a time-change. For the annulus SLE trace, the starting point is a fixed prime end, but the end point (if it exists) is a random point on a boundary component. To get the reversibility property, we have to "average" the annulus SLE traces in the same domain started from different points of one boundary component. From Theorem 1.2 and the reversibility of LERW (see [4]), it then follows

Corollary 1.1. The reversal of the annulus $\operatorname{SLE}_{2}\left(\mathbf{A}_{p} ; \mathbf{x} \rightarrow \mathbf{C}_{p}\right)$ trace has the same law as the annulus $\operatorname{SLE}_{2}\left(\mathbf{A}_{p} ; \mathbf{y} \rightarrow \mathbf{C}_{0}\right)$ trace, up to a time-change, where \mathbf{x} and \mathbf{y} are uniform random points on \mathbf{C}_{0} and \mathbf{C}_{p}, respectively.

The definition of annulus SLE enables us to define disc SLE $_{\kappa}$ that grows in a simply connected domain Ω from an interior point to the whole boundary. It can be viewed as the limit of annulus SLE_{κ} as the modulus tends to infinity. The relation between disc SLE and annulus SLE is similar to that between full plane SLE and radial SLE.

From our methods, it follows that for any simply connected domain Ω that contains 0 , the full plane SLE_{6} before the hitting time of $\partial \Omega$ has the same law as the disc $\operatorname{SLE}_{6}(\Omega ; 0 \rightarrow \partial \Omega)$, up to a time-change. This gives an alternative proof of the following facts mentioned in [19][9]. The hitting point of full plane SLE $_{6}$ at $\partial \Omega$ has harmonic measure valued at 0 , and therefore the full plane SLE $_{6}$ hull at the hitting time of $\partial \Omega$ has the same law as the hull generated by a plane Brownian motion started from 0 and stopped on exiting Ω.

We also show that the LERW on the grid approximation Ω^{δ} started from an interior vertex 0 to the boundary converges to the disc $\operatorname{SLE}_{2}(\Omega ; 0 \rightarrow \partial \Omega)$, as $\delta \rightarrow 0$. Together with the approximation result in [8], this implies that the reversal of the disc $\operatorname{SLE}_{2}(\Omega ; 0 \rightarrow \partial \Omega)$ has the same law as the radial $\operatorname{SLE}_{2}(\Omega ; \mathbf{z} \rightarrow 0)$, up to a time-change, where \mathbf{z} is a random point on $\partial \Omega$ that has harmonic measure valued at 0 .

1.4. Some comments about the proof

The discussion of the convergence of LERW to annulus SLE_{2} basically follows the methods developed in [8]. In the same order as in [8], logically, we first find the observables for LERW; then prove they are martingales and converge to some continuous harmonic functions; these facts are used to show that the driving function of the LERW converges to the Brownian motion with speed 2; finally we use the nice behavior of LERW path to show that the path parameterized according to the modulus of the remaining domain converges to the annulus SLE_{2} trace uniformly in probability.

However, some notations and proofs in [8] can not be transplanted to this paper immediately. For example, the observables in this paper has counterparts in simply
connected domains, which are exactly the observables introduced in [8]. But the LERW studied there is from an interior vertex to the boundary, and the proof of Proposition 3.4 in [8] uses this construction. We have to prove the fact that they are martingales using a different method, which we believe shows some essence of this subject. Moreover, since the moduli change in time, some proofs here, e.g., that to Proposition 3.4, are much longer than their counterparts, e.g., part of the proof to Proposition 3.4 in [8].

The authors of [8] first use some subgraph of \mathbb{Z}^{2} to approximate a simply connected plane domain, and they use the inner radius with respect to a fixed point (which is 0 there) to describe the extent that the graph approximates the domain. After some rescaling, the inner radius means the distance from 0 to the boundary of the domain divided by the length of the mesh. It seems not easy to find counterparts of the inner radius for doubly connected domains. So we proceed in another way by taking the limit of some sequence of domains. This results in a very long proof of Proposition 3.3. This method extends to the cases of multiply connected domains.

2. Equivalence of annulus and radial SLE

2.1. Deterministic annulus LE hulls

We recall some facts about the Schwarz function

$$
\mathbf{S}_{r}(z)=\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{e^{2 k r}+z}{e^{2 k r}-z}, r>0
$$

(i) \mathbf{S}_{r} is analytic in $\mathbb{C} \backslash\{0\} \backslash\left\{e^{2 k r}: k \in \mathbb{Z}\right\}$;
(ii) $\left\{e^{2 k r}: k \in \mathbb{Z}\right\}$ are simple poles of S_{r};
(iii) $\operatorname{Re} \mathbf{S}_{r} \equiv 1$ on $\mathbf{C}_{r}=\left\{z \in \mathbb{C}:|z|=e^{-r}\right\}$;
(iv) $\operatorname{Re} \mathbf{S}_{r} \equiv 0$ on $\mathbf{C}_{0} \backslash\{1\}$;
(v) $\operatorname{Re} \mathbf{S}_{r}>0$ in \mathbf{A}_{r}; and
(vi) $\operatorname{Im} \mathbf{S}_{r} \equiv 0$ on $\mathbb{R} \backslash\{0\} \backslash\{$ poles $\}$.

Suppose f is an analytic function in $\mathbf{A}_{r}, \operatorname{Re} f$ is non-negative, and $\operatorname{Re} f(z)$ tends to a as $z \rightarrow \mathbf{C}_{r}$, then there is some positive measure $\mu=\mu(f)$ on \mathbf{C}_{0} of total mass a such that

$$
\begin{equation*}
f(z)=\int_{\mathbf{C}_{0}} \mathbf{S}_{r}(z / \chi) d \mu(\chi)+i C, \tag{2.1}
\end{equation*}
$$

for some real constant C. If $\operatorname{Re} f(z)$ tends to zero as z approaches the complement of an arc α of \mathbf{C}_{0}, then $\mu(f)$ is supported by $\bar{\alpha}$. Moreover, if f is bounded, then the radial limit of f on \mathbf{C}_{0} exists a.e., and $d \mu(f) / d \mathbf{m}=\left.f\right|_{C_{0}}$. The proof is similar to that of the Poisson integral formula.

Divide both sides of equation (1.1) by $\varphi_{t}(z)$ and take the real part. We get

$$
\partial_{t} \ln \left|\varphi_{t}(z)\right|=\operatorname{Re} \mathbf{S}_{p-t}\left(\varphi_{t}(z) / \chi_{t}\right) .
$$

From the values of $\operatorname{Re} \mathbf{S}_{p-t}$ on \mathbf{C}_{p-t} and \mathbf{C}_{0} we see that if $z \in \mathbf{C}_{0} \backslash\{1\}$, then $\varphi_{t}(z) \in \mathbf{C}_{0} \backslash\{1\}$ until it blows up; if $z \in \mathbf{C}_{p}$, then $\varphi_{t}(z) \in \mathbf{C}_{p-t}$ for $0 \leq t<p$.

Thus for $z \in \mathbf{A}_{p}, \varphi_{t}(z)$ stays between \mathbf{C}_{0} and \mathbf{C}_{p-t} until it blows up. So φ_{t} maps D_{t} into \mathbf{A}_{p-t}. The fact that \mathbf{S}_{p-t} is analytic implies that for every $t \in[0, p), \varphi_{t}$ is a conformal map of D_{t}. By considering the backward flow, it is easy to see that φ_{t} maps D_{t} onto \mathbf{A}_{p-t}.

Definition 2.1. Suppose D is a doubly connected domain with boundary components B and B^{\prime}. We call $K \subset D$ a hull in D on B if $D \backslash K$ is a doubly connected domain that has B^{\prime} as a boundary component. The capacity of K in D w.r.t. B^{\prime}, denoted by $C_{D, B^{\prime}}(K)$, is the value of $M(D)-M(D \backslash K)$.

Definition 2.2. Suppose Ω is a simply connected domain. We call $K \subset \Omega$ a hull in Ω on $\partial \Omega$, if $\Omega \backslash K$ is a simply connected domain. If φ maps $\Omega \backslash K$ conformally onto Ω and for some $a \in \Omega \backslash K, \varphi(a)=a$ and $\varphi^{\prime}(a)>0$, then $\ln \varphi^{\prime}(a)>0$, and is called the capacity of K in Ω w.r.t. a, denoted by $C_{\Omega, a}(K)$.

If K is a hull in \mathbf{A}_{p} on \mathbf{C}_{0}, and ψ is any conformal map from $\mathbf{A}_{p} \backslash K$ onto \mathbf{A}_{p-r} which takes \mathbf{C}_{p} to \mathbf{C}_{p-r}, then the radial limit of ψ^{-1} on \mathbf{C}_{0} exists a.e., and

$$
C_{A_{p}, C_{p}}(K)=\int_{\mathbf{C}_{0}}-\ln \left|\psi^{-1}\right| d \mathbf{m} .
$$

If K is a hull in \mathbb{D} on \mathbf{C}_{0} and φ maps $\mathbb{D} \backslash K$ onto \mathbb{D} conformally so that $\varphi(0)=0$, then the radial limit of φ^{-1} on \mathbf{C}_{0} exists a.e., and

$$
C_{\mathbb{D}, 0}(K)=\int_{\mathbf{C}_{0}}-\ln \left|\varphi^{-1}\right| d \mathbf{m}
$$

Similarly as Lemma 2.8 in [5], using the integral formulas for capacities of hulls in \mathbb{D} and \mathbf{A}_{p}, it is not hard to derive the following Lemma:

Lemma 2.1. Suppose $x, y \in \mathbf{C}_{0}$, and G is a conformal map from a neighborhood U of x onto a neighborhood V of y such that $G(U \cap \mathbb{D})=V \cap \mathbb{D}$. Fix any $p>0$. For every $\varepsilon>0$, there is $r=r(\varepsilon)>0$ such that if K is a non-empty hull in \mathbb{D} on \mathbf{C}_{0} and $K \subset \mathbf{B}(x ; r)$, the open ball of radius r about x, then $K \subset U, G(K)$ is a hull in \mathbf{A}_{p} on \mathbf{C}_{0}, and

$$
\left|\frac{C_{A_{p}, C_{p}}(G(K))}{C_{\mathbb{D}, 0}(K)}-\left|G^{\prime}(x)\right|^{2}\right|<\varepsilon .
$$

Suppose D is a doubly connected domain with boundary components B_{1} and B_{2}. We call ($K_{s}, a \leq s<b$) a Loewner chain in D on B_{1} if every K_{s} is a hull in D on $B_{1}, K_{s_{1}} \varsubsetneqq K_{s_{2}}$ if $a \leq s_{1}<s_{2}<b$, and for every $c \in(a, b)$, the extremal length (see [1]) of the family of curves in $D \backslash K_{s+u}$ that disconnect $K_{s+u} \backslash K_{s}$ from B_{2} tends to 0 as $u \rightarrow 0^{+}$, uniformly in $s \in[a, c]$. If the area of D is finite, then the above condition holds iff the infimum length of all C^{1} curves in $D \backslash K_{s+u}$ that disconnect B_{2} from $K_{s+u} \backslash K_{s}$ tends to 0 as $u \rightarrow 0^{+}$, uniformly in $s \in[a, c]$.

Now we consider a Loewner chain in \mathbf{A}_{p} on \mathbf{C}_{0}. The following proposition is similar to the theorems for chordal and radial LE in [5] and [11].

Proposition 2.1. The following two statements are equivalent:

1. $K_{t}, 0 \leq t<p$, are the standard LE hulls of modulus p driven by some continuous function $\chi:[0, p) \rightarrow \mathbf{C}_{0}$;
2. $\left(K_{t}, 0 \leq t<p\right)$ is a Loewner chain in \mathbf{A}_{p} on \mathbf{C}_{0}, and $C_{A_{p}, C_{p}}\left(K_{t}\right)=M\left(\mathbf{A}_{p}\right)-$ $M\left(\mathbf{A}_{p} \backslash K_{t}\right)=t$ for $0 \leq t<p$.
Moreover, $\left\{\chi_{t}\right\}=\cap_{u>0} \overline{\varphi_{t}\left(K_{t+u} \backslash K_{t}\right)}$, where φ_{t} is the standard annulus LE map. If $\left(L_{s}, a \leq s<b\right)$ is any Loewner chain in \mathbf{A}_{p} on \mathbf{C}_{0}, then $s \mapsto C_{A_{p}, C_{p}}\left(L_{s}\right)$ is a continuous (strictly) increasing function.

Proof. The method of the proof is a combination of extremal length comparison, the use of formula (2.1), and some estimation of Schwarz kernels. It is very similar to the proof of the counterparts in [5] and [11]. So we omit the most part of it. One thing we want to show here is how we derive φ_{t} from K_{t} in the proof of 2 implies 1 . We first choose $\widehat{\varphi_{t}}$ that maps $\mathbf{A}_{p} \backslash K_{t}$ conformally onto \mathbf{A}_{p-t} such that $\widehat{\varphi}_{t}\left(\mathbf{C}_{p}\right)=\mathbf{C}_{p-t}$ and $\widehat{\varphi}_{t}\left(e^{-p}\right)=e^{t-p}$. Then we prove that $\widehat{\varphi}_{t}$ satisfies the equation

$$
\partial_{t} \widehat{\varphi}_{t}(z)=\widehat{\varphi}_{t}(z)\left(\mathbf{S}_{p-t}\left(\widehat{\varphi}_{t}(z) / \widehat{\chi}_{t}\right)-i \operatorname{Im} \mathbf{S}_{p-t}\left(e^{t-p} / \widehat{\chi}_{t}\right)\right),
$$

for some continuous $\widehat{\chi}:[0, p) \rightarrow \mathbf{C}_{0}$. And $\left\{\widehat{\chi}_{t}\right\}=\cap_{u>0} \widehat{\widehat{\varphi}_{t}\left(K_{t+u} \backslash K_{t}\right)}$. Define

$$
\theta(t)=\int_{0}^{t} \operatorname{Im} \mathbf{S}_{p-s}\left(e^{s-p} / \widehat{\chi}_{s}\right) d s
$$

$\chi_{t}=e^{i \theta(t)} \widehat{\chi}_{t}$ and $\varphi_{t}(z)=e^{i \theta(t)} \widehat{\varphi}_{t}(z)$, for $t \in[0, p)$. Then $\varphi_{0}(z)=\widehat{\varphi}_{0}(z)=z, \varphi_{t}$ maps $\mathbf{A}_{p} \backslash K_{t}$ conformally onto $\mathbf{A}_{p-t},\left\{\chi_{t}\right\}=\cap_{u>0} \overline{\varphi_{t}\left(K_{t+u} \backslash K_{t}\right)}$, and

$$
\partial_{t} \ln \varphi_{t}(z)=\partial_{t} \ln \widehat{\varphi}_{t}(z)+i \theta^{\prime}(t)=\mathbf{S}_{p-t}\left(\widehat{\varphi}_{t}(z) / \widehat{\chi}_{t}\right)=\mathbf{S}_{p-t}\left(\varphi_{t}(z) / \chi_{t}\right)
$$

Thus $\partial_{t} \varphi_{t}(z)=\varphi_{t}(z) \mathbf{S}_{p-t}\left(\varphi(z) / \chi_{t}\right)$. So $K_{t}, 0 \leq t<p$, are the standard annulus LE hulls of modulus p, driven by $\chi_{t}, 0 \leq t<p$.

2.2. Proof of Theorem 1.1

We may assume in Theorem 1.1 that $\Omega=\mathbb{D}, a=1$ and $b=0$. Then ($K_{t}, 0 \leq$ $t<\infty)$ is the standard radial SLE_{κ}. Suppose φ_{t} and $\chi_{t}, 0 \leq t<\infty$, are the corresponding standard radial SLE $_{\kappa}$ maps and driving process, respectively. Then $\chi_{t}=e^{i B(\kappa t)}$, where $B(t)$ is a standard Brownian motion on \mathbb{R} started from 0 .

For $0 \leq t<T_{F}, \mathbb{D} \backslash F \backslash K_{t}$ is a doubly connected domain. So $K_{t}, 0 \leq t<T_{F}$, are hulls in $\mathbb{D} \backslash F$ on \mathbf{C}_{0}. From [11] we know that ($K_{t}, 0 \leq t<T_{F}$) is a Loewner chain in $\mathbb{D} \backslash F$ on \mathbf{C}_{0}. Suppose W maps $\mathbb{D} \backslash F$ conformally onto \mathbf{A}_{p} so that $W(1)=1$. Then ($W\left(K_{t}\right), 0 \leq t<T_{F}$) is a Loewner chain in \mathbf{A}_{p} on \mathbf{C}_{0}. From [15] we know that K_{t} approaches F as $t \nearrow T_{F}$, so $W\left(K_{t}\right)$ approaches \mathbf{C}_{p} as $t \nearrow T_{F}$. This implies that $M\left(\mathbb{D} \backslash F \backslash K_{t}\right) \rightarrow 0$ as $t \nearrow T_{F}$. Let $u(t)=C_{D, \partial F}(K)=C_{A_{p}, C_{p}}(W(K))$. Then u is a continuous increasing function and maps [0, T_{F}) onto [0, p). Let v be the inverse of u. By Proposition 2.1, $W\left(K_{v(s)}\right), 0 \leq s<p$, are the standard annulus LE hulls of modulus p driven by some continuous $v:[0, p) \rightarrow \mathbf{C}_{0}$. Let $\psi_{s}, 0 \leq s<p$, be the corresponding standard annulus LE maps.

Now φ_{t} maps $\mathbb{D} \backslash F \backslash K_{t}$ conformally onto $\mathbb{D} \backslash \varphi_{t}(F)$. Let $f_{t}=\psi_{u(t)} \circ W \circ \varphi_{t}^{-1}$. Then f_{t} maps $\mathbb{D} \backslash \varphi_{t}(F)$ conformally onto $\mathbf{A}_{p-u(t)}$, and $f_{t}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{0}$. By Schwarz
reflection, we may extend f_{t} analytically to Σ_{t}, which is the union of $\mathbb{D} \backslash \varphi_{t}(F), \mathbf{C}_{0}$, and the reflection of $\mathbb{D} \backslash \varphi_{t}(F)$ w.r.t. \mathbf{C}_{0}. And f_{t} is a conformal map on Σ_{t}. Note that f_{t} maps $\varphi_{t}\left(K_{t+a} \backslash K_{t}\right)$ to $\psi_{u(t)}\left(W\left(K_{t+a}\right) \backslash W\left(K_{t}\right)\right)$ for $a>0$. From Proposition 2.1, we see that $\left\{v_{u(t)}\right\}=\cap_{a>0} \overline{\psi_{u(t)}\left(W\left(K_{t+a}\right) \backslash W\left(K_{t}\right)\right)}$. And from the counterpart in [11] of Proposition 2.1, we know that $\left\{\chi_{t}\right\}=\cap_{a>0} \overline{\varphi_{t}\left(K_{t+a} \backslash K_{t}\right)}$. Thus $v_{u(t)}=f_{t}\left(\chi_{t}\right)$. Now $\varphi_{t}\left(K_{t+a} \backslash K_{t}\right)$ is a hull in $\mathbb{D}, \varphi_{t+a} \circ \varphi_{t}^{-1} \operatorname{maps} \mathbb{D} \backslash \varphi_{t}\left(K_{t+a} \backslash K_{t}\right)$ conformally onto \mathbb{D}, fixes 0 , and $\left(\varphi_{t+a} \circ \varphi_{t}^{-1}\right)^{\prime}(0)=e^{a}$. So the capacity w.r.t. 0 of $\varphi_{t}\left(K_{t+a} \backslash K_{t}\right)$ is a. Similarly, $\psi_{u(t)}\left(W\left(K_{t+a} \backslash W\left(K_{t}\right)\right)\right.$ is a hull in $\mathbf{A}_{p-u(t)}$ on \mathbf{C}_{0}, and the capacity is $u(t+a)-u(t)$. From Lemma (2.1) we conclude that $u_{+}^{\prime}(t)=\left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2}$.

Let $H=\left\{(t, z): 0 \leq t<T_{F}, z \in \Sigma_{t}\right\}$ and $G(\chi)=\left\{\left(t, \chi_{t}\right): 0 \leq t<T_{F}\right\}$. By the definition of f_{t}, we see that $(t, z) \mapsto f_{t}^{\prime}(z)$ is continuous in $H \backslash G(\chi)$. Note that f_{t}^{\prime} is analytic in Σ_{t} for each $t \in\left[0, T_{F}\right)$. The maximum principle implies that $(t, z) \mapsto f_{t}^{\prime}(z)$ is continuous in H. In particular, $t \mapsto f_{t}^{\prime}\left(\chi_{t}\right)$ is continuous. So we have

Lemma 2.2. $u(t)$ is C^{1} continuous, and $u^{\prime}(t)=\left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2}$.
The fact $W\left(\chi_{0}\right)=W(1)=1$ implies that $\nu_{0}=1$. We now lift f_{t} to the covering space. Write $\chi_{t}=e^{i \xi_{t}}$ and $v_{s}=e^{i \eta_{s}}$, where $\xi_{t}=B(\kappa t), 0 \leq t<\infty$, and η_{s}, $0 \leq s<p$, is a real continuous function with $\eta_{0}=0$. Let $\widetilde{\Sigma}_{t}=\left\{z \in \mathbb{C}: e^{i z} \in\right.$ $\left.\Sigma_{t}\right\}$. Then there is a unique conformal map $\widetilde{f_{t}}$ on $\widetilde{\Sigma}_{t}$ such that $e^{i \widetilde{f}_{t}(z)}=f_{t}\left(e^{i z}\right)$ and $\eta_{u(t)}=\widetilde{f_{t}}\left(\xi_{t}\right)$. And $\widetilde{f_{t}}$ takes real values on the real line. Moreover, $u^{\prime}(t)=$ $\left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2}=\widetilde{f}_{t}^{\prime}\left(\xi_{t}\right)^{2}$.
Lemma 2.3. $(t, x) \mapsto \widetilde{f_{t}}(\underset{\sim}{x})$ is $C^{1, \infty}$ continuous on $\left[0, T_{F}\right) \times \mathbb{R}$. And for all $t \in\left[0, T_{F}\right), \partial_{t} \widetilde{f}_{t}\left(\xi_{t}\right)=-3 \widetilde{f}_{t}^{\prime \prime}\left(\xi_{t}\right)$.

Proof. For any $t \in\left[0, T_{F}\right)$, and $z \in \mathbb{D} \backslash F \backslash K_{t}$, we have $f_{t} \circ \varphi_{t}(z)=\psi_{u(t)} \circ W(z)$. Taking the derivative w.r.t. t, we compute

$$
\begin{aligned}
& \partial_{t} f_{t}\left(\varphi_{t}(z)\right)+f_{t}^{\prime}\left(\varphi_{t}(z)\right) \varphi_{t}(z) \frac{\chi_{t}+\varphi_{t}(z)}{\chi_{t}-\varphi_{t}(z)} \\
& \quad=u^{\prime}(t) \psi_{u(t)}(W(z)) \mathbf{S}_{p-u(t)}\left(\psi_{u(t)}(W(z)) / \eta_{u(t)}\right) .
\end{aligned}
$$

By Lemma 2.2, $u^{\prime}(t)=\left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2}$. Thus for any $t \in\left[0, T_{F}\right)$ and $z \in \mathbb{D} \backslash F \backslash K_{t}$,

$$
\begin{aligned}
\partial_{t} f_{t}\left(\varphi_{t}(z)\right)= & \left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2} f_{t}\left(\varphi_{t}(z)\right) \mathbf{S}_{p-u(t)}\left(f_{t}\left(\varphi_{t}(z)\right) / f_{t}\left(\chi_{t}\right)\right) \\
& -f_{t}^{\prime}\left(\varphi_{t}(z)\right) \varphi_{t}(z) \frac{\chi_{t}+\varphi_{t}(z)}{\chi_{t}-\varphi_{t}(z)}
\end{aligned}
$$

For any $t \in\left[0, T_{F}\right)$, and $w \in \mathbb{D} \backslash \varphi_{t}(F)$, we have $\varphi_{t}^{-1}(w) \in \mathbb{D} \backslash F \backslash K_{t}$. Thus

$$
\partial_{t} f_{t}(w)=\left|f_{t}^{\prime}\left(\chi_{t}\right)\right|^{2} f_{t}(w) \mathbf{S}_{p-u(t)}\left(f_{t}(w) / f_{t}\left(\chi_{t}\right)\right)-f_{t}^{\prime}(w) w \frac{\chi_{t}+w}{\chi_{t}-w} .
$$

Let $g_{t}(w)$ be the right-hand side of the above formula for $t \in\left[0, T_{F}\right)$ and $w \in \Sigma_{t} \backslash$ $\left\{\chi_{t}\right\}$. Then for each $t \in\left[0, T_{F}\right), g_{t}(w)$ is analytic in $\Sigma_{t} \backslash\left\{\chi_{t}\right\}$. And $(t, w) \mapsto g_{t}(w)$ is $C^{0, \infty}$ continuous on $H \backslash G(\chi)$.

Now fix $t_{0} \in\left[0, T_{F}\right)$. Let us compute the limit of $g_{t_{0}}(w)$ when $w \rightarrow \chi_{t_{0}}$. Since

$$
\mathbf{S}_{p-u\left(t_{0}\right)}\left(f_{t_{0}}(w) / f_{t_{0}}\left(\chi_{t_{0}}\right)\right)-\frac{f_{t_{0}}\left(\chi_{t_{0}}\right)+f_{t_{0}}(w)}{f_{t_{0}}\left(\chi_{t_{0}}\right)-f_{t_{0}}(w)} \rightarrow 0, \text { as } w \rightarrow \chi_{t_{0}}
$$

so the limit of $g_{t_{0}}(w)$ is equal to the limit of the following function:

$$
\left|f_{t_{0}}^{\prime}\left(\chi_{t_{0}}\right)\right|^{2} f_{t_{0}}(w) \frac{f_{t_{0}}\left(\chi_{t_{0}}\right)+f_{t_{0}}(w)}{f_{t_{0}}\left(\chi_{t_{0}}\right)-f_{t_{0}}(w)}-f_{t_{0}}^{\prime}(w) w \frac{\chi_{t_{0}}+w}{\chi_{t_{0}}-w} .
$$

Let $w=e^{i x}$, we may express the above formula in term of $x, \xi_{t_{0}}$ and $\tilde{f}_{t_{0}}$, which is

$$
\begin{aligned}
& \widetilde{f}_{t_{0}}^{\prime}\left(\xi_{t_{0}}\right)^{2} e^{i \tilde{f}_{t_{0}}(x)} \frac{e^{i \tilde{f}_{t_{0}}\left(\xi_{t_{0}}\right)}+e^{i \tilde{f}_{t_{0}}(x)}}{e^{i \tilde{f}_{t_{0}}\left(\xi_{t_{0}}\right)}-e^{i \tilde{f}_{t_{0}}(x)}}-\widetilde{f}_{t_{0}}^{\prime}(x) e^{i \tilde{f}_{t_{0}}(x)} \frac{e^{i \xi t_{t_{0}}}+e^{i x}}{e^{i \xi_{t_{0}}}-e^{i x}} \\
& =-i e^{i \tilde{f}_{t_{0}}(x)}\left[\widetilde{f_{t_{0}}^{\prime}}\left(\xi_{t_{0}}\right)^{2} \cot \left(\frac{\widetilde{f_{t_{0}}}(x)-\widetilde{f_{t_{0}}}\left(\xi_{t_{0}}\right)}{2}\right)-\widetilde{f}_{t_{0}}^{\prime}(x) \cot \left(\frac{x-\xi_{t_{0}}}{2}\right)\right] .
\end{aligned}
$$

By expanding the Laurent series of $\cot (z)$ near 0 , we see that the limit of the above formula is $3 i e^{i \tilde{f}_{t_{0}}\left(\xi_{t_{0}}\right)} \widetilde{f}_{t_{0}}^{\prime \prime}\left(\xi_{t_{0}}\right)=3 i f_{t_{0}}\left(\chi_{t_{0}}\right) \widetilde{f}_{t_{0}}^{\prime \prime}\left(\xi_{t_{0}}\right)$. Therefore g_{t} has an analytic extension to Σ_{t} for each $t \in\left[0, T_{F}\right)$. The maximum principle also implies that $g_{t}(w)$ is $C^{0, \infty}$ continuous in H, and $\partial_{t} f_{t}(w)=g_{t}(w)$ holds in the whole H. Thus $f_{t}(w)$ is $C^{1, \infty}$ continuous on [0, $\left.T_{F}\right) \times \mathbf{C}_{0}$, and $\widetilde{f}_{t}(w)$ is $C^{1, \infty}$ continuous on $\left[0, T_{F}\right) \times \mathbb{R}$. Finally,

$$
\partial_{t} \tilde{f}_{t}\left(\xi_{t}\right)=\frac{i \partial_{t} f_{t}\left(\chi_{t}\right)}{f_{t}\left(\chi_{t}\right)}=\frac{i g_{t}\left(\chi_{t}\right)}{f_{t}\left(\chi_{t}\right)}=\frac{-3 f_{t}\left(\chi_{t}\right) \widetilde{f}_{t}^{\prime \prime}\left(\xi_{t}\right)}{f_{t}\left(\chi_{t}\right)}=-3 \widetilde{f}_{t}^{\prime \prime}\left(\xi_{t}\right)
$$

Proof of Theorem 1.1. Note that $\eta_{u(t)}=\tilde{f}_{t}\left(\xi_{t}\right), \xi_{t}=B(\kappa t)$, and from Lemma 2.2, $\partial_{t} \widetilde{f}_{t}\left(\xi_{t}\right)=-3 \widetilde{f}_{t}^{\prime \prime}\left(\xi_{t}\right)$. By Itô's formula, we have

$$
d \eta_{u(t)}=\widetilde{f}_{t}^{\prime}\left(\xi_{t}\right) d \xi_{t}+\left(\frac{\kappa}{2}-3\right) \widetilde{f}_{t}^{\prime \prime}\left(\xi_{t}\right) d t
$$

Since $u^{\prime}(t)=\widetilde{f_{t}^{\prime}}\left(\xi_{t}\right)^{2}$, so

$$
d \eta_{s}=d \tilde{\xi}_{s}+\left(\frac{\kappa}{2}-3\right) \widetilde{f}_{v(s)}^{\prime \prime}\left(\xi_{t}\right) / \widetilde{f}_{v(s)}^{\prime}\left(\xi_{t}\right)^{2} d s
$$

where $\widetilde{\xi}_{s}=\widetilde{B}(\kappa s), 0 \leq s<p$, and $\widetilde{B}(s)$ is another standard Brownian motion on \mathbb{R} started from 0 . Note that $\eta_{0}=0$. If $\kappa=6$, then $\eta_{s}=\widetilde{\xi}_{s}=\widetilde{B}(\kappa s), 0 \leq s<p$. Thus $\left(W\left(K_{v(s)}\right)\right)_{0 \leq s<p}$ has the same law as the standard annulus SLE $_{\kappa=6}$ of modulus p. So $\left(K_{v(s)}\right)_{0 \leq s<p}$ has the same law as $\left(L_{s}\right)_{0 \leq s<p}$.

If $\kappa \neq 6$, then $d \eta_{s}=d \widetilde{\xi}_{s}+$ drift term. The remaining part follows from Girsanov's Theorem ([14]).

Remark. This equivalence implies the a.s. existence of annulus SLE trace. Suppose $\left(K_{t}\right)$ is an annulus $\operatorname{SLE}_{\kappa}\left(D ; P \rightarrow B_{2}\right)$. If $\kappa \leq 4$, the trace β is a simple curve in D such that every $K_{t}=\beta(0, t]$. If $\kappa>4$ and B_{1} is locally connected, then β is a non-simple curve in $D \cup B_{1}$ such that for every $t, D \backslash K_{t}$ is the connected component of $D \backslash \beta(0, t]$ that has B_{2} as a boundary component.

3. Annulus SLE $_{2}$ and LERW

3.1. Observables for $S L E_{2}$

Suppose D is a doubly connected domain of modulus p with boundary components B_{1} and B_{2}, P is a prime end on B_{1}. Let $\left(K_{t}\right)$ be an annulus $\operatorname{SLE}_{2}\left(D ; P \rightarrow B_{2}\right)$ and β the corresponding trace. Let $D_{t}=D \backslash K_{t}, 0 \leq t<p$. Then $\beta(t, t+\varepsilon)$ determines a prime end in D_{t}, denoted by $\beta\left(t_{+}\right)$. Now consider a positive harmonic function H_{t} in D_{t}, which has a harmonic conjugate and satisfies the following properties. As $z \in D_{t}$ and $z \rightarrow B_{2}$, we have $H_{t}(z) \rightarrow 1$; for any neighborhood V of $\beta\left(t_{+}\right)$, as $z \in D_{t} \backslash V$ and $z \rightarrow B_{1} \cup K_{t}$, we have $H_{t}(z) \rightarrow 0$. The existence of the harmonic conjugate implies that for any smooth Jordan curve, say γ, that disconnects the two boundary components of D_{t}, we have $\int_{\gamma} \partial_{\mathbf{n}} H_{t} d s=0$, where \mathbf{n} are normal vectors on γ pointed towards B_{1}. Now we introduce another positive harmonic function P_{t} in D_{t} which satisfies that for any neighborhood V of $\beta\left(t_{+}\right)$, as $z \in D_{t} \backslash V$ and $z \rightarrow \partial D_{t}$, we have $P_{t}(z) \rightarrow 0$, and $\int_{\gamma} \partial_{\mathbf{n}} P_{t} d s=2 \pi$ for any smooth Jordan curve γ that disconnects the two boundary components of D_{t}.

Proposition 3.1. For any fixed $z \in D, H_{t}(z)$ and $P_{t}(z), 0 \leq t<p$, are local martingales.

Proof. By conformal invariance, we may assume that $D=\mathbf{A}_{p}, B_{1}=\mathbf{C}_{0}, B_{2}=\mathbf{C}_{p}$, and $P=1$. So ($K_{t}, 0 \leq t<p$) is the standard annulus SLE_{2} of modulus p. Let χ_{t} and $\varphi_{t}, 0 \leq t<p$, be the corresponding driving function and conformal maps. Then $\chi_{t}=\exp (i \xi(t))$ and $\xi(t)=B(2 t)$. Since φ_{t} maps D_{t} conformally onto \mathbf{A}_{p-t} and by Proposition 2.1, $\varphi_{t}\left(\beta\left(t_{+}\right)\right)=\chi_{t}$, we have

$$
H_{t}(z)=\operatorname{Re} \mathbf{S}_{p-t}\left(\varphi_{t}(z) / \chi_{t}\right), \text { and } P_{t}(z)=\ln \left|\varphi_{t}(z)\right|+(p-t) H_{t}(z)
$$

We want to use the Itô's formula. To simplify the computation, we lift the maps to the covering space. Let $\widetilde{D}_{t}, \widetilde{\mathbf{A}}_{r}$ and $\widetilde{\mathbf{C}}_{r}$ be the preimages of D_{t}, \mathbf{A}_{r} and \mathbf{C}_{r}, respectively, under the map $z \mapsto e^{i z}$. We may lift φ_{t} to a conformal map $\widetilde{\varphi}_{t}$ from \widetilde{D}_{t} onto $\widetilde{\mathbf{A}}_{p-t}$ so that $\exp \left(i \widetilde{\varphi}_{t}(z)\right)=\varphi_{t}\left(e^{i z}\right), \widetilde{\varphi}_{0}(z)=z$, and $\widetilde{\varphi}_{t}(z)$ is continuous in t. Let $\widetilde{\mathbf{S}}_{r}(z)=\frac{1}{i} \mathbf{S}_{r}\left(e^{i z}\right)$. Then we have

$$
\partial_{t} \widetilde{\varphi}_{t}(z)=\widetilde{\mathbf{S}}_{p-t}\left(\widetilde{\varphi}_{t}(z)-\xi(t)\right) .
$$

It is clear that $\widetilde{\mathbf{S}}_{r}$ has period 2π, is meromorphic in \mathbb{C} with poles $\{2 k \pi+i 2 m r$: $k, m \in \mathbb{Z}\}, \operatorname{Im} \widetilde{\mathbf{S}}_{r} \equiv 0$ on $\mathbb{R} \backslash\{$ poles $\}$, and $\operatorname{Im} \widetilde{\mathbf{S}}_{r} \equiv-1$ on $\widetilde{\mathbf{C}}_{r}$. It is also easy to check that $\widetilde{\mathbf{S}}_{r}$ is an odd function, and the principal part of $\widetilde{\mathbf{S}}_{r}$ at 0 is $2 / z$. So $\widetilde{\mathbf{S}}_{r}(z)=2 / z+a z+O\left(z^{3}\right)$ near 0 , for some $a \in \mathbb{R}$. It is possible to explicit this kernel using classical functions in [2]:

$$
\widetilde{\mathbf{S}}_{r}(z)=2 \zeta(z)-\frac{2}{\pi} \zeta(\pi) z=\frac{1}{\pi} \frac{\partial_{v} \theta}{\theta}\left(\frac{z}{2 \pi}, \frac{i r}{\pi}\right),
$$

where ζ is the Weierstrass zeta function with basic periods $(2 \pi, i 2 r)$, and $\theta=\theta(v, \tau)$ is Jacobi's theta function. The following lemma is a direct consequence of the heat-type differential equation satisfied by $\theta:\left(\partial_{v}^{2}-4 i \pi \partial_{\tau}\right) \theta=0$.

But we prefer a proof using only basic complex analysis. The symbols ' and "in the lemma denote the first and second derivatives w.r.t. z.
Lemma 3.1. $\partial_{r} \widetilde{\mathbf{S}}_{r}-\widetilde{\mathbf{S}}_{r} \widetilde{\mathbf{S}}_{r}^{\prime}-\widetilde{\mathbf{S}}_{r}^{\prime \prime} \equiv 0$.
Proof. Let $J=\partial_{r} \widetilde{\mathbf{S}}_{r}-\widetilde{\mathbf{S}}_{r} \widetilde{\mathbf{S}}_{r}^{\prime}-\widetilde{\mathbf{S}}_{r}^{\prime \prime}$. Then J is odd, has period 2π, takes real values on $\mathbb{R} \backslash\{2 k \pi: k \in \mathbb{Z}\}$, and is analytic on $\mathbb{C} \backslash\{2 k \pi+i 2 m r: k, m \in \mathbb{Z}\}$. Since near $0, \widetilde{\mathbf{S}}_{r}(z)=2 / z+a z+O\left(z^{3}\right)$, so $\widetilde{\mathbf{S}}_{r}^{\prime}(z)=-2 / z^{2}+a+O\left(z^{2}\right)$, and $\widetilde{\mathbf{S}}_{r}^{\prime \prime}(z)=4 / z^{3}+O(z)$. Thus $\widetilde{\mathbf{S}}_{r}(z) \widetilde{\mathbf{S}}_{r}^{\prime}(z)+\widetilde{\mathbf{S}}_{r}^{\prime \prime}(z)=O(z)$ near 0 , i.e. 0 is a removable pole of $\widetilde{\mathbf{S}}_{r} \widetilde{\mathbf{S}}_{r}^{\prime}+\widetilde{\mathbf{S}}_{r}^{\prime \prime}$. Since $\widetilde{\mathbf{S}}_{r}(z)-\frac{1}{i} \frac{1+e^{i z}}{1-e^{i z}}$ is analytic in a neighborhood of 0 , and $\frac{1+e^{i z}}{1-e^{i z}}$ is constant in t, so 0 is also a removable pole of $\partial_{r} \widetilde{\mathbf{S}}_{r}$. Thus J extends analytically at 0 . As J has period $2 \pi, J$ extends analytically at $2 k \pi$, for all $k \in \mathbb{Z}$. So J is analytic in $\{|\operatorname{Im} z|<2 r\}$. The fact that $\operatorname{Im} \widetilde{\mathbf{S}}_{r} \equiv 0$ on $\mathbb{R} \backslash$ \{poles implies $\operatorname{Im} J \equiv 0$ on \mathbb{R}.

Since $\underset{\widetilde{\mathbf{S}}}{\operatorname{Im}} \widetilde{\mathbf{S}}_{r} \equiv-1$ on $\widetilde{\mathbf{C}}_{r}=i r+\underset{\widetilde{R}}{\mathbb{R}}$, we have $\operatorname{Im} \widetilde{\mathbf{S}}_{r}^{\prime \prime}=\partial_{x}^{2} \operatorname{Im} \widetilde{\mathbf{S}}_{r}=\partial_{x} \operatorname{Im} \widetilde{\mathbf{S}}_{r} \equiv 0$, and $\partial_{r} \operatorname{Im} \widetilde{\mathbf{S}}_{r}=-\partial_{y} \operatorname{Im} \widetilde{\mathbf{S}}_{r}=-\partial_{x} \operatorname{Re} \widetilde{\mathbf{S}}_{r}$ on $\widetilde{\mathbf{C}}_{r}$. Therefore

$$
\operatorname{Im}\left(\widetilde{\mathbf{S}}_{r} \widetilde{\mathbf{S}}_{r}^{\prime}\right)=\operatorname{Re} \widetilde{\mathbf{S}}_{r} \partial_{x} \operatorname{Im} \widetilde{\mathbf{S}}_{r}+\operatorname{Im} \widetilde{\mathbf{S}}_{r} \partial_{x} \operatorname{Re} \widetilde{\mathbf{S}}_{r}=-\partial_{x} \operatorname{Re} \widetilde{\mathbf{S}}_{r}
$$

on $\widetilde{\mathbf{C}}_{r}$. Thus $\operatorname{Im} J=\operatorname{Im} \partial_{r} \widetilde{\mathbf{S}}_{r}-\operatorname{Im}\left(\widetilde{\mathbf{S}}_{r} \widetilde{\mathbf{S}}_{r}^{\prime}\right)-\operatorname{Im} \widetilde{\mathbf{S}}_{r}^{\prime \prime} \equiv 0$ on $\widetilde{\mathbf{C}}_{r}$. Now $\operatorname{Im} J \equiv 0$ on both \mathbb{R} and ir $+\mathbb{R}$, so it has to be zero everywhere. It then follows that $J \equiv C$ for some $C \in \mathbb{R}$. Since J is odd, $C=0$ and $J \equiv 0$.

Now we may express H_{t} and P_{t} by

$$
H_{t}\left(e^{i z}\right)=\operatorname{Im} \widetilde{\mathbf{S}}_{p-t}\left(\widetilde{\varphi}_{t}(z)-\xi(t)\right), \text { and } P_{t}\left(e^{i z}\right)=\operatorname{Im} \widetilde{\varphi}_{t}(z)+(p-t) H_{t}(z)
$$

So it suffices to prove that for any $z \in \widetilde{\mathbf{A}}_{p}$,

$$
M_{1}(t)=\widetilde{\mathbf{S}}_{p-t}\left(\widetilde{\varphi}_{t}(z)-\xi(t)\right), \text { and } M_{2}(t)=\widetilde{\varphi}_{t}(z)+(p-t) M_{1}(t)
$$

$0 \leq t<p$, are martingales. Using Itô's formula, we have

$$
d M_{1}(t)=-\partial_{r} \widetilde{\mathbf{S}}_{p-t} d t+\widetilde{\mathbf{S}}_{p-t}^{\prime} \cdot\left[d \widetilde{\varphi}_{t}(z)-d \xi(t)\right]+\widetilde{\mathbf{S}}_{p-t}^{\prime \prime} d t
$$

where $\partial_{r} \widetilde{\mathbf{S}}_{p-t}, \widetilde{\mathbf{S}}_{p-t}^{\prime}$ and $\widetilde{\mathbf{S}}_{p-t}^{\prime \prime}$ are all valued at $\widetilde{\varphi}_{t}(z)-\xi(t)$. The last term is the drift term. Note that we use $\kappa=2$ here. Since $d \widetilde{\varphi}_{t}(z)=\widetilde{\mathbf{S}}_{p-t}\left(\widetilde{\varphi}_{t}(z)-\xi(t)\right) d t$, we have

$$
d M_{1}(t)=\left(-\partial_{r} \widetilde{\mathbf{S}}_{p-t}+\widetilde{\mathbf{S}}_{p-t}^{\prime} \widetilde{\mathbf{S}}_{p-t}+\widetilde{\mathbf{S}}_{p-t}^{\prime \prime}\right) d t-\widetilde{\mathbf{S}}_{p-t}^{\prime} d \xi(t)=-\widetilde{\mathbf{S}}_{p-t}^{\prime} d \xi(t)
$$

by Lemma 3.1. Thus $\left(M_{1}(t), 0 \leq t<p\right)$ is a local martingale. Now

$$
d M_{2}(t)=\widetilde{\mathbf{S}}_{p-t}\left(\widetilde{\varphi}_{t}(z)-\xi(t)\right) d t+(p-t) d M_{1}(t)-M_{1}(t) d t=(p-t) d M_{1}(t)
$$

Thus $\left(M_{2}(t), 0 \leq t<p\right)$ is also a local martingale.

Remark. Similar observables also exist for radial and chordal SLE 2 . For example, let K_{t} be radial SLE_{2} in a simply connected domain Ω, let H_{t} be the positive harmonic function in $\Omega \backslash K_{t}$ which tends to 0 on $\partial\left(\Omega \backslash K_{t}\right)$ except at the "tip" point of K_{t}, and normalized so that the value of H_{t} at the target point is constant 1. Then for any fixed $z \in D, H_{t}(z), 0 \leq t<\infty$, is a martingale. This observable was mentioned implicitly in the proof of Proposition 3.4 in [8]. As we want to define SLE for general domains, we conjecture that such kinds of observables always exist for SLE_{2}.

3.2. Observables for $L E R W$

Let $G=(V, E)$ be a finite or infinite simple connected graph such that $\operatorname{deg}(v)<\infty$ for each $v \in V$. For a function f on V, and $v \in V$, let $\Delta_{G} f(v)=\sum_{w \sim v}(f(w)-f(v))$, where $w \sim v$ means that w and v are adjacent. A subset K of V is called reachable, if for any $v \in V \backslash K$, a symmetric random walk on G started from v will hit K in finite steps almost surely. For subsets S_{1}, S_{2} and S_{3} of V, let $\Gamma_{S_{1}, S_{2}}^{S_{3}}$ denote the set of all lattice paths $\gamma=\left(\gamma_{0}, \ldots, \gamma_{n}\right)$ such that $\gamma_{0} \in S_{1}, \gamma_{n} \in S_{2}$ and $\gamma_{s} \in S_{3}$ for $0<s<n$. For a finite lattice path $\gamma=\left(\gamma_{0}, \ldots, \gamma_{n}\right)$, write

$$
P(\gamma)=1 / \prod_{j=0}^{n} \operatorname{deg}\left(\gamma_{j}\right), P_{0}(\gamma)=1 / \prod_{j=0}^{n-1} \operatorname{deg}\left(\gamma_{j}\right), \text { and } P_{1}(\gamma)=1 / \prod_{j=1}^{n-1} \operatorname{deg}\left(\gamma_{j}\right) .
$$

Let $R(\gamma)=\left(\gamma_{n}, \ldots, \gamma_{0}\right)$ be the reversal of γ, then $P(R(\gamma))=P(\gamma)$ and $P_{1}(R(\gamma))=P_{1}(\gamma)$. If S_{1}, S_{2} and S_{3} partition $V, v \in S_{3}$, then the probability that a random walk on G started from v hits S_{2} before S_{1} is equal to the summation of $P_{0}(\gamma)$, where γ runs over $\Gamma_{v, S_{2}}^{S_{3}}$.

Lemma 3.2. Suppose A and B are disjoint subsets of V, and $A \cup B$ is reachable. Let $f(v)$ be the probability that the random walk on G started from v hits A before B. Then f is the unique bounded function on V that satisfies $f \equiv 1$ on A, $f \equiv 0$ on B, and $\Delta_{G} f \equiv 0$ on $C=V \backslash(A \cup B)$. Moreover $\sum_{v \in B} \Delta_{G} f(v)=$ $-\sum_{v \in A} \Delta_{G} f(v)>0$.

Proof. The proof is elementary. For the last statement, note that $\sum_{v \in B} \Delta_{G} f(v)=$ $\sum P_{1}(\gamma)$ where γ runs over the non-empty set $\Gamma_{B, A}^{C}$; and $-\sum_{v \in A} \Delta_{G} f(v)=$ $\sum P_{1}(\gamma)$ where γ runs over $\Gamma_{A, B}^{C}$. The values of the two summations are equal because the reverse map R is a one-to-one correspondence between $\Gamma_{B, A}^{C}$ and $\Gamma_{A, B}^{C}$, and $P_{1}(\gamma)=P_{1}(R(\gamma))$.

Let $L(A, B)=\sum_{v \in B} \Delta_{G} f(v)$ for the f in Lemma 3.2. Then $L(A, B)=$ $L(B, A)>0$. If any of A or B is a finite set, then we have $L(A, B)<\infty$.

Lemma 3.3. Let A, B, C and f be as in Lemma 3.2. Fix $x \in C$. Let $h(v)$ be equal to the probability that a simple random walk on G started from v hits x before $A \cup B$. Then

$$
\sum_{v \in A} \Delta_{G} h(v)=f(x)\left(-\Delta_{G} h(x)\right) .
$$

Proof. From the proof of Lemma 3.2, we have

$$
f(x)=\sum_{\alpha \in \Gamma_{x, A}^{C}} P_{0}(\alpha)=\sum_{\beta \in \Gamma_{x, x}^{C}} P(\beta) \sum_{\gamma \in \Gamma_{x, A}^{C \backslash\{x\}}} P_{1}(\gamma)=\sum_{\beta \in \Gamma_{x, x}^{C}} P(\beta) \sum_{v \in A} \Delta_{G} h(v),
$$

and

$$
1=\sum_{\alpha \in \Gamma_{x, A \cup B}^{C}} P_{0}(\alpha)=\sum_{\beta \in \Gamma_{x, x}^{C}} P(\beta) \sum_{\substack{ \\\gamma \in \Gamma_{x, A \cup B}^{C \backslash\{x\}}}} P_{1}(\gamma)=\sum_{\beta \in \Gamma_{x, x}^{C}} P(\beta)\left(-\Delta_{G} h(x)\right) .
$$

So we proved this lemma.
Lemma 3.4. Let A, B, C and f be as in Lemma 3.2. Suppose $L(A, B)<\infty$. Fix $x \in C$ such that $f(x)>0$. Then there is a unique bounded function g on V such that $g \equiv 1$ on $A ; g \equiv 0$ on $B ; \Delta_{G} g \equiv 0$ on $C \backslash\{x\} ;$ and $\sum_{v \in A} \Delta_{G} g(v)=0$. Moreover, such g is non-negative and satisfies $\sum_{v \in B \cup\{x\}} \Delta_{G} g(v)=0$ and $\Delta_{G} g(x)=$ $-L(A, B) / f(x)$.

Proof. Suppose g satisfies the first group of properties. Let $I=g-f$. Then I is bounded, $I \equiv 0$ on $A \cup B$ and $\Delta_{G} I \equiv 0$ on $C \backslash\{x\}$. Thus $I(v)=I(x) h(v)$, where h is as in Lemma 3.3. Then by Lemma 3.2 and 3.3,

$$
0=\sum_{v \in A} \Delta_{G} g(v)=\sum_{v \in A} \Delta_{G}(I+f)(v)=-I(x) f(x) \Delta_{G} h(x)-L(A, B) .
$$

Thus $I(x)=L(A, B) /\left(-f(x) \Delta_{G} h(x)\right)$ is uniquely determined. Therefore g is unique.

On the other hand, if we define $g=f+h L(A, B) /\left(-f(x) \Delta_{G} h(x)\right)$, then from the last paragraph, we see that g satisfies the first group of properties. Since f and h are non-negative, and $-\Delta_{G} h(x)=L(x, A \cup B)>0$ by Lemma 3.2, so g is also non-negative. By Lemma 3.2 and 3.3,

$$
\begin{aligned}
\sum_{v \in B \cup\{x\}} \Delta_{G} g(v)= & L(A, B)+\Delta_{G} f(x) \\
& +\sum_{v \in B \cup\{x\}} \Delta_{G} h(v) L(A, B) /\left(-f(x) \Delta_{G} h(x)\right) \\
= & L(A, B)-\sum_{v \in A} \Delta_{G} h(v) L(A, B) /\left(-f(x) \Delta_{G} h(x)\right) \\
= & L(A, B)-L(A, B)=0 .
\end{aligned}
$$

Finally, $\Delta_{G} g(x)=\Delta_{G} h(x) \cdot L(A, B) /\left(-f(x) \Delta_{G} h(x)\right)=-L(A, B) / f(x)$.
From now on, let D be a doubly connected domain with boundary components B_{1} and B_{2}, and satisfies $0 \in B_{1}$ and $(0, a] \subset D$ for some $a>0$. We use the symbols D^{δ} and LERW defined in Section 1.3. Note that D^{δ} may not be connected. To apply the lemmas in above, we need to modify D^{δ} a little bit. Let \mathcal{P} denote the set of all lattice paths on D^{δ} from δ to some boundary vertex whose vertices are
inside D except the last vertex. Every path of \mathcal{P} can be viewed as a subgraph of D^{δ}. Let $\widetilde{D^{\delta}}$ be the union of all paths in \widetilde{P} as a subgraph of D^{δ}. Then $\widetilde{D^{\delta}}$ is a connected graph. And if we replace D^{δ} by $\widetilde{D^{\delta}}$ in the definition of LERW in Section 1.3, we will get the same LERW. So we can consider $\widetilde{D^{\delta}}$ instead of D^{δ}. For simplicity of notations, we write D^{δ} for $\widetilde{D^{\delta}}$.

By the definition, any two vertices of D^{δ} on ∂D are not adjacent, so the neighbors of boundary vertices of D^{δ} are those vertices lie in D, are in $\delta \mathbb{Z}^{2}$ and has exactly 4 neighbors. It follows that if any B_{j} is bounded, then there are finitely many vertices that lie on B_{j}. On the other hand, B_{1} and B_{2} can't be both unbounded. Now we denote

$$
E_{-1}^{\delta}=V\left(D^{\delta}\right) \cap B_{1}, F^{\delta}=V\left(D^{\delta}\right) \cap B_{2}, \text { and } N_{-1}^{\delta}=V\left(D^{\delta}\right) \cap D
$$

Then at least one of E_{-1}^{δ} and F^{δ} is a finite set. Write LERW as $y=\left(y_{0}, \ldots, y_{v}\right)$, where $y_{0}=\delta$ and $y_{v} \in B_{2}$. For $0 \leq j<v$, let

$$
E_{j}^{\delta}=E_{-1}^{\delta} \cup\left\{y_{0}, \ldots, y_{j}\right\}, \text { and } N_{j}^{\delta}=N_{-1}^{\delta} \backslash\left\{y_{0}, \ldots, y_{j}\right\} .
$$

Then $E_{j}^{\delta}, N_{j}^{\delta}$ and F^{δ} partition $V\left(D^{\delta}\right)$, for $-1 \leq j<v$. The fact that the lattice \mathbb{Z}^{2} is recurrent easily implies that $E_{j}^{\delta} \cup F^{\delta}$ is reachable in D^{δ}. Since one of E_{j}^{δ} and F^{δ} is a finite set, we have $L\left(E_{j}^{\delta}, F^{\delta}\right)<\infty$ for $-1 \leq j<v$. For $-1 \leq j<v$, let f_{j} be the f in Lemma 3.2 with $G=D^{\delta}, A=F^{\delta}$ and $B=E_{j}^{\delta}$. For $0 \leq j<v$, since $\left(y_{j}, \ldots, y_{v}\right)$ is a lattice path from y_{j} to F^{δ} not passing through E_{j-1}^{δ}, we have $f_{j-1}\left(y_{j}\right)>0$. Let g_{j} be the g in Lemma 3.4 with $G=D^{\delta}, A=F^{\delta}, B=E_{j-1}^{\delta}$, and $x=y_{j}$, for $0 \leq j<v$.

Lemma 3.5. Conditioned on the event that $y_{j}=w_{j}, 0 \leq j \leq k$, and $k<v$, the probability that $y_{k+1}=u$ is $f_{k}(u) / \sum_{v \sim w_{k}} f_{k}(v)$ if $u \sim w_{k}$; and is zero if $u \nsim w_{k}$.

Proof. This result is well known. See [4] for details.
Proposition 3.2. Let $\overline{F^{\delta}}$ be the union of F^{δ} and the set of vertices of D^{δ} that are adjacent to F^{δ}. Fix a vertex v_{0} of D^{δ}. Conditioned on the event that $y_{j}=w_{j}$, $0 \leq j \leq k, w_{k} \notin \overline{F^{\delta}}$, and $f_{k}\left(v_{0}\right)>0$, the expectation of $g_{k+1}\left(v_{0}\right)$ is equal to $g_{k}\left(v_{0}\right)$, which is determined by $w_{j}, 0 \leq j \leq k$. Thus $g_{k}\left(v_{0}\right)$ is a discrete martingale up to the first time y_{k} hits $\overline{F^{\delta}}$, or $E_{k}^{\delta}=E_{-1}^{\delta} \cup\left\{y_{0}, \ldots, y_{k}\right\}$ disconnects v_{0} from F^{δ} in D^{δ}.

Proof. Let S be the set of v such that $v \sim w_{k}$ and $f_{k}(v)>0$. By lemma 3.5, the conditional probability that $y_{k+1}=u$ is $f_{k}(u) / \sum_{v \in S} f_{k}(v)$ for $u \in S$. For $v \in S$, let g_{k+1}^{v} be the g in Lemma 3.4 with $G=D^{\delta}, A=F^{\delta}, B=E_{k}^{\delta}$ and $x=v$. Then with probability $f_{k}(u) / \sum_{v \in S} f_{k}(v), g_{k+1}=g_{k+1}^{u}$. Thus the conditional expectation of $g_{k+1}\left(v_{0}\right)$ is equal to $\widetilde{g}_{k}\left(v_{0}\right)$, where

$$
\widetilde{g}_{k}(v):=\sum_{u \in S} f_{k}(u) g_{k+1}^{u}(v) / \sum_{u \in S} f_{k}(u) .
$$

Then $\widetilde{g}_{k} \equiv 0$ on E_{k}^{δ}, $\equiv 1$ on $F^{\delta} ; \Delta \widetilde{g}_{k} \equiv 0$ on $N_{k}^{\delta} \backslash S$, and $\sum_{v \in F^{\delta}} \Delta \widetilde{g}_{k}(v)=0$. And

$$
\Delta \widetilde{g}_{k}(v)=\frac{f_{k}(v) \Delta g_{k+1}^{v}(v)}{\sum_{u \in S} f_{k}(u)}=-\frac{L\left(E_{k}^{\delta}, F^{\delta}\right)}{\sum_{u \in S} f_{k}(u)}, \quad \forall v \in S
$$

by Lemma 3.4. Now define \widehat{g}_{k} on $V\left(D^{\delta}\right)$ such that $\widehat{g}_{k}\left(w_{k}\right)=L\left(E_{k}^{\delta}, F^{\delta}\right) /$ $\sum_{u \in S} f_{k}(u)$; for those $v \in N_{k}^{\delta}$ such that $f_{k}(v)=0$, define $\widehat{g}_{k}(v)$ to be $\widehat{g}_{k}\left(w_{k}\right)$ times the probability that a simple random walk on D^{δ} started from v hits w_{k} before E_{k-1}^{δ}; and let $\widehat{g}_{k}(v)=\widetilde{g}_{k}(v)$ for other $v \in V\left(D^{\delta}\right)$. Then $\Delta \widehat{g}_{k} \equiv 0$ on N_{k}^{δ}, $\widehat{g}_{k} \equiv 0$ on $E_{k}^{\delta} \backslash\left\{w_{k}\right\}$, and $\widehat{g}_{k} \equiv 1$ on F^{δ}. Since $w_{k} \notin \overline{F^{\delta}}$, and for $v \in N_{k}^{\delta}$ such that $f_{k}(v)=0$ we have $v \notin \overline{F^{\delta}}$, so $\sum_{v \in F^{\delta}} \Delta \widehat{g}_{k}(v)=\sum_{v \in F^{\delta}} \Delta \widetilde{g}_{k}(v)=0$. Now \widehat{g}_{k} satisfies all properties of g_{k}. The uniqueness of g_{k} implies that $\widehat{g}_{k} \equiv g_{k}$. Since $f_{k}\left(v_{0}\right)>0$, we have $g_{k}\left(v_{0}\right)=\widehat{g}_{k}\left(v_{0}\right)=\widetilde{g}_{k}\left(v_{0}\right)$.
Remark 1. The observable g_{k} corresponds to H_{t} in Proposition 3.1. We may define another kind of observables q_{k} to be the bounded function on the vertices of D^{δ} such that $q_{k} \equiv 0$ on $E_{k-1} \cup F, \Delta q_{k} \equiv 0$ on N_{k}, and $\sum_{v \in F} \Delta q_{k}(v)=2 \pi=$ $-\sum_{v \in E_{k}} \Delta q_{k}(v)$. Then Proposition 3.2 still holds if g_{k} is replaced by q_{k}, and q_{k} corresponds to P_{t} in Proposition 3.1. The definition of q_{k} does not need the fact that $L\left(E_{k}, F\right)<\infty$. We may also use q_{k} to do the approximation.
Remark 2. Suppose α is a Jordan curve in D which disconnects E_{k}^{δ} from F and does not pass through any vertex of D^{δ}. Denote D_{j} the component of $D \backslash \alpha$ that has B_{j} as part of boundary, $j=1,2$. We also suppose that y_{0} through y_{k} are in D_{1}. Let S be the set of vertex pair (v, w) such that $v \in D_{1}, w \in D_{2}$, and $v \sim w$. From the fact that $\Delta_{D^{\delta}} g_{k} \equiv 0$ on $V\left(D^{\delta}\right) \cap D$, we conclude $\sum_{(v, w) \in S}\left(g_{k}(v)-g_{k}(w)\right)=0$. Similarly, $\sum_{(v, w) \in S}\left(q_{k}(v)-q_{k}(w)\right)=2 \pi$.

Now suppose α_{1} and α_{2} are two disjoint Jordan curves in D such that α_{j} disconnects α_{3-j} from $B_{j}, j=1,2$. For $j=1,2$, let U_{j} be the subdomain of D bounded by α_{j} and B_{j}, and $V_{j}^{\delta}=V\left(D^{\delta}\right) \cap U_{j}$. Let L^{δ} be the set of simple lattice paths of the form $w=\left(w_{-1}, w_{0}, \ldots, w_{k}\right), k \geq 0$ such that $w_{-1} \in B_{1}, w_{0}, \ldots, w_{k} \in V_{1}^{\delta}$, and there is some lattice path from the last vertex $P(w):=w_{k}$ to B_{2} without passing w_{0}, \ldots, w_{k-1}, and vertices on B_{1}. For $w \in L^{\delta}$, denote

$$
E_{w}^{\delta}=E_{-1}^{\delta} \cup\left\{w_{0}, \ldots, w_{k}\right\}, \text { and } N_{w}^{\delta}=N_{-1}^{\delta} \backslash\left\{w_{0}, \ldots, w_{k}\right\}
$$

Let g_{w} be the g in Lemma 3.4 with $G=D^{\delta}, A=F^{\delta}, B=E_{w}^{\delta} \backslash\{P(w)\}$, and $x=P(w)$. Now define $D_{w}=D \backslash \cup_{j=0}^{k}\left[w_{j-1}, w_{j}\right]$. Let u_{w} be the non-negative harmonic function in D_{w} whose harmonic conjugates exist, and whose continuation is constant 1 on B_{2}, and constant 0 on $\cup_{j=0}^{k}\left[w_{j-1}, w_{j}\right] \cup B_{1}$ except at $P(w)$. The existence of the harmonic conjugates implies that $\int_{\alpha} \partial_{\mathbf{n}} u_{w} d s=0$ for any smooth Jordan curve α that disconnects B_{2} from $\cup_{j=0}^{k}\left[w_{j-1}, w_{j}\right] \cup B_{1}$. It is intuitive to guess that g_{w} should be close to u_{w}. In fact, we have the following proposition. The proof is postponed to Section 5.

Proposition 3.3. Given any $\varepsilon>0$, there is $\delta(\varepsilon)>0$ such that if $0<\delta<\delta(\varepsilon)$ and $w \in L^{\delta}$, then $\left|g_{w}(v)-u_{w}(v)\right|<\varepsilon$, for any $v \in V_{2}^{\delta}$.

3.3. Convergence of the driving process

Fix some small $\delta>0$. We write LERW on D^{δ} by $y=\left(y_{0}, \ldots, y_{v}\right)$ as in Section 3.2. Let $y_{-1}=0$. Extend y to be a map from $[-1, v]$ into \bar{D} such that y is linear on $[j-1, j$] for each $0 \leq j \leq v$. It clear that $y(-1, s],-1 \leq s<v$, is a Loewner chain in D on B_{1}. And $y(-1, s]$ approaches B_{2} as $s \nearrow v$. For $-1 \leq s<v$, let $T(s)=C_{D, B_{2}}(y(-1, s])$, then T is a continuous increasing function, and maps $[-1, v)$ onto $[0, p)$, where $p=M(D)$. Let $S:[0, p) \rightarrow[-1, v)$ be the inverse of T. Let $\beta(t)=y(S(t))$, and $K_{t}=\beta(0, t]$, for $0 \leq t<p$. Suppose W maps D conformally onto \mathbf{A}_{p} so that $W\left(0_{+}\right)=1$, i.e., $W(x) \rightarrow 1$ as $x \in \mathbb{R}^{+}$and $x \rightarrow 0$. Then $\left(W\left(K_{t}\right), 0 \leq t<p\right)$ is a Loewner chain in \mathbf{A}_{p} on \mathbf{C}_{0} such that $C_{A_{p}, C_{p}}\left(W\left(K_{t}\right)\right)=t$. By Proposition 2.1, $W\left(K_{t}\right), 0 \leq t<p$, are the standard annulus LE hulls of modulus p driven by some continuous $\chi_{t}, 0 \leq t<p$, on \mathbf{C}_{0}. Let ($\varphi_{t}, 0 \leq t<p$) be the corresponding standard annulus LE maps. Since $W(\beta(t)) \rightarrow 1$ as $t \rightarrow 0, \chi_{0}=1$. We may write $\chi_{t}=e^{i \xi_{t}}$, so that $\xi_{0}=0$, and ξ_{t} is continuous in t. We want to prove that the law of $\left(\xi_{t}\right)_{0 \leq t<p}$, which depends on δ, converges to the law of $(B(2 t))_{0 \leq t<p}$.

For $a<b$, let $\mathbf{A}_{a, b}$ be the annulus bounded by \mathbf{C}_{a} and \mathbf{C}_{b}. For any $0<q<p$, there is a smallest $l(p, q) \in(0, p)$ such that if K is a hull in \mathbf{A}_{p} on \mathbf{C}_{0} with the capacity (w.r.t. \mathbf{C}_{p}) less than q, then K does not intersect $\mathbf{A}_{l(p, q), p}$. Using the fact that for any $0<s \leq r, \operatorname{Re} \mathbf{S}_{r}$ attains its unique maximum and minimum on $\overline{\mathbf{A}_{s, r}}$ at e^{-s} and $-e^{-s}$, respectively, it is not hard to derive the following Lemma.

Lemma 3.6. Fix $0<q<p$, let $r \in(l(p, q)$, $p)$. There are $\iota \in(0,1 / 2)$ and $M>0$ depending on p, q and r, which satisfy the following properties. Suppose $\varphi_{t}, 0 \leq t<p$, are some standard annulus LE maps of modulus p driven by χ_{t}, $0 \leq t<p$. Then we have $\left|\partial_{z} \mathbf{S}_{p-t}\left(\varphi_{t}(z) / \chi_{t}\right)\right| \leq M$, for all $t \in[0, q]$ and $z \in \mathbf{A}_{r, p}$. Moreover,

$$
\mathbf{A}_{l(p-t), p-t} \supset \varphi_{t}\left(\mathbf{A}_{r, p}\right) \supset \mathbf{A}_{(1-l)(p-t), p-t}, \forall t \in[0, q] .
$$

Now fix $q_{0} \in(0, p)$. Let $q_{1}=\left(q_{0}+p\right) / 2$. Choose $p_{1} \in\left(l\left(p, q_{1}\right)\right.$, $\left.p\right)$, and let $p_{2}=\left(p_{1}+p\right) / 2$. Denote $\alpha_{j}=W^{-1}\left(\mathbf{C}_{p_{j}}\right), j=1,2$. Then α_{1} and α_{2} are disjoint Jordan curves in D such that α_{j} disconnects α_{3-j} from $B_{j}, j=1,2$. Let $n_{\infty}=\left\lceil S\left(q_{0}\right)\right\rceil$, where $\lceil x\rceil$ is the smallest integer that is not less than x. Then n_{∞} is a stopping time w.r.t. $\left\{\mathcal{F}_{k}\right\}$, where \mathcal{F}_{k} denotes the σ-algebra generated by y_{0}, y_{1}, $\ldots, y_{k \wedge v}$. For $0 \leq k \leq n_{\infty}-1, T(k) \leq q_{0}<q_{1}$, so from the choice of p_{1}, we see that $W\left(y_{k}\right)$ lies in the domain bounded by $\mathbf{C}_{p_{1}}$ and \mathbf{C}_{0}, so y_{k} lies in the domain bounded by B_{1} and α_{1}. Note that $y_{-1}=0 \in B_{1}$. So for $-1 \leq k \leq n_{\infty}-1$, if δ is small, then $\left[y_{k}, y_{k+1}\right]$ can be disconnected from B_{2} by an annulus centered at y_{k} with inner radius δ and outer radius $\operatorname{dist}\left(\alpha_{1}, B_{2}\right)$. So as $\delta \rightarrow 0$, the conjugate extremal distance between B_{2} and $\left[y_{k}, y_{k+1}\right]$ in $D_{y^{k}}=D \backslash \cup_{0 \leq j \leq k}\left[y_{j-1}, y_{j}\right]$ (the extremal length of the family of rectifiable curves in $D_{y^{k}}$ that disconnect B_{2} from [y_{k}, y_{k+1}], see [1]) tends to 0 , uniformly in $-1 \leq k \leq n_{\infty}-1$. It then follows that $T(k+1)-T(k)$ and $\max \left\{\left|\xi_{t}-\xi_{T(k)}\right|: T(k) \leq t \leq T(k+1)\right\}$ tend to 0 as $\delta \rightarrow 0$, uniformly in $-1 \leq k \leq n_{\infty}-1$. Since $T\left(n_{\infty}-1\right) \leq q_{0}$, we may choose δ small enough such that $T\left(n_{\infty}\right)<q_{1}$. We now use the symbols in the last part
of Section 3.2 for Jordan curves α_{1} and α_{2} defined here. For $0 \leq k \leq n_{\infty}$, let $y^{k}=\left(y_{-1}, y_{0}, \ldots, y_{k}\right) \in L^{\delta}$. Then $g_{y^{k}}=g_{k}$. By Proposition 3.2, for any fixed $v \in V_{2}^{\delta}, g_{k}(v), 0 \leq k \leq n_{\infty}$, is a discrete martingale w.r.t. $\left\{\mathcal{F}_{k}\right\}$.

Now fix $d>0$. Define a non-decreasing sequence $\left(n_{j}\right)_{j \geq 0}$ inductively. Let $n_{0}=0$. Let n_{j+1} be the first integer $n \geq n_{j}$ such that $T(n)-T\left(n_{j}\right) \geq d^{2}$, or $\left|\xi_{T(n)}-\xi_{T\left(n_{j}\right)}\right| \geq d$, or $n \geq n_{\infty}$, whichever comes first. Then n_{j} 's are stopping times w.r.t. $\left\{\mathcal{F}_{k}\right\}$, and they are bounded above by n_{∞}. If we let δ be smaller than some constant depending on d, then $T\left(n_{j+1}\right)-T\left(n_{j}\right) \leq 2 d^{2}$ and $\left|\xi_{T(s)}-\xi_{T\left(n_{j}\right)}\right| \leq 2 d$ for all $s \in\left[n_{j}, n_{j+1}\right]$ and $j \geq 0$. Let $\mathcal{F}_{j}^{\prime}=\mathcal{F}_{n_{j}}$. Then for any $v \in V_{2}^{\delta},\left\{g_{n_{j}}(v): 0 \leq\right.$ $j<\infty\}$ is a discrete martingale w.r.t. $\left\{\mathcal{F}_{j}^{\prime}\right\}$. Since $\varphi_{T(k)} \circ W$ maps $D_{y^{k}}$ conformally onto $\mathbf{A}_{p-T(k)}$ and takes $y_{k}=P\left(y^{k}\right)$ to $\chi_{T(k)}$, we have

$$
u_{y^{k}}(z)=\operatorname{Re} \mathbf{S}_{p-T(k)}\left(\varphi_{T(k)} \circ W(z) / \chi_{T(k)}\right)
$$

By Proposition 3.3, for any $z \in W\left(V_{2}^{\delta}\right)$ and $0 \leq j \leq k$,
$\mathbf{E}\left[\operatorname{Re} \mathbf{S}_{p-T\left(n_{k}\right)}\left(\varphi_{T\left(n_{k}\right)}(z) / \chi_{T\left(n_{k}\right)}\right) \mid \mathcal{F}_{j}^{\prime}\right]=\operatorname{Re} \mathbf{S}_{p-T\left(n_{j}\right)}\left(\varphi_{T\left(n_{j}\right)}(z) / \chi_{T\left(n_{j}\right)}\right)+o_{\delta}(1)$.

As δ tends to 0 , the set $W\left(V_{2}^{\delta}\right)$ tends to be dense in $\mathbf{A}_{p_{2}, p}$. So for any $z \in \mathbf{A}_{p_{2}, p}$, there is some $z_{0} \in W\left(V_{2}^{\delta}\right)$ such that $\left|z-z_{0}\right|=o_{\delta}(1)$. Note that $T\left(n_{j}\right) \leq T\left(n_{k}\right) \leq$ $T\left(n_{\infty}\right) \leq q_{1}$ for $0 \leq j \leq k$. Using the boundedness of the derivative in Lemma 3.6 with $q=q_{1}$ and $r=p_{2}$, we then have that for all $z \in \mathbf{A}_{p_{2}, p}$,
$\mathbf{E}\left[\operatorname{Re} \mathbf{S}_{p-T\left(n_{k}\right)}\left(\varphi_{T\left(n_{k}\right)}(z) / \chi_{T\left(n_{k}\right)}\right) \mid \mathcal{F}_{j}^{\prime}\right]=\operatorname{Re} \mathbf{S}_{p-T\left(n_{j}\right)}\left(\varphi_{T\left(n_{j}\right)}(z) / \chi_{T\left(n_{j}\right)}\right)+o_{\delta}(1)$.
Now consider the maps in the covering space. We use the notations in Section 3.1. And let $\widetilde{\mathbf{A}}_{a, b}$ be the preimage of $\mathbf{A}_{a, b}$ under the map $z \mapsto e^{i z}$. Then we have

$$
\begin{align*}
& \mathbf{E}\left[\operatorname{Im} \widetilde{\mathbf{S}}_{p-T\left(n_{k}\right)}\left(\widetilde{\varphi}_{T\left(n_{k}\right)}(z)-\xi_{T\left(n_{k}\right)}\right) \mid \mathcal{F}_{j}^{\prime}\right] \\
& \quad=\operatorname{Im} \widetilde{\mathbf{S}}_{p-T\left(n_{j}\right)}\left(\widetilde{\varphi}_{T\left(n_{j}\right)}(z)-\xi_{T\left(n_{j}\right)}\right)+o_{\delta}(1) \tag{3.1}
\end{align*}
$$

In Lemma 3.6, let $q=q_{1}$ and $r=p_{2}$, then we have some $\iota \in(0,1 / 2)$ such that

$$
\begin{equation*}
\widetilde{\mathbf{A}}_{((p-t), p-t} \supset \widetilde{\varphi}_{t}\left(\widetilde{\mathbf{A}}_{p_{2}, p}\right) \supset \widetilde{\mathbf{A}}_{(1-t)(p-t), p-t}, \tag{3.2}
\end{equation*}
$$

for $0 \leq t \leq q_{1}$.
Proposition 3.4. There are an absolute constant $C>0$ and a constant $\delta(d)>0$ such that if $\delta<\delta(d)$, then for all $j \geq 0$,

$$
\begin{aligned}
& \left|\mathbf{E}\left[\xi_{T\left(n_{j+1}\right)}-\xi_{T\left(n_{j}\right)} \mid \mathcal{F}_{j}^{\prime}\right]\right| \leq C d^{3}, \text { and } \\
& \quad\left|\mathbf{E}\left[\left(\xi_{T\left(n_{j+1}\right)}-\xi_{T\left(n_{j}\right)}\right)^{2} / 2-\left(T\left(n_{j+1}\right)-T\left(n_{j}\right)\right) \mid \mathcal{F}_{j}^{\prime}\right]\right| \leq C d^{3}
\end{aligned}
$$

Proof. Fix some $j \geq 0$. Let $a=T\left(n_{j}\right)$ and $b=T\left(n_{j+1}\right)$. Then $0 \leq a \leq b \leq q_{1}$. And if δ is less than some $\delta_{1}(d)$, we have $|b-a| \leq 2 d^{2}$ and $\left|\xi_{c}-\xi_{a}\right| \leq 2 \bar{d}$, for any $c \in[a, b]$. Now suppose $z \in \widetilde{\mathbf{A}}_{p_{2}, p}$, and consider

$$
I:=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{b}(z)-\xi_{b}\right)-\widetilde{\mathbf{S}}_{p-a}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right) .
$$

Then $I=I_{1}+I_{2}$, where

$$
\begin{aligned}
I_{1} & :=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{b}(z)-\xi_{b}\right)-\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right), \\
I_{2} & :=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)-\widetilde{\mathbf{S}}_{p-a}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right) .
\end{aligned}
$$

Then for some $c_{1} \in[a, b], I_{1}=I_{3}+I_{4}+I_{5}$, where

$$
\begin{aligned}
I_{3} & :=\widetilde{\mathbf{S}}_{p-b}^{\prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\left(\widetilde{\varphi}_{b}(z)-\widetilde{\varphi}_{a}(z)\right)-\left(\xi_{b}-\xi_{a}\right)\right], \\
I_{4} & :=\widetilde{\mathbf{S}}_{p-b}^{\prime \prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\left(\widetilde{\varphi}_{b}(z)-\widetilde{\varphi}_{a}(z)\right)-\left(\xi_{b}-\xi_{a}\right)\right]^{2} / 2, \\
I_{5} & :=\widetilde{\mathbf{S}}_{p-b}^{\prime \prime \prime}\left(\widetilde{\varphi}_{c_{1}}(z)-\xi_{c_{1}}\right)\left[\left(\widetilde{\varphi}_{b}(z)-\widetilde{\varphi}_{a}(z)\right)-\left(\xi_{b}-\xi_{a}\right)\right]^{3} / 6 .
\end{aligned}
$$

And for some $c_{2} \in[a, b]$, we have

$$
\begin{equation*}
I_{2}=-\partial_{r} \widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)(b-a)+\partial_{r}^{2} \widetilde{\mathbf{S}}_{p-c_{2}}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)(b-a)^{2} / 2 \tag{3.3}
\end{equation*}
$$

Now for some $c_{3} \in[a, b]$, we have

$$
\begin{equation*}
\widetilde{\varphi}_{b}(z)-\widetilde{\varphi}_{a}(z)=\partial_{r} \widetilde{\varphi}_{c_{3}}(z)(b-a)=\widetilde{\mathbf{S}}_{p-c_{3}}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)(b-a) . \tag{3.4}
\end{equation*}
$$

For some $c_{4} \in\left[c_{3}, b\right]$, we have

$$
\begin{equation*}
\widetilde{\mathbf{S}}_{p-c_{3}}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)+\partial_{r} \widetilde{\mathbf{S}}_{p-c_{4}}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)\left(b-c_{3}\right) . \tag{3.5}
\end{equation*}
$$

For some $c_{5} \in\left[a, c_{3}\right]$, we have

$$
\begin{align*}
\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)= & \widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)+\widetilde{\mathbf{S}}_{p-b}^{\prime}\left(\widetilde{\varphi}_{c_{5}}(z)-\xi_{c_{5}}\right)\left[\left(\widetilde{\varphi}_{c_{3}}(z)\right.\right. \\
& \left.\left.-\widetilde{\varphi}_{a}(z)\right)-\left(\xi_{c_{3}}-\xi_{a}\right)\right] . \tag{3.6}
\end{align*}
$$

Once again, there is $c_{6} \in\left[a, c_{3}\right]$ such that

$$
\begin{equation*}
\tilde{\varphi}_{c_{3}}(z)-\tilde{\varphi}_{a}(z)=\partial_{r} \tilde{\varphi}_{c_{6}}(z)\left(c_{3}-a\right)=\widetilde{\mathbf{S}}_{p-c_{6}}\left(\tilde{\varphi}_{c_{6}}(z)-\xi_{c_{6}}\right)\left(c_{3}-a\right) . \tag{3.7}
\end{equation*}
$$

We have the freedom to choose d arbitrarily small. Now suppose $d<$ ($1-$七) $\left(p-q_{1}\right) / 2$. Then

$$
p-a \leq p-b+2 d \leq(p-b)+(1-\imath)\left(p-q_{1}\right) \leq(2-\imath)(p-b)
$$

Thus for any $m \leq M \in[a, b], p-m \leq(2-\imath)(p-M)$. By formula (3.2),

$$
\widetilde{\varphi}_{m}(z)-\xi_{m} \in \widetilde{\mathbf{A}}_{l(p-m), p-m} \subset \widetilde{\mathbf{A}}_{l(p-M),(2-l)(p-M)} .
$$

So the values of $\widetilde{\mathbf{S}}_{p-M}, \partial_{r} \widetilde{\mathbf{S}}_{p-M}, \partial_{r}^{2} \widetilde{\mathbf{S}}_{p-M}, \widetilde{\mathbf{S}}_{p-M}^{\prime}, \widetilde{\mathbf{S}}_{p-M}^{\prime \prime}$ and $\widetilde{\mathbf{S}}_{p-M}^{\prime \prime \prime}$ at $\widetilde{\varphi}_{m}(z)-\xi_{m}$ are uniformly bounded. In formula (3.3), consider $m=a$ and $M=c_{2}$. Since $|b-a| \leq 2 d^{2}$, we have

$$
I_{2}=-\partial_{r} \widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)(b-a)+O\left(d^{4}\right)
$$

Similarly, formula (3.7) implies

$$
\widetilde{\varphi}_{c_{3}}(z)-\widetilde{\varphi}_{a}(z)=O\left(c_{3}-a\right)=O\left(d^{2}\right)
$$

This together with formulae (3.5),(3.6) and $\xi_{c_{3}}-\xi_{a}=O(d)$ implies that

$$
\widetilde{\mathbf{S}}_{p-c_{3}}\left(\widetilde{\varphi}_{c_{3}}(z)-\xi_{c_{3}}\right)=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)+O(d)
$$

By formula (3.4), we have

$$
\widetilde{\varphi}_{b}(z)-\widetilde{\varphi}_{a}(z)=\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)(b-a)+O\left(d^{3}\right)=O\left(d^{2}\right)
$$

Thus $I_{5}=O\left(d^{3}\right)$,

$$
\begin{aligned}
I_{4} & =\widetilde{\mathbf{S}}_{p-b}^{\prime \prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left(\xi_{b}-\xi_{a}\right)^{2} / 2+O\left(d^{3}\right), \text { and } \\
I_{3} & =\widetilde{\mathbf{S}}_{p-b}^{\prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\widetilde{\mathbf{S}}_{p-b}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)(b-a)-\left(\xi_{b}-\xi_{a}\right)\right]+O\left(d^{3}\right)
\end{aligned}
$$

Note that $I=I_{2}+I_{3}+I_{4}+I_{5}$. Using Lemma 3.1, we get

$$
\begin{aligned}
I= & \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\left(\xi_{b}-\xi_{a}\right)^{2} / 2-(b-a)\right] \\
& -\widetilde{\mathbf{S}}_{p-b}^{\prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left(\xi_{b}-\xi_{a}\right)+O\left(d^{3}\right)
\end{aligned}
$$

By formula (3.1), if δ is smaller than some $\delta_{2}(d)$, then the conditional expectation of

$$
\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\left(\xi_{b}-\xi_{a}\right)^{2} / 2-(b-a)\right]-\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime}\left(\widetilde{\varphi}_{a}(z)-\xi_{a}\right)\left[\xi_{b}-\xi_{a}\right]
$$

w.r.t. \mathcal{F}_{j}^{\prime} is bounded by $C_{1} d^{3}$.

By formula (3.2), for any $w \in \widetilde{\mathbf{A}}_{(1-\imath)(p-a), p-a}$, the conditional expectation of

$$
\begin{equation*}
\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}(w)\left[\left(\xi_{b}-\xi_{a}\right)^{2} / 2-(b-a)\right]-\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}(w)\left[\xi_{b}-\xi_{a}\right] \tag{3.8}
\end{equation*}
$$

w.r.t \mathcal{F}_{j}^{\prime} is bounded by $C_{1} d^{3}$, if δ is small enough (depending on d).

Now suppose $d<\left(p-q_{1}\right) \iota /(4-4 \iota)$. Then

$$
(1-\iota)(p-a)<(1-\iota / 2)(p-b)<p-a .
$$

Thus $i(1-\iota / 2)(p-b) \in \widetilde{\mathbf{A}}_{(1-\iota)(p-a), p-a}$. We may check

$$
\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}(i(1-\iota / 2)(p-b))>0, \text { and } \operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime}(i(1-\iota / 2)(p-b))=0
$$

So we can find $C_{2}>0$ such that for all $b \in\left[0, q_{1}\right], \operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}(i(1-\iota / 2)(p-b))>$ C_{2}. Let $w=i(1-\iota / 2)(p-b)$ in formula (3.8), then we get

$$
\left|\mathbf{E}\left[\left(\xi_{b}-\xi_{a}\right)^{2} / 2-(b-a) \mid \mathcal{F}_{j}^{\prime}\right]\right| \leq C_{3} d^{3}
$$

Since $\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime \prime}(w)$ is uniformly bounded on $\widetilde{\mathbf{C}}_{(1-l / 2)(p-b)}$, so for all $w \in$ $\widetilde{\mathbf{C}}_{(1-\iota / 2)(p-b)}$,

$$
\begin{equation*}
\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime}(w)\left|\mathbf{E}\left[\xi_{b}-\xi_{a} \mid \mathcal{F}_{j}^{\prime}\right]\right| \leq C_{4} d^{3} \tag{3.9}
\end{equation*}
$$

We may check that

$$
x_{b}:=\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}(\pi+i(1-\iota / 2)(p-b))-\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}(i(1-\iota / 2)(p-b))>0 .
$$

So x_{b} is greater than some absolute constant $C_{5}>0$ for $b \in\left[0, q_{1}\right]$. Then there exists $w_{b} \in \widetilde{\mathbf{C}}_{(1-l / 2)(p-b)}$ such that

$$
\left|\operatorname{Im} \widetilde{\mathbf{S}}_{p-b}^{\prime}\left(w_{b}\right)\right|=\left|\partial_{x} \operatorname{Im} \widetilde{\mathbf{S}}_{p-b}\left(w_{b}\right)\right|=x_{b} / \pi \geq C_{5} / \pi
$$

Plugging $w=w_{b}$ in formula (3.9), we then have $\left|\mathbf{E}\left[\xi_{b}-\xi_{a} \mid \mathcal{F}_{j}^{\prime}\right]\right| \leq C_{6} d^{3}$.
The following Theorem about the convergence of the driving process can be deduced from Proposition 3.4 by using the Skorokhod Embedding Theorem. It is very similar to Theorem 3.6 in [8]. So we omit the proof.

Theorem 3.1. For every $q_{0} \in(0, p)$ and $\varepsilon>0$ there is a $\delta_{0}>0$ depending on q_{0} and ε such that for $\delta<\delta_{0}$ there is a coupling of the processes ξ_{t} and $B(2 t)$ such that

$$
\left.\mathbf{P}\left[\sup \left\{\mid \xi_{t}-B(2 t)\right\} \mid: t \in\left[0, q_{0}\right]\right\}>\varepsilon\right]<\varepsilon .
$$

3.4. Convergence of the trace

In this subsection, we will prove Theorem 1.2. We use symbols $y^{\delta}, \beta^{\delta}, K^{\delta}$ and χ^{δ} to emphasize the fact that they depend on δ. Let $\left(K_{t}^{0}, 0 \leq t<p\right)$ be the annulus SLE_{2} in D from 0_{+}to B_{2}. Let $\beta^{0}:(0, p) \rightarrow D$ be the corresponding trace.

First, we need two well-known lemmas about simple random walks on $\delta \mathbb{Z}^{2}$. We use the superscript \# to denote the spherical metric.

Lemma 3.7. Suppose $v \in \delta \mathbb{Z}^{2}$ and K is a connected set on the plane that has Euclidean (spherical, resp.) diameter at least R. Then the probability that a simple random walk on $\delta \mathbb{Z}^{2}$ started from v will exit $\mathbf{B}(v ; R)\left(\mathbf{B}^{\#}(v ; R)\right.$, resp.) before using an edge of $\delta \mathbb{Z}^{2}$ that intersects K is at most $C_{0}((\delta+\operatorname{dist}(v, K)) / R)^{C_{1}}\left(C_{0}((\delta+\right.$ dist $\left.\left.t^{\#}(v, K)\right) / R\right)^{C_{1}}$, resp.) for some absolute constants $C_{0}, C_{1}>0$.

Lemma 3.8. Suppose U is a plane domain, and has a compact subset K and a non-empty open subset V. Then there are positive constants δ_{0} and C depending on U, V and K, such that when $\delta<\delta_{0}$, the probability that a simple random walk on $\delta \mathbb{Z}^{2}$ started from some $v \in \delta \mathbb{Z}^{2} \cap K$ will hit V before exiting U is greater than C.

The following lemma about simple random walks on D^{δ} is an easy consequence of the above two lemmas and the Markov property of random walks.

Lemma 3.9. For every $d>0$, there are $\delta_{0}, C>0$ depending on d such that if $\delta<\delta_{0}$ and $v \in \delta \mathbb{Z}^{2} \cap D$ is such that dist ${ }^{\#}\left(v, B_{1}\right)>d$, then the probability that a simple random walk on D^{δ} started from v hits B_{2} before B_{1} is at least C.

Lemma 3.10. For every $q \in(0, p)$ and $\varepsilon>0$, there are $d, \delta_{0}>0$ depending on q and ε such that for $\delta<\delta_{0}$, the probability that dist ${ }^{\#}\left(\beta^{\delta}[q, p), B_{1}\right) \geq d$ is at least $1-\varepsilon$.

Proof. For $k=1,2,3$, let $J_{k}=W^{-1}\left(\mathbf{C}_{q / k}\right)$. Then J_{1}, J_{2}, J_{3} are disjoint Jordan curves in D that separate B_{2} from B_{1}. And J_{2} lies in the domain, denoted by Λ, bounded by J_{1} and J_{3}. Moreover, the modulus of the domain bounded by J_{k} and B_{2} is $p-q / k$. Let τ^{δ} be the first n such that the edge $\left[y_{n-1}^{\delta}, y_{n}^{\delta}\right]$ intersects J_{2}. Then τ^{δ} is a stopping time. If δ is smaller than the distance between $J_{1} \cup J_{3}$ and J_{2}, then $y_{\tau^{\delta}}^{\delta} \in \Lambda$ and $y^{\delta}\left[-1, \tau^{\delta}\right]$ does not intersect J_{1}. Thus $M\left(D \backslash y^{\delta}\left(-1, \tau^{\delta}\right]\right) \geq p-q$, and so $T\left(\tau^{\delta}\right) \leq q$. So it suffices to prove that when δ and d are small enough, the probability that y^{δ} will get within spherical distance d from B_{1} after time τ^{δ} is less than ε. Let RW^{δ} denote a simple random walk on D^{δ} stopped on hitting ∂D, and CRW^{δ} denote that RW^{δ} conditioned to hit B_{2} before B_{1}. Let RW_{v}^{δ} and $\mathrm{CRW}_{v}^{\delta}$ denote that RW^{δ} and CRW^{δ}, respectively, started from v. Since y^{δ} is obtained by erasing loops of $\mathrm{CRW}_{\delta}^{\delta}$, it suffices to show that the probability that $\mathrm{CRW}_{\delta}^{\delta}$ will get within spherical distance d from B_{1} after it hits Λ, tends to zero as $d, \delta \rightarrow 0$. Since CRW^{δ} is a Markov chain, it suffices to prove that the probability that $\mathrm{CRW}_{v}^{\delta}$ will get within spherical distance d from B_{1} tends to zero as $d, \delta \rightarrow 0$, uniformly in $v \in \delta \mathbb{Z}^{2} \cap \Lambda$. By Lemma 3.9, there is $a>0$ such that for δ small enough, the probability that RW_{v}^{δ} hits B_{2} before B_{1} is greater than a, for all $v \in \delta \mathbb{Z}^{2} \cap \Lambda$. By Markov property, for every $v \in \delta \mathbb{Z}^{2} \cap \Lambda$, the probability that $\mathrm{CRW}_{v}^{\delta}$ will get within spherical distance d from B_{1} is less than

$$
\frac{1}{a} \cdot \sup \left\{\mathbf{P}\left[\mathrm{RW}_{w}^{\delta} \text { hits } B_{2} \text { before } B_{1}\right]: w \in V\left(D^{\delta}\right) \cap D \text { and } \operatorname{dist}^{\#}\left(w, B_{1}\right)<d\right\}
$$

which tends to 0 as $d, \delta \rightarrow 0$ by Lemma 3.7. So the proof is finished.
Lemma 3.11. For every $q \in(0, p)$ and $\varepsilon>0$, there are $M, \delta_{0}>0$ depending on q and ε such that for $\delta<\delta_{0}$, the probability that $\beta^{\delta}[q, p) \subset \mathbf{B}(0 ; M)$ is at least $1-\varepsilon$.

Proof. We use the notations of the last lemma. It suffices to prove that the probability that $\mathrm{RW}_{v}^{\delta} \not \subset \mathbf{B}(0 ; M)$ tends to zero as $\delta \rightarrow 0$ and $M \rightarrow \infty$, uniformly in $v \in \delta \mathbb{Z}^{2} \cap \Lambda$. Let $K=\mathbb{C} \backslash D$, then K is unbounded, and the distance between $v \in \Lambda$ and K is uniformly bounded from below by some $d>0$. Let $r>0$ be such that $\Lambda \subset \mathbf{B}(0 ; r)$. For $M>r$, let $R=M-r$, then for $v \in \delta \mathbb{Z}^{2} \cap \Lambda, \mathrm{RW}_{v}^{\delta}$ should exit $\mathbf{B}(v ; R)$ before $\mathbf{B}(0 ; M)$. By Lemma 3.7, the probability that $\mathrm{RW}_{v}^{\delta} \not \subset \mathbf{B}(0 ; M)$ is less than $C_{0}((\delta+d) /(M-r))^{C_{1}}$, which tends to 0 as $\delta \rightarrow 0$ and $M \rightarrow \infty$, uniformly in $v \in \delta \mathbb{Z}^{2} \cap \Lambda$.

Lemma 3.12. For every $\varepsilon>0$, there are $q \in(0, p)$ and $\delta_{0}>0$ depending on ε such that when $\delta<\delta_{0}$, with probability greater than $1-\varepsilon$, the diameter of $\beta^{\delta}[q, p)$ is less than ε.

Proof. The idea is as follows. Note that as $q \rightarrow p$, the modulus of $D \backslash \beta^{\delta}(0, q]$ tends to zero. So for any fixed $a \in(0, p)$, the spherical distance between $\beta^{\delta}[a, q]$ and B_{2} tends to zero as $q \rightarrow p$. By Lemma 3.11, if M is big and δ is small, the fact that $\beta^{\delta}[a, q]$ does not lie in $\mathbf{B}(0 ; M)$ is an event of small probability. Thus on the complement of this event, the Euclidean distance between $\beta^{\delta}[a, q]$ and B_{2} tends to zero, which means that β^{δ} gets to some point near B_{2} in the Euclidean metric before time q. By Lemma 3.7, RW_{v}^{δ} does not go far before hitting ∂D if v is near B_{2}. The same is true for $\mathrm{CRW}_{v}^{\delta}$ because by Lemma 3.9, RW_{v}^{δ} hits B_{2} before B_{1} with a probability bigger than some positive constant when v is near B_{2}. Since y^{δ} is the loop-erasure of $\mathrm{CRW}^{\delta}, y^{\delta}$ does not go far after it gets near B_{2}, nor does β^{δ}. So the diameter of $\beta^{\delta}[q, p)$ is small.

Definition 3.1. Let $z \in \mathbb{C}, r, \varepsilon>0 . A(z, r, \varepsilon)$-quasi-loop in a path ω is a pair $a, b \in \omega$ such that $a, b \in \mathbf{B}(z ; r),|a-b| \leq \varepsilon$, and the subarc of ω with endpoints a and b is not contained in $\mathbf{B}(z ; 2 r)$. Let $\mathcal{L}^{\delta}(z, r, \varepsilon)$ denote the event that $\beta^{\delta}[0, p)$ has a (z, r, ε)-quasi-loop.

Lemma 3.13. If $\overline{\mathbf{B}(z ; 2 r)} \cap B_{1}=\emptyset$, then $\lim _{\varepsilon \rightarrow 0} \mathbf{P}\left[\mathcal{L}^{\delta}(z, r, \varepsilon)\right]=0$, uniformly in δ.

Proof. This lemma is very similar to Lemma 3.4 in [16]. There are two points of difference between them. First, here we are dealing with the loop-erased conditional random walk. With Lemma 3.9, the hypothesis $\overline{\mathbf{B}(z ; 2 r)} \cap B_{1}=\emptyset$ guarantees that for some v near $\partial \mathbf{B}(z ; 2 r)$, the probability that RW_{v}^{δ} hits B_{2} before B_{1} is bounded away from zero uniformly. Second, our LERW is stopped when it hits B_{2}, while in Lemma 3.4 in [16], the LERW is stopped when it hits some single point. It turns out that the current setting is easier to deal with. See [16] for more details.

Proposition 3.5. For every $q \in(0, p)$ and $\varepsilon>0$, there are $\delta_{0}, a_{0}>0$ depending on q and ε such that for $\delta<\delta_{0}$, with probability at least $1-\varepsilon, \beta^{\delta}$ satisfies the following property. If $q \leq t_{1}<t_{2}<p$, and $\left|\beta^{\delta}\left(t_{1}\right)-\beta^{\delta}\left(t_{2}\right)\right|<a_{0}$, then the diameter of $\beta^{\delta}\left[t_{1}, t_{2}\right]$ is less than ε.

Proof. For $d, M>0$, let $\Lambda_{d, M}$ denote the set of $z \in \mathbf{B}(0 ; M)$ such that $\operatorname{dist}{ }^{\#}\left(z, B_{1}\right)$ $\geq d$, and $\mathcal{A}_{d, M}^{\delta}$ denote the event that $\beta^{\delta}[q, p) \subset \Lambda_{d, M}$. By Lemma 3.10 and 3.11, there are $d_{0}, M_{0}, \delta_{0}>0$ such that for $\delta<\delta_{0}, \mathbf{P}\left[\mathcal{A}_{d_{0}, M_{0}}^{\delta}\right]>1-\varepsilon / 2$. Note that the Euclidean distance between $\Lambda_{d_{0}, M_{0}}$ and B_{1} is greater than $d_{0} / 2$. Choose $0<r<\min \left\{\varepsilon / 4, d_{0} / 4\right\}$. There are finitely many points $z_{1}, \ldots, z_{n} \in \Lambda_{d_{0}, M_{0}}$ such that $\Lambda_{d_{0}, M_{0}} \subset \cup_{1}^{n} \mathbf{B}\left(z_{j} ; r / 2\right)$. For $a>0,1 \leq j \leq n$, let $\mathcal{B}_{j, a}^{\delta}$ denote the event that $\beta^{\delta}[0, p)$ does not have a $\left(z_{j}, r, a\right)$-quasi-loop. Since $r<d_{0} / 4$, we have $\overline{\mathbf{B}\left(z_{j} ; 2 r\right)} \cap B_{1}=\emptyset$. By Lemma 3.13, there is $a_{0} \in(0, r / 2)$ such that $\mathbf{P}\left[\mathcal{B}_{j, a_{0}}^{\delta}\right] \geq$ $1-\varepsilon /(2 n)$ for $1 \leq j \leq n . \operatorname{Let} \mathcal{C}^{\delta}=\cap_{1}^{n} \mathcal{B}_{j, a_{0}}^{\delta} \cap \mathcal{A}_{d_{0}, M_{0}}^{\delta}$.Then $\mathbf{P}\left[\mathcal{C}^{\delta}\right]>1-\varepsilon$ if $\delta<\delta_{0}$. And on the event \mathcal{C}^{δ}, if there are $t_{1}<t_{2} \in[q, p)$ satisfying $\left|\beta^{\delta}\left(t_{1}\right)-\beta^{\delta}\left(t_{2}\right)\right|<a_{0}$, then $\beta^{\delta}\left(t_{1}\right)$ lies in some ball $\mathbf{B}\left(z_{j} ; r / 2\right)$, so $\beta^{\delta}\left(t_{2}\right) \in \mathbf{B}\left(z_{j} ; r\right)$ as $a_{0}<r / 2$. Since β^{δ} does not have a $\left(z_{j}, r, a_{0}\right)$-quasi-loop, $\beta^{\delta}\left[t_{1}, t_{2}\right] \subset \mathbf{B}\left(z_{j} ; 2 r\right)$. This then implies that the diameter of $\beta^{\delta}\left[t_{1}, t_{2}\right]$ is not bigger than $4 r$, which is less than ε.

Before the proof of Theorem 1.2, we need the notation of convergence of plane domain sequences. We say that a sequence of plane domains $\left\{\Omega_{n}\right\}$ converges to a plane domain Ω, or $\Omega_{n} \rightarrow \Omega$, if
(i) every compact subset of Ω lies in Ω_{n}, for n large enough;
(ii) for every $z \in \partial \Omega$ there exists $z_{n} \in \partial \Omega_{n}$ for each n such that $z_{n} \rightarrow z$.

Note that a sequence of domains may have more than one limits. The following lemma is similar to Theorem 1.8, the Carathéodory kernel theorem, in [13].

Lemma 3.14. Suppose $\Omega_{n} \rightarrow \Omega, f_{n}$ maps Ω_{n} conformally onto G_{n}, and f_{n} converges to some function f on Ω uniformly on each compact subset of Ω. Then either f is constant on Ω, or f maps Ω conformally onto some domain G. And in the latter case, $G_{n} \rightarrow G$ and f_{n}^{-1} converges to f^{-1} uniformly on each compact subset of G.

Proof of Theorem 1.2. Suppose ($\chi_{t}^{0}, 0 \leq t<p$) is the driving function of ($W\left(K_{t}^{0}\right)$, $0 \leq t<p)$. By Theorem 3.1, we may assume that all χ^{δ} and χ^{0} are in the same probability space, so that for every $q \in(0, p)$ and $\varepsilon>0$ there is an $\delta_{0}>0$ depending on q and ε such that for $\delta<\delta_{0}$,

$$
\mathbf{P}\left[\sup \left\{\left|\chi_{t}^{\delta}-\chi_{t}^{0}\right|: t \in[0, q]\right\}>\varepsilon\right]<\varepsilon .
$$

Since β^{δ} and β^{0} are determined by χ^{δ} and χ^{0}, respectively, all β^{δ} and β^{0} are also in the same probability space. For the first part of this theorem, it suffices to prove that for every $q \in(0, p)$ and $\varepsilon>0$ there is $\delta_{0}=\delta_{0}(q, \varepsilon)>0$ such that for $\delta<\delta_{0}$,

$$
\begin{equation*}
\mathbf{P}\left[\sup \left\{\left|\beta^{\delta}(t)-\beta^{0}(t)\right|: t \in[q, p)\right\}>\varepsilon\right]<\varepsilon \tag{3.10}
\end{equation*}
$$

Now choose any sequence $\delta_{n} \rightarrow 0$. Then it contains a subsequence $\delta_{n_{k}}$ such that for each $q \in(0, p), \chi^{\delta_{n_{k}}}$ converges to χ^{0} uniformly on $[0, q]$ almost surely. Here we use the fact that a sequence converging in probability contains an a.s. converging subsequence. For simplicity, we write δ_{n} instead of $\delta_{n_{k}}$. Let $\varphi_{t}^{\delta_{n}}\left(\varphi_{t}^{0}\right.$, resp.), $0 \leq t<$ p, be the standard annulus LE maps of modulus p driven by $\chi_{t}^{\delta_{n}}\left(\chi_{t}^{0}\right.$, resp.), $0 \leq$ $t<p$. Let $\Omega_{t}^{\delta_{n}}:=\mathbf{A}_{p} \backslash W\left(\beta^{\delta_{n}}(0, t]\right)$, and $\Omega_{t}^{0}:=\mathbf{A}_{p} \backslash W\left(\beta^{0}[0, t]\right)$. Fix $q \in(0, p)$. Suppose K is a compact subset of Ω_{q}^{0}. Then for every $z \in K, \varphi_{t}^{0}(z)$ does not blow up on $[0, q]$. Since the driving function $\chi^{\delta_{n}}$ converges to χ^{0} uniformly on $[0, q]$, so if n is big enough, then for every $z \in K, \varphi_{t}^{\delta_{n}}(z)$ does not blow up on [0,q], which means that $K \subset \Omega_{q}^{\delta_{n}}$. Moreover, $\varphi_{q}^{\delta_{n}}$ converges to φ_{q}^{0} uniformly on K. It follows that $\Omega_{q}^{\delta_{n}} \cap \Omega_{q}^{0} \rightarrow \Omega_{q}^{0}$ as $n \rightarrow \infty$. By Lemma 3.14, $\left(\varphi_{q}^{\delta_{n}}\right)^{-1}$ converges to $\left(\varphi_{q}^{0}\right)^{-1}$ uniformly on each compact subset of \mathbf{A}_{p-q}, and so $\Omega_{q}^{\delta_{n}}=\left(\varphi_{q}^{\delta_{n}}\right)^{-1}\left(\mathbf{A}_{p-q}\right) \rightarrow$ $\left(\varphi_{q}^{0}\right)^{-1}\left(\mathbf{A}_{p-q}\right)=\Omega_{q}^{0}$. Now we denote $D_{t}^{\delta_{n}}:=D \backslash \beta^{\delta_{n}}(0, t]=W^{-1}\left(\Omega_{t}^{\delta_{n}}\right)$, and $D_{t}^{0}:=D \backslash \beta^{0}(0, t]=W^{-1}\left(\Omega_{t}^{0}\right)$. Then we have $D_{q}^{\delta_{n}} \rightarrow D_{q}^{0}$ for every $q \in(0, p)$.

Fix $\varepsilon>0$ and $q_{1}<q_{2} \in(0, p)$. Let $q_{0}=q_{1} / 2$ and $q_{3}=\left(q_{2}+p\right) / 2$. By Proposition 3.5 , there are $n_{1} \in \mathbb{N}$ and $a \in(0, \varepsilon / 2)$ such that for $n \geq n_{1}$, with probability at least $1-\varepsilon / 3, \beta^{\delta_{n}}$ satisfies: if $q_{0} \leq t_{1}<t_{2}<p$, and $\left|\beta^{\delta_{n}}\left(t_{1}\right)-\beta^{\delta_{n}}\left(t_{2}\right)\right|<a$, then the diameter of $\beta^{\delta_{n}}\left[t_{1}, t_{2}\right]$ is less than $\varepsilon / 3$. Let \mathcal{A}_{n} denote the corresponding
event. Since β^{0} is continuous, there is $b>0$ such that with probability $1-\varepsilon / 3$, we have $\left|\beta^{0}\left(t_{1}\right)-\beta^{0}\left(t_{2}\right)\right|<a / 2$ if $t_{1}, t_{2} \in\left[q_{0}, q_{3}\right]$ and $\left|t_{1}-t_{2}\right| \leq b$. Let \mathcal{B} denote the corresponding event. We may choose $q_{0}<t_{0}<t_{1}=q_{1}<\cdots<t_{m-1}=$ $q_{2}<t_{m}<q_{3}$ such that $t_{j}-t_{j-1}<b$ for $1 \leq j \leq m$. Since $\beta^{0}\left(t_{j}\right) \notin \beta^{0}\left(0, t_{j-1}\right]$ for $1 \leq j \leq m$, there is $r \in(0, a / 4)$ such that with probability at least $1-\varepsilon / 3$, $\overline{\mathbf{B}\left(\beta^{0}\left(t_{j}\right) ; r\right)} \subset D_{t_{j-1}}^{0}$ for all $0 \leq j \leq m$. We now use the convergence of $D_{t}^{\delta_{n}}$ to D_{t}^{0} for $t=t_{0}, \ldots, t_{m}$. There exists $n_{2} \in \mathbb{N}$ such that for $n \geq n_{2}$, with probability at least $1-\varepsilon / 3, \overline{\mathbf{B}\left(\beta^{0}\left(t_{j}\right) ; r\right)} \subset D_{t_{j-1}}^{\delta_{n}}$, and there is some $z_{j}^{n} \in \partial D_{t_{j}}^{\delta_{n}} \cap \mathbf{B}\left(\beta^{0}\left(t_{j}\right) ; r\right)$, for all $1 \leq j \leq m$. Let \mathcal{C}_{n} denote the corresponding event. Then on the event \mathcal{C}_{n}, $z_{j}^{n} \in \partial D_{j}^{\delta_{n}} \backslash \partial D_{j-1}^{\delta_{n}}$, so $z_{j}^{n}=\beta^{\delta_{n}}\left(s_{j}^{n}\right)$ for some $s_{j}^{n} \in\left(t_{j-1}, t_{j}\right]$. Let $\mathcal{D}_{n}=\mathcal{A}_{n} \cap \mathcal{B} \cap \mathcal{C}_{n}$. Then $\mathbf{P}\left[\mathcal{D}_{n}\right] \geq 1-\varepsilon$, for $n \geq n_{1}+n_{2}$. And on the event \mathcal{D}_{n},

$$
\left|z_{j}^{n}-z_{j+1}^{n}\right| \leq 2 r+\left|\beta^{0}\left(t_{j}\right)-\beta^{0}\left(t_{j+1}\right)\right| \leq 2 r+a / 2<a, \forall 1 \leq j \leq m-1,
$$

as $\left|t_{j}-t_{j+1}\right| \leq b$. Thus the diameter of $\beta^{\delta_{n}}\left[s_{j}^{n}, s_{j+1}^{n}\right]$ is less than $\varepsilon / 3$. It follows that for any $t \in\left[s_{j}^{n}, s_{j+1}^{n}\right] \subset\left[t_{j-1}, t_{j+1}\right]$,

$$
\begin{aligned}
\left|\beta^{0}(t)-\beta^{\delta_{n}}(t)\right| & \leq\left|\beta^{0}(t)-\beta^{0}\left(t_{j}\right)\right|+\left|\beta^{0}\left(t_{j}\right)-z_{j}^{n}\right|+\left|z_{j}^{n}-\beta^{\delta_{n}}(t)\right| \\
& \leq a / 2+r+\varepsilon / 3<\varepsilon
\end{aligned}
$$

Since $\left[q_{1}, q_{2}\right]=\left[t_{1}, t_{m-1}\right] \subset \cup_{j=1}^{m-1}\left[s_{j}^{n}, s_{j+1}^{n}\right]$, we have now proved that for n big enough, with probability at least $1-\varepsilon,\left|\beta^{\delta_{n}}(t)-\beta^{0}(t)\right|<\varepsilon$ for all $t \in\left[q_{1}, q_{2}\right]$. By Lemma 3.12, for any $\varepsilon>0$, there is $q(\varepsilon) \in(0, p)$ such that if n is big enough, with probability at least $1-\varepsilon$, the diameter of $\beta^{\delta_{n}}[q(\varepsilon), p)$ is less than ε. For any $S \in[q(\varepsilon), p)$, by the uniform convergence of $\beta^{\delta_{n}}$ to β^{0} on the interval $[q(\varepsilon), S]$, it follows that with probability at least $1-\varepsilon$, the diameter of $\beta^{0}[q(\varepsilon), S)$ is no more than ε, nor is the diameter of $\beta^{0}[q(\varepsilon), p)$. Now for fixed $q \in(0, p)$ and $\varepsilon>0$, choose $q_{1} \in(q, p) \cap(q(\varepsilon / 3), p)$. Then with probability at least $1-\varepsilon / 3$, the diameter of $\beta^{0}\left[q_{1}, p\right)$ is less than $\varepsilon / 3$. And if n is big enough, then with probability at least $1-\varepsilon / 3$, the diameter of $\beta^{\delta_{n}}\left[q_{1}, p\right)$ is less than $\varepsilon / 3$. Moreover, if n is big enough, we may require that with probability at least $1-\varepsilon / 3,\left|\beta^{\delta_{n}}(t)-\beta^{0}(t)\right| \leq \varepsilon / 3$ for all $t \in\left[q, q_{1}\right]$. Thus $\left|\beta^{\delta_{n}}(t)-\beta^{0}(t)\right| \leq \varepsilon$ for all $t \in[q, p)$ with probability at least $1-\varepsilon$, if n is big enough. Since $\left\{\delta_{n}\right\}$ is chosen arbitrarily, we proved formula (3.10).

Now suppose that the impression of 0_{+}is the a single point, which must be 0 . From [13], we see that $W^{-1}(z) \rightarrow 0$ as $z \in \mathbf{A}_{p}$ and $z \rightarrow 1$. From above, it suffices to prove that for any $\varepsilon>0$, we can choose $q \in(0, p)$ and $\delta_{0}>0$ such that for $\delta<\delta_{0}$, with probability at least $1-\varepsilon$, the diameters of $\beta^{\delta}(0, q]$ and $\beta^{0}(0, q]$ are less than ε. Since W^{-1} is continuous at 1 , we need only to prove the same is true for the diameters of $W\left(\beta^{\delta}(0, q]\right)$ and $W\left(\beta^{0}(0, q]\right)$. Note that they are the standard annulus LE hulls of modulus p at time q, driven by χ_{t}^{δ} and χ_{t}^{0}, respectively. By Theorem 3.1, if δ and q are small, then the diameters of $\chi^{\delta}[0, q]$ and $\chi^{0}[0, q]$ are uniformly small with probability near 1 , so are the diameters of $W\left(\beta^{\delta}(0, q]\right)$ and $W\left(\beta^{0}(0, q]\right)$.

Corollary 3.1. Almost surely $\lim _{t \rightarrow p} \beta^{0}(t)$ exists on B_{2}. And the law is the same as the hitting point of a Brownian excursion in D started from 0_{+}conditioned to hit B_{2}.

A Brownian excursion in D started from 0_{+}conditioned to hit B_{2} is a random closed subset of D whose law is the weak limit as $\varepsilon \rightarrow 0$ of the laws of Brownian motions in D started from $\varepsilon>0$ stopped on hitting ∂D and conditioned to hit B_{2}.

Proof of Corollary 1.1. Now we consider the Riemann surface $R_{p}=(\mathbb{R} /(2 \pi \mathbb{Z})) \times$ $(0, p)$. Let $X_{0}=(\mathbb{R} /(2 \pi \mathbb{Z})) \times\{0\}$ and $X_{p}=(\mathbb{R} /(2 \pi \mathbb{Z})) \times\{p\}$ be the two boundary components of R_{p}. Then $(x, y) \mapsto e^{-y+i x}$ is a conformal map from R_{p} onto \mathbf{A}_{p}, and it maps X_{0} and X_{p} onto \mathbf{C}_{0} and \mathbf{C}_{p}, respectively. So it suffices to prove this corollary with $\mathbf{A}_{p}, \mathbf{C}_{p}$ and \mathbf{C}_{0} replaced by R_{p}, X_{p} and X_{0}, respectively.

For $n \in \mathbb{N}$, let G_{n} be a graph that approximates R_{p}. The vertex set $V\left(G_{n}\right)$ is $\{(2 k \pi / n, 2 m \pi / n): 1 \leq k \leq n, 0 \leq m \leq\lfloor p n /(2 \pi)\rfloor\} \cup\{(2 k \pi / n, p): 1 \leq k \leq n\}$,
where $\lfloor x\rfloor$ is the maximal integer that is not bigger than x. And two vertices are connected by an edge iff the distance between them is not bigger than $2 \pi / n$. If $n>2 \pi / p$, then for every vertex v on X_{0} or X_{p}, there is a unique $u \in V\left(G_{n}\right) \cap R_{p}$ that is adjacent to v. We write $u=N(v)$. For $v \in V\left(G_{n}\right) \cap X_{0}$, let RW be a simple random walk on G_{n} started from $N(v)$ and stopped on hitting $X_{0} \cup X_{p}$. Let CRW be that RW conditioned to hit X_{p} before X_{0}. Take the loop-erasure of CRW, and then add the vertex v at the beginning of the loop-erasure. Then we get a simple lattice path from v to X_{p}. We call this lattice path the LERW from v to X_{p}. Similarly, for each $v \in X_{p}$, we may define the LERW from v to X_{0}. Suppose $v \in V\left(D^{\delta}\right) \cap X_{0}$ and $u \in V\left(D^{\delta}\right) \cap X_{p}$. Let $P_{v, u}$ be the LERW from v to X_{p}, conditioned to hit u, and $P_{u, v}$ be the LERW from u to X_{0}, conditioned to hit v. By Lemma 7.2.1 in [4], the reversal of $P_{v, u}$ has the same law as $P_{u, v}$. Now we define the LERW from X_{0} to X_{p} to be the LERW from a uniformly distributed random vertex on X_{0} to X_{p}. Similarly, we may define the LERW from X_{p} to X_{0}. It is clear that the hitting point at X_{p} of the LERW from X_{0} to X_{p} is uniformly distributed. So the reversal of the LERW from X_{0} to X_{p} has the same law as the LERW from X_{p} to X_{0}. Using the method in the proof of Theorem 1.2, we can show that the law of LERW from X_{0} to X_{p} converges to that of annulus SLE_{2} in R_{p} from a uniform random point on X_{0} towards X_{p}. The same is true if we exchange X_{0} with X_{p}. This ends the proof.

4. Disc SLE

In this section, we will define another version of SLE: disc SLE, which describes a random process of growing compact subsets of a simply connected domain. Suppose Ω is a simply connected domain and $x \in \Omega$. Recall that a hull, say F, in Ω w.r.t. x, is a contractible compact subset of Ω that properly contains x. Then $\Omega \backslash F$ is a doubly connected domain with boundary components $\partial \Omega$ and ∂F. We say that ($F_{t}, a<t<b$) is a Loewner chain in Ω w.r.t. x, if (i) each F_{t} is a hull in Ω w.r.t. x; (ii) $F_{s} \varsubsetneqq F_{t}$ when $a<s<t<b$; and (iii) for any fixed $t_{0} \in(a, b)$, ($F_{t} \backslash F_{t_{0}}, t_{0} \leq t<b$) is a Loewner chain in $\Omega \backslash F_{t_{0}}$ on $\partial F_{t_{0}}$.

Proposition 4.1. Suppose $\chi:(-\infty, 0) \rightarrow \mathbf{C}_{0}$ is continuous. Then there is a Loewner chain $\left(F_{t},-\infty<t<0\right)$, in \mathbb{D} w.r.t. 0 , and a family of maps $g_{t},-\infty<t<0$, such that each g_{t} maps $\mathbb{D} \backslash F_{t}$ conformally onto $\mathbf{A}_{|t|}$ with $g_{t}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{|t|}$, and

$$
\begin{cases}\partial_{t} g_{t}(z)=g_{t}(z) \mathbf{S}_{|t|}\left(g_{t}(z) / \chi_{t}\right), & -\infty<t<0 ; \tag{4.1}\\ \lim _{t \rightarrow-\infty} e^{t} / g_{t}(z)=z, & \forall z \in \mathbb{D} \backslash\{0\} .\end{cases}
$$

Moreover, such F_{t} and g_{t} are uniquely determined by χ_{t}. We call F_{t} and $g_{t},-\infty<$ $t<0$, the standard disc LE hulls and maps, respectively, driven by $\chi_{t},-\infty<t<0$.

Proof. For fixed $r \in(-\infty, 0)$, let $\varphi_{t}^{r}, r \leq t<0$, be the solution of

$$
\begin{equation*}
\partial_{t} \varphi_{t}^{r}(z)=\varphi_{t}^{r}(z) \mathbf{S}_{|t|}\left(\varphi_{t}^{r}(z) / \chi_{t}\right), \varphi_{r}^{r}(z)=z . \tag{4.2}
\end{equation*}
$$

For $r \leq t<0$, let K_{t}^{r} be the set of $z \in \mathbf{A}_{|r|}$ such that $\varphi_{s}^{r}(z)$ blows up at some time $s \in[r, t]$. Then $\left(K_{t}^{r}, r \leq t<0\right)$ is a Loewner chain in $\mathbf{A}_{|r|}$ on \mathbf{C}_{0}, and φ_{t}^{r} maps $\mathbf{A}_{|r|} \backslash K_{t}^{r}$ conformally onto $\mathbf{A}_{|t|}$ with $\varphi_{t}^{r}\left(\mathbf{C}_{|r|}\right)=\mathbf{C}_{|t|}$. By the uniqueness of the solution of ODE, if $t_{1} \leq t_{2} \leq t_{3}<0$, then $\varphi_{t_{3}}^{t_{2}} \circ \varphi_{t_{2}}^{t_{1}}(z)=\varphi_{t_{3}}^{t_{1}}(z)$, for $z \in \mathbf{A}_{\left|t_{1}\right|} \backslash K_{t_{3}}^{t_{1}}$. For $t<0$, define $R_{t}(z)=e^{t} / z$. Then R_{t} maps $\mathbf{A}_{|t|}$ conformally onto itself, and exchanges the two boundary components. Define $\widehat{\varphi}_{t}^{r}=R_{t} \circ \varphi_{t}^{r} \circ R_{r}$, and $\widehat{K}_{t}^{r}=R_{r}\left(K_{t}^{r}\right)$. Then \widehat{K}_{t}^{r} is a hull in $\mathbf{A}_{|r|}$ on $\mathbf{C}_{|r|}$, and $\widehat{\varphi}_{t}^{r} \operatorname{maps} \mathbf{A}_{|r|} \backslash \widehat{K}_{t}^{r}$ conformally onto $\mathbf{A}_{|t|}$ with $\widehat{\varphi}_{t}^{r}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{0}$. We also have $\widehat{\varphi}_{t_{3}}^{t_{2}} \circ \widehat{\varphi}_{t_{2}}^{t_{1}}(z)=\widehat{\varphi}_{t_{3}}^{t_{1}}(z)$, for $z \in \mathbf{A}_{\left|t_{1}\right|} \backslash \widehat{K}_{t_{3}}^{t_{1}}$, if $t_{1} \leq t_{2} \leq t_{3}<0$. And $\widehat{\varphi}_{t}^{r}$ satisfies

$$
\partial_{t} \widehat{\varphi}_{t}^{r}(z)=\widehat{\varphi}_{t}^{r}(z) \widehat{\mathbf{S}}_{|t|}\left(\widehat{\varphi}_{t}^{r}(z) / \overline{\chi_{t}}\right), \widehat{\varphi}_{r}^{r}(z)=z,
$$

where $\widehat{\mathbf{S}}_{p}(z)=1-\mathbf{S}_{p}\left(e^{-p} / z\right)$ for $p>0$. A simple computation gives:

$$
\left|\widehat{\mathbf{S}}_{p}(z)\right| \leq 8 e^{-p} /|z|, \text { if } 4 e^{-p} \leq|z| \leq 1 .
$$

We then have

$$
\begin{equation*}
\left|\widehat{\varphi}_{t}^{r}(z)-z\right| \leq 8 e^{t}, \text { if } r \leq t<0, \text { and } 12 e^{t} \leq|z| \leq 1 . \tag{4.3}
\end{equation*}
$$

Now let $\widehat{\psi}_{t}^{r}$ be the inverse of $\widehat{\varphi}_{t}^{r}$. If $t_{1} \leq t_{2} \leq t_{3}$, then $\widehat{\psi}_{t_{2}}^{t_{1}} \circ \widehat{\psi}_{t_{3}}^{t_{2}}(z)=\widehat{\psi}_{t_{3}}^{t_{1}}(z)$, for any $z \in \mathbf{A}_{\left|t_{3}\right|}$. For fixed $t \in(-\infty, 0),\left\{\widehat{\psi}_{t}^{r}: r \in(-\infty, t]\right\}$ is a family of uniformly bounded conformal maps on $\mathbf{A}_{|t|}$, so is a normal family. This implies that we can find a sequence $r_{n} \rightarrow-\infty$ such that for any $m \in \mathbb{N},\left\{\widehat{\psi}_{\widehat{-m}}^{r_{n}}\right\}$ converges to some $\widehat{\psi}_{-m}$, uniformly on each compact subset of \mathbf{A}_{m}. Let $\beta_{n}=\widehat{\psi}_{-m}^{r_{n}}\left(\mathbf{C}_{m / 2}\right)$. Then β_{n} is a Jordan curve in $\mathbf{A}_{\left|r_{n}\right|} \backslash \widehat{K}_{-m}^{r_{n}}$ that separates the two boundary components. So 0 is contained in the Jordan domain determined by β_{n}. Note that $\left\{\widehat{\psi}_{-m}^{r_{n}}\right\}$ maps $\mathbf{A}_{m / 2}$ onto the domain bounded by β_{n} and \mathbf{C}_{0}, whose modulus has to be $m / 2$. So β_{n} is not contained in $\mathbf{B}\left(0 ; e^{-m / 2}\right)$. This implies that the diameter of β_{n} is not less than $e^{-m / 2}$. So $\widehat{\psi}_{-m}$ can't be a constant. By Lemma 3.14, $\widehat{\psi}_{-m}$ maps \mathbf{A}_{m} conformally onto some domain D_{-m}, and $\widehat{\psi}_{-m}^{r_{n}}\left(\mathbf{A}_{m}\right) \rightarrow D_{-m}$. Since $\widehat{\psi}_{-m}^{r_{n}}\left(\mathbf{A}_{m}\right)=\mathbf{A}_{\left|r_{n}\right|} \backslash \widehat{K}_{-m}^{r_{n}} \subset \mathbb{D} \backslash\{0\}$, $D_{-m} \subset \mathbb{D} \backslash\{0\}$. Since $M\left(\mathbf{A}_{\left|r_{n}\right|} \backslash \widehat{K}_{-m}^{r_{n}}\right)=m$, there is some $a_{m} \in(0,1)$ such that $\overline{\mathbf{B}\left(0 ; e^{r_{n}}\right)} \cup \widehat{K}_{-m}^{r_{n}} \subset \mathbf{B}\left(0 ; e^{-a_{m}}\right)$ for all r_{n}. So $\mathbf{A}_{a_{m}}$ contains no boundary points of $\mathbf{A}_{\left|r_{n}\right|} \backslash \widehat{K}_{-m}^{r_{n}}=\widehat{\psi}_{-m}^{r_{n}}\left(\mathbf{A}_{m}\right)$. Since these domains converge to D_{-m} as $n \rightarrow \infty$, so $\mathbf{A}_{a_{m}}$ contains no boundary points of D_{-m}, which means that either $\mathbf{A}_{a_{m}} \subset D_{-m}$ or $\mathbf{A}_{a_{m}} \cap D_{-m}=\emptyset$. Now let $\gamma_{n}=\widehat{\psi}_{-m}^{r_{n}}\left(\mathbf{C}_{a_{m} / 2}\right)$. For the same reason as β_{n}, we have $\gamma_{n} \not \subset \mathbf{B}\left(0 ; e^{-a_{m} / 2}\right)$. So there is $z_{n} \in \mathbf{C}_{a_{m} / 2}$ such that $\left|\widehat{\psi}_{-m}^{r_{n}}\left(z_{n}\right)\right| \geq e^{-a_{m} / 2}$. Let z_{0} be any subsequential limit of $\left\{z_{n}\right\}$, then $z_{0} \in \mathbf{C}_{a_{m} / 2} \subset \mathbf{A}_{m}$ and $\left|\widehat{\psi_{-m}}\left(z_{0}\right)\right| \geq e^{-a_{m} / 2}$,
so $\widehat{\psi}_{-m}\left(z_{0}\right) \in \mathbf{A}_{a_{m}}$. Thus $D_{-m} \cap \mathbf{A}_{a_{m}} \neq \emptyset$, and so $\mathbf{A}_{a_{m}} \subset D_{-m}$. Hence D_{-m} has one boundary component \mathbf{C}_{0}. Using similar arguments, we have $\widehat{\psi}_{t}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{0}$.

If $r_{n}<-m_{1}<-m_{2}$, then $\widehat{\psi}_{-m_{1}}^{r_{n}} \circ \widehat{\psi}_{-m_{2}}^{-m_{1}}=\widehat{\psi}_{-m_{2}}^{r_{n}}$, which implies $\widehat{\psi}_{-m_{1}} \circ$ $\widehat{\psi}_{-m_{2}}^{-m_{1}}=\widehat{\psi}_{-m_{2}}$. For $t \in(-\infty, 0)$, choose $m \in \mathbb{N}$ with $-m \leq t$, define $\widehat{\psi}_{t}=$ $\widehat{\psi}_{-m} \circ \widehat{\psi}_{t}^{-m}$ and $D_{t}=\widehat{\psi}_{t}\left(\mathbf{A}_{|t|}\right)$. It is easy to check that the definition of $\widehat{\psi}_{t}$ is independent of the choice of m, and the following properties hold. For all $t \in(-\infty, 0)$, D_{t} is a doubly connected subdomain of $\mathbb{D} \backslash\{0\}$ that has one boundary component \mathbf{C}_{0}, and $\widehat{\psi}_{t}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{0} ; \widehat{\psi}_{t}^{r_{n}}$ converges to $\widehat{\psi}_{t}$, uniformly on each compact subset of $\mathbf{A}_{|t|}$. If $r<t<0$, then $\widehat{\psi}_{t}=\widehat{\psi}_{r} \circ \widehat{\psi}_{t}^{r} ; D_{t} \varsubsetneqq D_{r}$, and $D_{r} \backslash D_{t}=\widehat{\psi}_{r}\left(\widehat{K}_{t}^{r}\right)$.

Let $\widehat{\varphi}_{t}$ on D_{t} be the inverse of $\widehat{\psi}_{t}$. By Lemma 3.14, $\widehat{\varphi}_{t}^{r_{n}}$ converges to $\widehat{\varphi}_{t}$ as $n \rightarrow \infty$, uniformly on each compact subset of D_{t}. Thus from formula (4.3), we have $\left|\widehat{\varphi}_{t}(z)-z\right| \leq 8 e^{t}$, if $12 e^{t} \leq|z|<1$. It follows that $\lim _{t \rightarrow-\infty} \widehat{\varphi}_{t}(z)=z$, for any $z \in \mathbb{D} \backslash\{0\}$. We also have $\widehat{\varphi}_{t}(z)=\widehat{\varphi}_{t}^{-m} \circ \widehat{\varphi}_{-m}(z)$, if $-m \leq t<0$ and $z \in D_{t}$. Let $g_{t}=R_{t} \circ \widehat{\varphi_{t}}$ on D_{t}. Then g_{t} maps D_{t} conformally onto $\mathbf{A}_{|t|}$, takes \mathbf{C}_{0} to $\mathbf{C}_{|t|}$, and

$$
\lim _{t \rightarrow-\infty} e^{t} / g_{t}(z)=\lim _{t \rightarrow-\infty} \widehat{\varphi}_{t}(z)=z, \text { for any } z \in \mathbb{D} \backslash\{0\}
$$

If $-m \leq t$, then $g_{t}(z)=\varphi_{t}^{-m} \circ R_{-m} \circ \widehat{\varphi}_{-m}(z), \forall z \in D_{t}$. By formula (4.2), we have

$$
\partial_{t} g_{t}(z)=g_{t}(z) \mathbf{S}_{|t|}\left(g_{t}(z) / \chi_{t}\right), \quad-m \leq t<0 .
$$

Since we may choose $m \in \mathbb{N}$ arbitrarily, formula (4.1) holds.
Let $F_{t}=\mathbb{D} \backslash D_{t}$. Since D_{t} is a doubly connected subdomain of $\mathbb{D} \backslash\{0\}$ with a boundary component \mathbf{C}_{0}, F_{t} is a hull in \mathbb{D} w.r.t. 0 . If $t_{1}<t_{2}<0$, then $F_{t_{1}} \varsubsetneqq F_{t_{2}}$, as $D_{t_{1}} \supsetneqq D_{t_{2}}$. Fix any $r \in(-\infty, 0)$. For $t \in[r, 0), F_{t} \backslash F_{r}=D_{r} \backslash D_{t}=\widehat{\psi}_{r}\left(\widehat{K}_{t}^{r}\right)$. From Proposition 2.1 and the conformal invariance, $\left(\widehat{\psi}_{r}\left(\widehat{K}_{t}^{r}\right), r \leq t<0\right)$ is a Loewner chain in D_{r} on ∂F_{r}. Thus ($F_{t},-\infty<t<0$) is a Loewner chain in \mathbb{D} w.r.t. 0 .

Suppose $F_{t}^{*},-\infty<t<0$, is a family of hulls in \mathbb{D} on 0 , and $g_{t}^{*},-\infty<t<0$, is a family of maps such that for each t, g_{t}^{*} maps $\mathbb{D} \backslash F_{t}^{*}$ conformally onto $\mathbf{A}_{|t|}$ and formula (4.1) holds with g_{t} replaced by g_{t}^{*}. By the uniqueness of the solution of ODE, we have $g_{t}^{*}=\varphi_{t}^{r} \circ g_{r}^{*}$, if $r \leq t<0$. So $R_{t} \circ g_{t}^{*}=\widehat{\varphi}_{t}^{r} \circ R_{r} \circ g_{r}^{*}$. Now choose $r=r_{n}$ and let $n \rightarrow \infty$. Since $R_{r_{n}} \circ g_{r_{n}}^{*} \rightarrow$ id by formula (4.1) and $\widehat{\varphi}_{t}^{r_{n}} \rightarrow \widehat{\varphi}_{t}$, so $R_{t} \circ g_{t}^{*}=\widehat{\varphi}_{t}$, from which follows that $g_{t}^{*}=R_{t} \circ \widehat{\varphi}_{t}=g_{t}$ and $F_{t}^{*}=F_{t}$.

Proposition 4.2. Suppose $\left(F_{t},-\infty<t<0\right)$ is a Loewner chain in \mathbb{D} w.r.t. 0 such that $M\left(\mathbb{D} \backslash F_{t}\right)=|t|$ for each t. Then there is a continuous $\chi:(-\infty, 0) \rightarrow \mathbf{C}_{0}$ such that $F_{t},-\infty<t<0$, are the standard disc LE hulls driven by $\chi_{t},-\infty<t<0$.

Proof. For each $t<0$, choose φ_{t}^{*} which maps $\mathbb{D} \backslash F_{t}$ conformally onto $\mathbf{A}_{|t|}$ so that $\varphi_{t}^{*}(1)=1$. Let $g_{t}^{*}=R_{t} \circ \varphi_{t}^{*}$, where $R_{t}(z)=e^{t} / z$. Then g_{t}^{*} maps $\mathbb{D} \backslash F_{t}$ conformally onto $\mathbf{A}_{|t|}$ with $g_{t}^{*}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{|t|}$ and $g_{t}^{*}(1)=e^{t}$. For any $r \leq t<0$, let $K_{r, t}^{*}=g_{r}^{*}\left(F_{t} \backslash F_{r}\right)$. Then for fixed $r<0,\left(K_{r, t}^{*}, r \leq t<0\right)$ is a Loewner chain in $\mathbf{A}_{|r|}$ on \mathbf{C}_{0}. Now $g_{t}^{*} \circ\left(g_{r}^{*}\right)^{-1}$ maps $\mathbf{A}_{|r|} \backslash K_{r, t}^{*}$ conformally onto $\mathbf{A}_{|t|}$, and
satisfies $g_{t}^{*} \circ\left(g_{r}^{*}\right)^{-1}\left(e^{r}\right)=e^{t}$. From the proof of Proposition 2.1, there exists some continuous $\chi_{r,-}^{*}:[r, 0) \rightarrow \mathbf{C}_{0}$ such that for $r \leq t<0$,
$\partial_{t} g_{t}^{*} \circ\left(g_{r}^{*}\right)^{-1}(w)=g_{t}^{*} \circ\left(g_{r}^{*}\right)^{-1}(w)\left[\mathbf{S}_{|t|}\left(g_{t}^{*} \circ\left(g_{r}^{*}\right)^{-1}(w) / \chi_{r, t}^{*}\right)-i \operatorname{Im} \mathbf{S}_{|t|}\left(e^{t} / \chi_{r, t}^{*}\right)\right]$.
It then follows that

$$
\partial_{t} g_{t}^{*}(z)=g_{t}^{*}(z)\left[\mathbf{S}_{|t|}\left(g_{t}^{*}(z) / \chi_{r, t}^{*}\right)-i \operatorname{Im} \mathbf{S}_{|t|}\left(e^{t} / \chi_{r, t}^{*}\right)\right], r \leq t<0 .
$$

So $\chi_{r_{1}, t}^{*}=\chi_{r_{2}, t}^{*}$ if $r_{1}, r_{2} \leq t$. We then have a continuous $\chi^{*}:(-\infty, 0) \rightarrow \mathbf{C}_{0}$, such that

$$
\partial_{t} g_{t}^{*}(z)=g_{t}^{*}(z)\left[\mathbf{S}_{|t|}\left(g_{t}^{*}(z) / \chi_{t}^{*}\right)-i \operatorname{Im} \mathbf{S}_{|t|}\left(e^{t} / \chi_{t}^{*}\right)\right], \quad-\infty \leq t<0 .
$$

Consequently,

$$
\partial_{t} \varphi_{t}^{*}(z)=\varphi_{t}^{*}(z)\left[\widehat{\mathbf{S}}_{|t|}\left(\varphi_{t}^{*}(z) / \overline{\chi_{t}^{*}}\right)-i \operatorname{Im} \widehat{\mathbf{S}}_{|t|}\left(\chi_{t}^{*}\right)\right], \quad-\infty \leq t<0 .
$$

Since $\left|\widehat{\mathbf{S}}_{|t|}(z)\right| \leq 8 e^{t}$ when $4 e^{t} \leq|z| \leq 1,\left|\operatorname{Im} \widehat{\mathbf{S}}_{|t|}\left(\chi_{t}^{*}\right)\right|$ decays exponentially as $t \rightarrow-\infty . \operatorname{Let} \theta(t)=\int_{-\infty}^{t} \operatorname{Im} \widehat{\mathbf{S}}_{|s|}\left(\chi_{s}^{*}\right) d s, \varphi_{t}(z)=e^{i \theta(t)} \varphi_{t}^{*}(z)$, and $\chi_{t}=e^{-i \theta(t)} \chi_{t}^{*}$. Then φ_{t} maps $\mathbb{D} \backslash F_{t}$ conformally onto $\mathbf{A}_{|t|}$ with $\varphi_{t}\left(\mathbf{C}_{0}\right)=\mathbf{C}_{0}$, and

$$
\partial_{t} \ln \varphi_{t}(z)=\partial_{t} \ln \varphi_{t}^{*}(z)+i \theta^{\prime}(t)=\widehat{\mathbf{S}}_{|t|}\left(\varphi_{t}^{*} / \overline{\chi_{t}^{*}}\right)=\widehat{\mathbf{S}}_{|t|}\left(\varphi_{t} / \overline{\chi_{t}}\right) .
$$

Thus $\partial_{t} \varphi_{t}(z)=\varphi_{t}(z) \widehat{\mathbf{S}}_{|t|}\left(\varphi_{t}(z) / \overline{\chi_{t}}\right)$. From the estimation of $\widehat{\mathbf{S}}_{|t|}$, we have

$$
\left|\varphi_{t}(z)-\varphi_{r}(z)\right| \leq 8 e^{t}, \text { if } 12 e^{t} \leq\left|\varphi_{r}(z)\right| \leq 1, \text { and } r \leq t<0 .
$$

Since F_{t} contains 0 and $M\left(\mathbb{D} \backslash F_{t}\right)=|t|$, the diameter of F_{t} tends to zero as $t \rightarrow-\infty$. Let $D_{t}=\mathbb{D} \backslash F_{t}$. Then for any sequence $t_{n} \rightarrow-\infty$, we have $D_{t_{n}} \rightarrow \mathbb{D} \backslash\{0\}$. Since $\varphi_{t_{n}}$ is uniformly bounded, there is a subsequence that converges to some function φ on $\mathbb{D} \backslash\{0\}$ uniformly on each compact subset of $\mathbb{D} \backslash\{0\}$. By checking the image of \mathbf{C}_{1} under $\varphi_{t_{n}}$ similarly as in the proof of Proposition 4.1, we see that φ cannot be constant. So by Lemma 3.14, φ maps $\mathbb{D} \backslash\{0\}$ conformally onto some domain D_{0} which is a subsequential limit of $\mathbf{A}_{\left|t_{n}\right|}=\varphi_{t_{n}}\left(D_{t_{n}}\right)$. Since $t_{n} \rightarrow-\infty, D_{0}$ has to be $\mathbb{D} \backslash\{0\}$ and so $\varphi(z)=\chi z$ for some $\chi \in \mathbf{C}_{0}$. Now this χ may depend on the subsequence of $\left\{t_{n}\right\}$. But we always have $\lim _{t \rightarrow-\infty}\left|\varphi_{t}(z)\right|=|z|$ for any $z \in \mathbb{D} \backslash\{0\}$. Now fix $z \in \mathbb{D} \backslash\{0\}$, there is $s(z)<0$ such that when $r \leq t<s(z)$, we have $12 e^{t} \leq\left|\varphi_{r}(z)\right| \leq 1$. Therefore $\left|\varphi_{t}(z)-\varphi_{r}(z)\right| \leq 8 e^{t}$ for $r \leq t<s(z)$. Thus $\lim _{t \rightarrow-\infty} \varphi_{t}(z)$ exists for every $z \in \mathbb{D} \backslash\{0\}$. Since we have a sequence $t_{n} \rightarrow-\infty$ such that $\left\{\varphi_{t_{n}}\right\}$ converges pointwise to $z \mapsto \chi^{*} z$ on $\mathbb{D} \backslash\{0\}$ for some $\chi^{*} \in \mathbf{C}_{0}$, so $\lim _{t \rightarrow-\infty} \varphi_{t}(z)=\chi^{*} z$, for all $z \in \mathbb{D} \backslash\{0\}$. Finally, let $g_{t}(z)=R_{t} \circ \varphi_{t}\left(z / \chi^{*}\right)$. Then g_{t} maps $\mathbb{D} \backslash F_{t}$ conformally onto $\mathbf{A}_{|t|}$, takes \mathbf{C}_{0} to $\mathbf{C}_{|t|}$, and satisfies (4.1).

We still use $B(t)$ to denote a standard Brownian motion on \mathbb{R} started from 0 . Let \mathbf{x} be some uniform random point on \mathbf{C}_{0}, independent of $B(t)$. For $\kappa>0$ and $-\infty<t<0$, write $\chi_{t}^{\kappa}=\mathbf{x} e^{i B(\kappa|t|)}$. The process $\left(\chi^{\kappa}\right)$ is determined by the following properties: for any fixed $r<0,\left(\chi_{t}^{\kappa} / \chi_{r}^{\kappa}, r \leq t<0\right)$ has the same law as $\left(e^{i B(\kappa(t-r))}, r \leq t<0\right)$ and is independent from χ_{r}^{κ}. If F_{t} and $g_{t},-\infty<t<0$, are the standard disc LE hulls and maps, respectively, driven by $\chi_{t}^{\kappa},-\infty<t<0$,
then we call them the standard disc SLE_{κ} hulls and maps, respectively. From the properties of χ_{t}^{κ}, we see that for any fixed $r<0, g_{r}\left(F_{r+t} \backslash F_{r}\right), 0 \leq t<|r|$, is an annulus $\operatorname{SLE}_{\kappa}\left(\mathbf{A}_{|r|} ; \chi_{r}^{\kappa} \rightarrow \mathbf{C}_{|r|}\right)$. The existence of standard annulus $\operatorname{SLE}_{\kappa}$ trace then implies the a.s. existence of standard disc SLE_{κ} trace, which is a curve $\gamma:[-\infty, 0) \rightarrow \mathbb{D}$ such that $\gamma(-\infty)=0$, and for each $t \in(-\infty, 0), F_{t}$ is the hull generated by $\gamma[-\infty, t]$, i.e., the complement of the unbounded component of $\mathbb{C} \backslash \gamma[-\infty, t]$. If $\kappa \leq 4$, the trace is a simple curve; otherwise, it is not simple. Suppose D is a simply connected domain and $a \in D$. Let f map \mathbb{D} conformally onto D so that $f(0)=a$ and $f^{\prime}(0)>0$. Then we define $f\left(F_{t}\right)$ and $f(\gamma(t))$, $-\infty \leq t<0$, to be the disc $\operatorname{SLE}_{\kappa}(D ; a \rightarrow \partial D)$ hulls and trace.

The next theorem is about the equivalence of disc SLE $_{6}$ and full plane SLE $_{6}$. First, let's review the definition of full plane SLE. It was proved in [12] that for any continuous $\chi:(-\infty,+\infty) \rightarrow \mathbf{C}_{0}$, there is a Loewner chain $\left(F_{t},-\infty<t<+\infty\right)$, in \mathbb{C} w.r.t. 0 , and a family of maps $g_{t},-\infty<t<+\infty$, such that for each t, g_{t} maps $\widehat{\mathbb{C}} \backslash F_{t}$ conformally onto \mathbb{D} with $g_{t}(\infty)=0$, and

$$
\begin{cases}\partial_{t} g_{t}(z)=g_{t}(z) \frac{1+g_{t}(z) / \chi_{t}}{1-g_{t}(z) / \chi_{t}}, & -\infty<t<+\infty ; \\ \lim _{t \rightarrow-\infty} e^{t} / g_{t}(z)=z, & \forall z \in \mathbb{C} \backslash\{0\}\end{cases}
$$

Such F_{t} and $g_{t},-\infty<t<+\infty$, are unique, and are called the full plane LE hulls and maps, respectively, driven by $\chi_{t},-\infty<t<+\infty$. The diameter of F_{t} tends to 0 as $t \rightarrow-\infty$; and tends to ∞ as $t \rightarrow+\infty$.

The driving process of full plane SLE_{κ} is an extension of χ_{t}^{κ} to \mathbb{R} defined as follows. Choose another standard Brownian motion $B^{\prime}(t)$ on \mathbb{R} started from 0 , which is independent of $B(t)$ and \mathbf{x}. For $t \geq 0$, let $\chi_{t}^{\kappa}=\mathbf{x} e^{i B^{\prime}(t)}$. Then for any fixed $r \in \mathbb{R}, \chi_{t}^{\kappa} / \chi_{r}^{\kappa}, r \leq t<+\infty$, have the same distribution as $e^{i B(\kappa(t-r))}$, $r \leq t<+\infty$. This implies that for full plane $\operatorname{SLE}_{\kappa}$ hulls $F_{t}, t \in \mathbb{R}$, and any fixed $r \in \mathbb{R},\left(g_{r}\left(F_{r+t} \backslash F_{r}\right)\right)$ has the same law as radial $\operatorname{SLE}_{\kappa}\left(\mathbb{D} ; \chi_{r}^{\kappa} \rightarrow 0\right)$.

Suppose Ω is a simply connected plane domain that contains 0 . Let τ be the first t such that full plane SLE_{κ} hull $F_{t} \not \subset \Omega$. Then as $t \nearrow \tau, F_{t}$ approaches $\partial \Omega$, and $\left(F_{t},-\infty<t<\tau\right)$ is a Loewner chain in Ω w.r.t. 0 . Let $u(t)=-M\left(\Omega \backslash F_{t}\right)$, for $-\infty<t<\tau$. Then u is a continuous increasing function, and maps $(-\infty, \tau)$ onto $(-\infty, 0)$. Let v be the inverse of u, and choose f that maps \mathbb{D} onto Ω with $f(0)=0$ and $f^{\prime}(0)>0$. Then $f^{-1}\left(F_{v(s)}\right),-\infty<s<0$, are the standard disc LE hulls driven by some function. Using the same method in the proof of Theorem 1.1 , we can prove that this driving function has the same law as $\left(\chi_{t}^{6}\right)_{-\infty<t<0}$. So we have

Theorem 4.1. Suppose Ω is a simply connected domain that contains 0 . Let $\left(K_{t},-\infty<t<+\infty\right)$ be full plane SLE 6 hulls, and $\left(L_{s},-\infty<s<0\right)$ be the disc $\operatorname{SLE}_{6}(\Omega ; 0 \rightarrow \partial \Omega)$. Let τ be the first that $K_{t} \not \subset \Omega$. Then up to a time-change, $\left(K_{t},-\infty<t<\tau\right)$ has the same law as $L_{s},-\infty<s<0$.

Corollary 4.1. The distribution of the hitting point of full plane $S L E_{6}$ trace at $\partial \Omega$ is the harmonic measure valued at 0 .

An immediate consequence of this corollary is that the plane SLE $_{6}$ hull stopped at the hitting time of $\partial \Omega$ has the same law as the hull generated by a plane Brownian motion started from 0 and stopped on exiting Ω. See [19] and [9] for details.

Disc SLE $_{2}$ is also interesting. Suppose Ω is a simply connected domain that contains 0 . Let RW be a simple random walk on Ω^{δ} started from 0 , and stopped on hitting $\partial \Omega$. Let LERW be the loop-erasure of RW. Then LERW is a simple lattice path from 0 to $\partial \Omega$. Write LERW as $y=\left(y_{0}, \ldots, y_{v}\right)$ with $y_{0}=0$ and $y_{v} \in \partial \Omega$. We may extend y to be defined on $[0, v]$ so that it is linear on each $[j-1, j]$ for $1 \leq j \leq v$. Then it is clear that $(y(0, s], 0 \leq s<v)$ is a Loewner chain in Ω w.r.t. 0 . Let $T(s)=-M(\Omega \backslash y(0, s])$, for $0<s<v$. Then T is a continuous increasing function, and maps $(0, v)$ onto $(-\infty, 0)$. Let S be the inverse of T. Define $\beta^{\delta}(t)=y(S(t))$, for $-\infty<t<0$, and $\beta^{\delta}(-\infty)=0$. Let $\beta^{0}:[-\infty, 0) \rightarrow \Omega$ be the trace of disc $\operatorname{SLE}_{2}(\Omega ; 0 \rightarrow \partial \Omega)$.

Theorem 4.2. For any $\varepsilon>0$, there is $\delta_{0}>0$ such that for $\delta<\delta_{0}$, we may couple β^{δ} with β^{0} so that

$$
\mathbf{P}\left[\sup \left\{\left|\beta^{\delta}(t)-\beta^{0}(t)\right|:-\infty \leq t<0\right\} \geq \varepsilon\right]<\varepsilon
$$

Proof. Note that Ω^{δ} may not be connected, we replace it by its connected component that contains 0 . Let g_{0} be constant 1 on $V\left(\Omega^{\delta}\right)$. For $0<j<v_{\delta}$, let g_{j} be the g in Lemma 3.4 with $A=V\left(\Omega^{\delta}\right) \cap \partial \Omega, B=\left\{y_{0}, \ldots, y_{j-1}\right\}$, and $x=y_{j}$. Similarly as Proposition 3.2 and 3.3, g_{j} 's are observables for the LERW here, and they approximate the observables for disc SLE_{2}. We may follow the process in proving Theorem 1.2.

Corollary 4.2. Suppose Ω is a simply connected plane domain, and $a \in \Omega$. Let $\beta(s),-\infty<s<0$, be the disc $\operatorname{SLE}_{2}(\Omega ; a \rightarrow \partial \Omega)$ trace. Let $\gamma(t), 0<t<\infty$, be the radial $S L E_{2}(\Omega ; \mathbf{x} \rightarrow 0)$ trace, where \mathbf{x} is a random point on $\partial \Omega$ with harmonic measure at a. Then the reversal of β has the same law as γ, up to a time-change.

Proof. This follows immediately from Theorem 4.2, the approximation of LERW to radial SLE_{2} in [8], and the reversibility property of LERW in [4].

5. Convergence of the observables

This is the last section of this paper. The goal is to prove Proposition 3.3. The proof is sort of long. The main difficulty is that we need the approximation to be uniform in the domains. The tool we can use is Lemma 3.14. However, the limit of a domain sequence in general does not have good boundary conditions, even if every domain in the sequence has. Prime ends and crosscuts are used to describe the boundary correspondence under conformal maps. Some ideas of the proof come from [8].

We will often deal with a function defined on a subset of $\delta \mathbb{Z}^{2}$. Suppose f is such a function. For $v \in \delta \mathbb{Z}^{2}$ and $z \in \mathbb{Z}^{2}$, if $f(v)$ and $f(v+\delta z)$ are defined, then define

$$
\nabla_{z}^{\delta} f(v)=(f(v+\delta z)-f(v)) / \delta
$$

We say that f is δ-harmonic in $\Omega \subset \mathbb{C}$ if f is defined on $\delta \mathbb{Z}^{2} \cap \Omega$ and all $v \in \delta \mathbb{Z}^{2}$ that are adjacent to vertices of $\delta \mathbb{Z}^{2} \cap \Omega$ so that for all $v \in \delta \mathbb{Z}^{2} \cap \Omega$,

$$
f(v+\delta)+f(v-\delta)+f(v+i \delta)+f(v-i \delta)=4 f(v)
$$

The following lemma is well known.
Lemma 5.1. Suppose Ω is a plane domain that has a compact subset K. For $l \in \mathbb{N}$, let $z_{1}, \ldots, z_{l} \in \mathbb{Z}^{2}$. Then there are positive constants δ_{0} and C depending on Ω, K, and z_{1}, \ldots, z_{l}, such that for $\delta<\delta_{0}$, if f is non-negative and δ-harmonic in Ω, then for all $v_{1}, v_{2} \in \delta \mathbb{Z}^{2} \cap K$,

$$
\nabla_{z_{1}}^{\delta} \cdots \nabla_{z_{l}}^{\delta} f\left(v_{1}\right) \leq C f\left(v_{2}\right)
$$

This is also true for $l=0$, which means that $f\left(v_{1}\right) \leq C f\left(v_{2}\right)$.
For $a, b \in \delta \mathbb{Z}$, denote

$$
S_{a, b}^{\delta}:=\{(x, y): a \leq x \leq a+\delta, b \leq y \leq b+\delta\} .
$$

Suppose A is a subset of $\delta \mathbb{Z}^{2}$, let S_{A}^{δ} be the union of all $S_{a, b}^{\delta}$ whose four vertices are in A. If f is defined on A, we may define a continuous function $\mathrm{CE}^{\delta} f$ on S_{A}^{δ}, as follows. For $(x, y) \in S_{a, b}^{\delta} \subset S_{A}^{\delta}$, define

$$
\begin{aligned}
\mathrm{CE}^{\delta} f(x, y)= & (1-s)(1-t) f(a, b)+(1-s) t f(a, b+\delta) \\
& +s(1-t) f(a+\delta, b)+\operatorname{stf}(a+\delta, b+\delta)
\end{aligned}
$$

where $s=(x-a) / \delta$ and $t=(y-b) / \delta$. Then $\mathrm{CE}^{\delta} f$ is well defined on S_{A}^{δ}, and agrees with f on $S_{A}^{\delta} \cap A$. Moreover, on $S_{a, b}^{\delta}, \mathrm{CE}^{\delta} f$ has a Lipschitz constant not bigger than two times the maximum of $\left|\nabla_{(1,0)}^{\delta} f(a, b)\right|,\left|\nabla_{(0,1)}^{\delta} f(a, b)\right|,\left|\nabla_{(1,0)}^{\delta} f(a, b+\delta)\right|$, $\left|\nabla_{(0,1)}^{\delta} f(a+\delta, b)\right|$. And for any $u \in \mathbb{Z}^{2}$,

$$
\mathrm{CE}^{\delta} \nabla_{u}^{\delta} f(z)=\left(\mathrm{CE}^{\delta} f(z+\delta u)-\mathrm{CE}^{\delta} f(z)\right) / \delta
$$

when both sides are defined.
Proof of Proposition 3.3. Suppose the proposition is not true. Then we can find $\varepsilon_{0}>0$, a sequence of lattice paths $w_{n} \in L^{\delta_{n}}$ with $\delta_{n} \rightarrow 0$, and a sequence of points $v_{n} \in V_{2}^{\delta_{n}}$, such that $\left|g_{w_{n}}\left(v_{n}\right)-u_{w_{n}}\left(v_{n}\right)\right|>\varepsilon_{0}$ for all $n \in \mathbb{N}$. For simplicity of notations, we write g_{n} for $g_{w_{n}}, u_{n}$ for $u_{w_{n}}$, and D_{n} for $D_{w_{n}}$. Let p_{n} be the modulus of D_{n}. The remaining of the proof is composed of four steps.

5.1. The limits of domains and functions

By comparison principle of extremal length, we have $p \geq p_{n} \geq M\left(U_{2}\right)>0$. By passing to a subsequence, we may assume that $p_{n} \rightarrow p_{0} \in(0, p]$. Then
$\mathbf{A}_{p_{n}} \rightarrow \mathbf{A}_{p_{0}}$. Let Q_{n} map D_{n} conformally onto $\mathbf{A}_{p_{n}}$ so that $Q_{n}(z) \rightarrow 1$ as $z \in D_{n}$ and $z \rightarrow P\left(w_{n}\right)$. Then $u_{n}=\operatorname{Re} \mathbf{S}_{p_{n}} \circ Q_{n}$. Now Q_{n}^{-1} maps $\mathbf{A}_{p_{n}}$ conformally onto $D_{n} \subset D$. Thus $\left\{Q_{n}^{-1}\right\}$ is a normal family. By passing to a subsequence, we may assume that Q_{n}^{-1} converges to some function J uniformly on each compact subset of $\mathbf{A}_{p_{0}}$. Using some argument similar to that in the proof of Theorem 1.2, we conclude that J maps $\mathbf{A}_{p_{0}}$ conformally onto some domain D_{0}, and $D_{n} \rightarrow D_{0}$. Let $Q_{0}=J^{-1}$ and $u_{0}=\operatorname{Re} \mathbf{S}_{p_{0}} \circ Q_{0}$. Then Q_{n} and u_{n} converge to Q_{0} and u_{0}, respectively, uniformly on each compact subset of D_{0}. Moreover, we have $U_{2} \cup \alpha_{2} \subset D_{0} \subset D$. Thus B_{2} is one boundary component of D_{0}. Let B_{1}^{n} and B_{1}^{0} denote the boundary component of D_{n} and D_{0}, respectively, other than B_{2}.

Let $\left\{K_{m}\right\}$ be a sequence of compact subsets of D_{0} such that $D_{0}=\cup_{m} K_{m}$, and for each m, K_{m} disconnects B_{1}^{0} from B_{2} and $K_{m} \subset$ int K_{m+1}. Let $K_{m}^{n}=K_{m} \cap \delta_{n} \mathbb{Z}^{2}$. Now fix m. If n is big enough depending on m, we can have the following properties. First, $K_{m} \subset D_{n}$ and $K_{m}^{n} \subset V\left(D^{\delta_{n}}\right)$, so g_{n} is δ_{n}-harmonic on K_{m}. Second, K_{m}^{n} disconnects all lattice paths on $D^{\delta_{n}}$ from B_{2} to B_{1}^{n}. Now let RW_{v}^{n} be a simple random walk on $D^{\delta_{n}}$ started from $v \in V\left(D^{\delta_{n}}\right)$, and τ_{m}^{n} the hitting time of RW_{v}^{n} at $B_{2} \cup K_{m}^{n}$. By the properties of g_{n}, if v is in D and between K_{m} and B_{2}, then $\left(g_{n}\left(\operatorname{RW}_{v}^{n}(j)\right), 0 \leq j \leq \tau_{n}^{m}\right)$ is a martingale, so $g_{n}(v)=\mathbf{E}\left[g_{n}\left(\mathrm{RW}_{n}^{v}\left(\tau_{n}^{m}\right)\right)\right]$. Now suppose $g_{n}(v)>1$ for all $v \in K_{n}^{m}$. Choose $v_{0} \in V\left(D^{\delta_{n}}\right) \cap D$ that is adjacent to some vertex of $F^{\delta_{n}}=V\left(D^{\delta_{n}}\right) \cap B_{2}$. Then $g_{n}\left(v_{0}\right)=\mathbf{E}\left[g_{n}\left(\mathrm{RW}_{n}^{v_{0}}\left(\tau_{n}^{m}\right)\right)\right] \geq 1$. The equality holds iff there is no lattice path on $D^{\delta_{n}}$ from v_{0} to K_{m}^{n}. By the definition of $D^{\delta_{n}}$, we know that the equality can not always hold. It follows that $\sum_{u \in F^{\delta_{n}}} \Delta_{D^{\delta_{n}}} g_{n}(u)>0$, which contradicts the definition of g_{n}. Thus there is $v \in K_{m}^{n}$ such that $g_{n}(v) \leq 1$. Note that g_{n} is non-negative. By Lemma 5.1, if n is big enough depending on m, then g_{n} on K_{m}^{n} is uniformly bounded in n. Similarly for any $z_{1}, \ldots, z_{l} \in \mathbb{Z}^{2}$, $\nabla_{z_{1}}^{\delta_{n}} \cdots \nabla_{z_{l}}^{\delta_{n}} g_{n}$ on K_{m}^{n} is uniformly bounded in n, if n is big enough depending on m, and $z_{1}, \ldots, z_{l} \in \mathbb{Z}^{2}$.

We just proved that for a fixed m, if n is big enough depending on m, then g_{n} on K_{m+1}^{n} is δ_{n}-harmonic and uniformly bounded in n. We may also choose n big such that every lattice square of $\delta_{n} \mathbb{Z}^{2}$ that intersects K_{m} is contained in K_{m+1}, and so $\mathrm{CE}^{\delta_{n}} g_{n}$ on K_{m} is well defined, and is uniformly bounded in n. Using the boundedness of $\nabla_{u}^{\delta_{n}} g_{n}$ on K_{m+1}^{n} for $u \in\{1, i\}$, we conclude that $\left\{\mathrm{CE}^{\delta_{n}} g_{n}\right\}$ on K_{m} is uniformly continuous. By Arzela-Ascoli Theorem, there is a subsequence of $\left\{\mathrm{CE}^{\delta_{n}} g_{n}\right\}$, which converges uniformly on K_{m}. By passing to a subsequence, we may assume that $\mathrm{CE}^{\delta_{n}} g_{n}$ converges uniformly on each K_{m}. Let g_{0} on D_{0} be the limit function. Similarly, for any $z_{1}, \ldots, z_{l} \in \mathbb{Z}^{2}$, there is a subsequence of $\left\{\mathrm{CE}^{\delta_{n}} \nabla_{z_{1}}^{\delta_{n}} \cdots \nabla_{z_{l}}^{\delta_{n}} g_{n}\right\}$ which converges uniformly on each K_{m}. By passing to a subsequence again, we may assume that for any $z_{1}, \ldots, z_{l} \in \mathbb{Z}^{2}, \mathrm{CE}^{\delta_{n}} \nabla_{z_{1}}^{\delta_{n}} \ldots \nabla_{z_{l}}^{\delta_{n}} g_{n}$ converges to $g_{0}^{z_{1}, \ldots, z_{l}}$ on D_{0}, uniformly on each K_{m}. It is easy to check that

$$
g_{0}^{z_{1}, \ldots, z_{l}}=\left(a_{1} \partial_{x}+b_{1} \partial_{y}\right) \cdots\left(a_{l} \partial_{x}+b_{l} \partial_{y}\right) g_{0}
$$

if $z_{j}=\left(a_{j}, b_{j}\right), 1 \leq j \leq l$. Since g_{n} is δ_{n}-harmonic on K_{m} for n big enough, we have $\left(\nabla_{1}^{\delta_{n}} \nabla_{-1}^{\delta_{n}}+\nabla_{i}^{\delta_{n}} \nabla_{-i}^{\delta_{n}}\right) g_{n} \equiv 0$ on K_{m}^{n}. Thus $\left(\partial_{x}^{2}+\partial_{y}^{2}\right) g_{0}=0$, which means that g_{0} is harmonic.

Now suppose $x_{n} \in V\left(D^{\delta_{n}}\right) \cap D \rightarrow B_{2}$ in the spherical metric. Since the spherical distance between K_{1} and B_{2} is positive, the probability that a simple random walk on $D^{\delta_{n}}$ started from x_{n} hits K_{1} before B_{2} tends to zero by Lemma 3.7. If n is big enough, K_{1} is a subset of D_{n} and disconnects B_{2} from B_{1}^{n}. We have proved that g_{n} is uniformly bounded on $\delta_{n} \mathbb{Z}^{2} \cap K_{1}$, if n is big enough. And by definition $g_{n} \equiv 1$ on $V\left(D^{\delta_{n}}\right) \cap B_{2}$. By Markov property, we have $g_{n}\left(x_{n}\right) \rightarrow 1$. Since g_{0} is the limit of $\mathrm{CE}^{\delta_{n}} g_{n}$, this implies that $g_{0}(z) \rightarrow 1$ as $z \in D_{0}$ and $z \rightarrow B_{2}$ in the spherical metric. Thus $g_{0} \circ J(z) \rightarrow 1$ as $z \in \mathbf{A}_{p_{0}}$ and $z \rightarrow \mathbf{C}_{p_{0}}$.

Now let us consider the behavior of u_{n} and u_{0} near B_{2}. If $z \in D_{n}$ and $z \rightarrow B_{2}$ in the spherical metric, then $Q_{n}(z) \rightarrow \mathbf{C}_{p_{n}}$, and so $u_{n}(z)=\operatorname{Re} \mathbf{S}_{p_{n}} \circ Q_{n}(z) \rightarrow 1$. Using a plane Brownian motion instead of a simple random walk in the above argument, we conclude that $u_{n}(z) \rightarrow 1$ as $z \in D_{n}$ and $z \rightarrow B_{2}$ in the spherical metric, uniformly in n.

Suppose $\left\{v_{n}\right\}$, chosen at the beginning of this proof, has a subsequence that tends to B_{2} in the spherical metric. By passing to a subsequence, we may assume that $v_{n} \rightarrow B_{2}$ in the spherical metric. From the result of the last two paragraphs, we see that $g_{n}\left(v_{n}\right) \rightarrow 1$ and $u_{n}\left(v_{n}\right) \rightarrow 1$. This contradicts the hypothesis that $\left|g_{n}\left(v_{n}\right)-u_{n}\left(v_{n}\right)\right| \geq \varepsilon_{0}$. Thus $\left\{v_{n}\right\}$ has a positive spherical distance from B_{2}. Since the domain bounded by α_{1} and α_{2} disconnects U_{2} from B_{1}^{0}, and $\left\{v_{n}\right\} \subset U_{2}$, so $\left\{v_{n}\right\}$ has a positive spherical distance from B_{1} too. Thus $\left\{v_{n}\right\}$ has a subsequence that converges to some $z_{0} \in D_{0}$. Again we may assume that $v_{n} \rightarrow z_{0}$. Then $u_{0}\left(z_{0}\right)=\lim u_{n}\left(v_{n}\right)$ and $g_{0}\left(z_{0}\right)=\lim g_{n}\left(v_{n}\right)$, and so $\left|u_{0}\left(z_{0}\right)-g_{0}\left(z_{0}\right)\right| \geq \varepsilon_{0}$. We will get a contradiction by proving that $g_{0} \equiv u_{0}$ in D_{0}.

Note that g_{0} is non-negative, since each g_{n} is non-negative. We can find a Jordan curve β in D_{0} which satisfies the following properties. It disconnects B_{2} from B_{1}^{0}; it is the union of finite line segments which are parallel to either x or y axis; and it does not intersect $\cup_{n} \delta_{n} \mathbb{Z}^{2}$. By Remark 2 in Section 3 and the uniform convergence of $\nabla_{1}^{\delta_{n}} g_{n}$ to $\partial_{x} g_{0}$, and $\nabla_{i}^{\delta_{n}} g_{n}$ to $\partial_{y} g_{0}$ on some neighborhood of β, we have $\int_{\beta} \partial_{\mathbf{n}} g_{0} d s=0$, where \mathbf{n} is the unit norm vector on β pointed towards B_{1}. Thus g_{0} has a harmonic conjugate, and so does $g_{0} \circ J$. We will prove $g_{0} \circ J=\operatorname{Re} \mathbf{S}_{p_{0}}$, from which follows that $g_{0}=u_{0}$. We have proved that $g_{0} \circ J(z) \rightarrow 1$ as $\mathbf{A}_{p_{0}} \ni z \rightarrow \mathbf{C}_{p_{0}}$. It suffices to show that $g_{0} \circ J(z) \rightarrow 0$ as $\mathbf{A}_{p_{0}} \backslash U \ni z \rightarrow \mathbf{C}_{0}$ for any neighborhood U of 1 .

5.2. The existence of some sequences of crosscuts

For a doubly connected domain Ω and one of its boundary component X, we say that γ is a crosscut in Ω on X if γ is an open simple curve in D whose two ends approach two points (need not be distinct) of X in Euclidean distance. For such $\gamma, \Omega \backslash \gamma$ has two connected components, one is a simply connected domain, and the other is a doubly connected domain. Let $U(\gamma)$ denote the simply connected component of $D \backslash \gamma$. Then $\partial U(\gamma)$ is the union of γ and a subset of X.

Now Q_{0} maps D_{0} conformally onto $\mathbf{A}_{p_{0}}$, and $Q_{0}\left(B_{1}^{0}\right)=\mathbf{C}_{0}$. Similarly as Theorem 2.15 in [13], we can find a sequence of crosscuts $\left\{\gamma^{k}\right\}$ in D_{0} on B_{1}^{0} which satisfies
(i) for each $k, \overline{\gamma^{k+1}} \cap \overline{\gamma^{k}}=\emptyset$ and $U\left(\gamma^{k+1}\right) \subset U\left(\gamma^{k}\right)$;
(ii) $Q_{0}\left(\gamma^{k}\right), k \in \mathbb{N}$, are mutually disjoint crosscuts in $\mathbf{A}_{p_{0}}$ on \mathbf{C}_{0}; and
(iii) $U\left(Q_{0}\left(\gamma^{k}\right)\right), k \in \mathbb{N}$, forms a neighborhood basis of 1 in $\mathbf{A}_{p_{0}}$.

Note that $U\left(Q_{0}\left(\gamma^{k}\right)\right)=Q_{0}\left(U\left(\gamma^{k}\right)\right)$, so $U\left(Q_{0}\left(\gamma^{k+1}\right)\right) \subset U\left(Q_{0}\left(\gamma^{k}\right)\right)$, for all $k \in \mathbb{N}$. We will prove that there is some crosscut γ_{n}^{k} in each D_{n} on B_{1}^{n} such that γ_{n}^{k} and $Q_{n}\left(\gamma_{n}^{k}\right)$ converge to γ^{k} and $Q_{0}\left(\gamma^{k}\right)$, respectively, in the sense that we will specify.

Now fix $k \in \mathbb{N}$ and $\varepsilon>0$. Parameterize $\overline{\gamma^{k}}$ and $\overline{Q_{0}\left(\gamma^{k}\right)}$ as the image of the function $a:[0,1] \rightarrow D \cup B_{1}^{0}$ and $b:[0,1] \rightarrow \mathbf{A}_{p_{0}} \cup \mathbf{C}_{0}$, respectively, so that $b(t)=Q_{0}(a(t))$, for $t \in(0,1)$. We may choose $s_{1} \in(0,1 / 2)$ such that the diameters of $a\left[0, s_{1}\right]$ and $a\left[1-s_{1}, 1\right]$ are both less than $\varepsilon / 3$. There is $r_{1} \in$ $(0, \varepsilon) \cap\left(0,\left(1-e^{-p_{0}}\right) / 2\right)$ such that the curve $b\left[s_{1}, 1-s_{1}\right]$ and the balls $\overline{\mathbf{B}\left(b(0) ; r_{1}\right)}$ and $\overline{\mathbf{B}\left(b(1) ; r_{1}\right)}$ are mutually disjoint. Suppose γ^{k} is contained in $\mathbf{B}(0 ; M)$ for some $M>\varepsilon$. There is $C_{M}>0$ such that the spherical distance between any $z_{1}, z_{2} \in \mathbf{B}(0 ; 2 M)$ is at least $C_{M}\left|z_{1}-z_{2}\right|$. So for every smooth curve γ in $\mathbf{B}(0 ; 2 M)$, we have $L^{\#}(\gamma) \geq C_{M} L(\gamma)$, where L and $L^{\#}$ denote the Euclidean length and spherical length, respectively. Let $r_{2}=r_{1} \exp \left(-72 \pi^{2} /\left(C_{M}^{2} \varepsilon^{2}\right)\right)$. Then we may choose $s_{2} \in\left(0, s_{1}\right)$ such that $b\left[0, s_{2}\right] \subset \mathbf{B}\left(b(0) ; r_{2}\right)$ and $b\left[1-s_{2}, 1\right] \subset \mathbf{B}\left(b(1) ; r_{2}\right)$.

For $j=0,1$, let Γ_{j} be the set of crosscuts γ in $\mathbf{A}_{p_{0}}$ on \mathbf{C}_{0} such that

$$
\mathbf{B}\left(b(j) ; r_{2}\right) \cap \mathbb{D} \subset U(\gamma) \subset \mathbf{B}\left(b(j) ; r_{1}\right) .
$$

Then the extremal length of Γ_{j} is less than

$$
2 \pi /\left(\ln r_{1}-\ln r_{2}\right)=C_{M}^{2} \varepsilon^{2} /(36 \pi)
$$

If n is big enough, then $\mathbf{B}\left(b(j) ; r_{1}\right) \cap \mathbb{D} \subset \mathbf{A}_{p_{n}}$, so all $\gamma \in \Gamma_{j}$ are in $\mathbf{A}_{p_{n}}$. Then the extremal length of $Q_{n}^{-1}\left(\Gamma_{j}\right)$ is also less than $C_{M}^{2} \varepsilon^{2} /(36 \pi)$. Since the spherical area of $Q_{n}^{-1}\left(\mathbf{A}_{p_{n}}\right)$ is not bigger than that of \mathbb{C}, which is 4π, there is some $\beta_{n, j}$ in $Q_{n}^{-1}\left(\Gamma_{j}\right)$ of spherical length less than $C_{M} \varepsilon / 3$. Since

$$
J\left(b\left[s_{2}, 1-s_{2}\right]\right)=a\left[s_{2}, 1-s_{2}\right] \subset \gamma^{k} \subset \mathbf{B}(0 ; M),
$$

and Q_{n}^{-1} converges to J uniformly on $b\left[s_{2}, 1-s_{2}\right]$, so if n is big enough, then $Q_{n}^{-1}\left(b\left[s_{2}, 1-s_{2}\right]\right) \subset \mathbf{B}(0 ; 1.5 M)$. Every curve in Γ_{j} intersects $b\left[s_{2}, 1-s_{2}\right]$, so $\beta_{n, j} \in Q_{n}^{-1}\left(\Gamma_{j}\right)$ intersects $Q_{n}^{-1}\left(b\left[s_{2}, 1-s_{2}\right]\right) \subset \mathbf{B}(0 ; 1.5 M)$. If $\beta_{n, j} \not \subset$ $\mathbf{B}(0 ; 2 M)$, then there is a subarc γ of $\beta_{n, j}$ that is contained in $\mathbf{B}(0 ; 2 M)$ and connects $\partial \mathbf{B}(0 ; 1.5 M)$ with $\partial \mathbf{B}(0 ; 2 M)$. So $L^{\#}(\gamma) \geq C_{M} L(\gamma) \geq C_{M} M / 2$. This is impossible since $L^{\#}(\gamma) \leq L^{\#}\left(\beta_{n, j}\right) \leq C_{M} \varepsilon / 3<C_{M} M / 2$. Thus $\beta_{n, j} \subset \mathbf{B}(0 ; 2 M)$, and so $L\left(\beta_{n, j}\right) \leq L^{\#}\left(\beta_{n, j}\right) / C_{M}<\varepsilon / 3$. Since $\beta_{n, j}$ has finite length, it is a crosscut in D_{n} on B_{1}^{n}. Let $s_{n, 0}$ be the biggest s such that $Q_{n}^{-1}(b(s)) \in \beta_{n, 0}$, and $s_{n, 1}$ the biggest s such that $Q_{n}^{-1}(b(1-s)) \in \beta_{n, 1}$. Then $s_{n, 0}, s_{n, 1} \in\left[s_{2}, s_{1}\right]$. Let $\beta_{n, 0}^{\prime}$ and $\beta_{n, 1}^{\prime}$ denote any one component of $\beta_{n, 0} \backslash\left\{Q_{n}^{-1}\left(b\left(s_{n, 0}\right)\right)\right\}$ and $\beta_{n, 1} \backslash\left\{Q_{n}^{-1}\left(b\left(1-s_{n, 1}\right)\right)\right\}$, respectively. Let

$$
\gamma_{n}^{k}:=Q_{n}^{-1}\left(b\left[s_{n, 0}, 1-s_{n, 1}\right]\right) \cup \beta_{n, 0}^{\prime} \cup \beta_{n, 1}^{\prime} .
$$

Then γ_{n}^{k} is a crosscut in D_{n} on B_{1}^{n}. As $r_{1}<\varepsilon$, the symmetric difference between $Q_{n}\left(\gamma_{n}^{k}\right)$ and $Q_{0}\left(\gamma^{k}\right)$ is contained in $\mathbf{B}(b(0) ; \varepsilon) \cup \mathbf{B}(b(1) ; \varepsilon)$. Since $b\left[s_{n, 0}, 1-s_{n, 1}\right]$ is contained in $b\left[s_{2}, 1-s_{2}\right]$, which is a compact subset of D_{0}, so if n is big enough, then the Hausdorff distance between $Q_{n}^{-1}\left(b\left[s_{n, 0}, 1-s_{n, 1}\right]\right)$ and $a\left[s_{n, 0}, 1-s_{n, 1}\right]$ is less than $\varepsilon / 3$. Now the Hausdorff distance between $Q_{n}^{-1}\left(b\left[s_{n, 0}, 1-s_{n, 1}\right]\right)$ and γ_{n}^{k} is not bigger than the bigger diameter of $\beta_{n, 0}^{\prime}$ and $\beta_{n, 1}^{\prime}$, which is less than $\varepsilon / 3$. And the Hausdorff distance between $a\left[s_{n, 0}, 1-s_{n, 1}\right]$ and γ^{k} is not bigger than the bigger diameter of $a\left[0, s_{n, 0}\right]$ and $a\left[1-s_{n, 1}, 1\right]$, which is also less than $\varepsilon / 3$. So the Hausdorff distance between γ_{n}^{k} and γ^{k} is less than ε. Now we proved that we can choose crosscuts γ_{n}^{k} in D_{n} on B_{1}^{n} such that γ_{n}^{k} converges to γ^{k}, and the symmetric difference of $Q_{n}\left(\gamma_{n}^{k}\right)$ and $Q_{0}\left(\gamma^{k}\right)$ converges to the two end points of $Q_{0}\left(\gamma^{k}\right)$, respectively, both in the Hausdorff distance, as n tends to infinity.

5.3. Constructing hooks that hold the boundary

Now fix $k \geq 2$. We still parameterize $\overline{\gamma^{k}}$ and $\overline{Q_{0}\left(\gamma^{k}\right)}$ as the image of the function $a:[0,1] \rightarrow D \cup B_{1}^{0}$ and $b:[0,1] \rightarrow \mathbf{A}_{p_{0}} \cup \mathbf{C}_{0}$, respectively, such that $b(t)=Q_{0}(a(t))$, for $t \in(0,1)$. Let Ω^{k} denote the domain bounded by $Q_{0}\left(\gamma^{k-1}\right)$ and $Q_{0}\left(\gamma^{k+1}\right)$ in $\mathbf{A}_{p_{0}}$. Then $\partial \Omega^{k}$ is composed of $Q_{0}\left(\gamma^{k-1}\right), Q_{0}\left(\gamma^{k+1}\right)$, and two arcs on \mathbf{C}_{0}. Let ρ_{0}^{k} and ρ_{1}^{k} denote these two arcs such that $b(j) \in \rho_{j}^{k}, j=0,1$. If n is big enough, from the convergence of $Q_{n}\left(\gamma_{n}^{k \pm 1}\right)$ to $Q_{0}\left(\gamma^{k \pm 1}\right)$, we have $\overline{Q_{n}\left(\gamma_{n}^{k-1}\right)} \cap \overline{Q_{n}\left(\gamma_{n}^{k+1}\right)}=\emptyset$, and $U\left(Q_{n}\left(\gamma_{n}^{k+1}\right)\right) \subset U\left(Q_{n}\left(\gamma_{n}^{k-1}\right)\right)$. Let Ω_{n}^{k} denote the domain bounded by $Q_{n}\left(\gamma_{n}^{k-1}\right)$ and $Q_{n}\left(\gamma_{n}^{k+1}\right)$ in $\mathbf{A}_{p_{n}}$. Then the boundary of Ω_{n}^{k} is composed of $Q_{n}\left(\gamma_{n}^{k-1}\right), Q_{0}\left(\gamma_{n}^{k+1}\right)$, and two disjoint arcs on \mathbf{C}_{0}. If n is big enough, then each of these two arcs contains one of $b(0)$ and $b(1)$. Let $\rho_{n, 0}^{k}$ and $\rho_{n, 1}^{k}$ denote these two arcs so that $b(j) \in \rho_{n, j}^{k}, j=0,1$. Now suppose $c:(-1,+1) \rightarrow \Omega^{k}$ is a crosscut in Ω^{k} with $c(\pm 1) \in Q_{0}\left(\gamma^{k \pm 1}\right)$. Then $c(-1,+1)$ divides Ω^{k} into two parts: Ω_{0}^{k} and Ω_{1}^{k}, so that $\rho_{j}^{k} \subset \partial \Omega_{j}^{k}, j=0$, 1 . If n is big enough, then $c(\pm 1) \in Q_{n}\left(\gamma_{n}^{k \pm 1}\right)$, and $c(-1,+1) \subset \Omega_{n}^{k}$. Thus $c(-1,+1)$ also divides Ω_{n}^{k} into two parts: $\Omega_{n, 0}^{k}$ and $\Omega_{n, 1}^{k}$, so that $\rho_{n, j}^{k} \subset \partial \Omega_{n, j}^{k}$. Let $\lambda_{j}\left(\lambda_{n, j}\right.$, resp.) be the extremal distance between $Q_{0}\left(\gamma^{k-1}\right)\left(Q_{n}\left(\gamma_{n}^{k-1}\right)\right.$, resp. $)$ and $Q_{0}\left(\gamma^{k+1}\right)\left(Q_{n}\left(\gamma_{n}^{k+1}\right)\right.$, resp. $)$ in $\Omega_{j}^{k}\left(\Omega_{n, j}^{k}\right.$, resp. $)$, $j=0$, 1 . It is clear that $\lambda_{n, j} \rightarrow \lambda_{j}$ as $n \rightarrow \infty$, and $\lambda_{j}<\infty$. Thus $\left\{\lambda_{n, j}\right\}$ is bounded by some $I_{k}>0$.

Since $\overline{\gamma^{k}} \cap \overline{\gamma^{k \pm 1}}=\emptyset$ and $\gamma_{n}^{k \pm 1}$ converges to $\gamma^{k \pm 1}$ in the Hausdorff distance, there is $d_{k}>0$ such that the distance between γ^{k} and $\gamma_{n}^{k \pm 1}$ is greater than d_{k}, if n is big enough. For $x \in D_{0}$ and $r>0$, let $\widetilde{\mathbf{B}}_{0}(x ; r)$ and $\widetilde{\mathbf{B}}_{n}(x ; r)$ denote the connected component of $\mathbf{B}(x ; r) \cap D_{0}$ and $\mathbf{B}(x ; r) \cap D_{n}$, respectively, that contains x. Since $D_{n} \rightarrow D_{0}$, it is easy to prove that $\widetilde{\mathbf{B}}_{n}(x ; r) \rightarrow \widetilde{\mathbf{B}}_{0}(x ; r)$. Let $e_{k}=d_{k} \exp \left(-2 \pi I_{k}\right)$. Suppose $s_{0} \in(0,1)$ is such that the diameter of $a\left(0, s_{0}\right)$ is less than e_{k}. By the construction of γ_{n}^{k}, we have $\Omega_{n}^{k} \rightarrow \Omega^{k}$, so $Q_{n}^{-1}\left(\Omega_{n}^{k}\right) \rightarrow Q_{0}^{-1}\left(\Omega^{k}\right)$. Now $a\left(s_{0}\right) \in \gamma^{k} \subset Q_{0}^{-1}\left(\Omega^{k}\right)$. Hence $a\left(s_{0}\right) \in Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$ if n is big enough. Since the distance from $a\left(s_{0}\right)$ to $\gamma_{n}^{k \pm 1}$ is bigger than $d_{k}>e_{k}, \widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)$ is contained in $Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$. We claim that $\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right) \subset Q_{n}^{-1}\left(\Omega_{n, 0}^{k}\right)$, if n is big enough.

Since $a(0) \in \partial Q_{0}^{-1}\left(\Omega^{k}\right),\left|a(0)-a\left(s_{0}\right)\right|<e_{k}$, and $Q_{n}^{-1}\left(\Omega_{n}^{k}\right) \rightarrow Q_{0}^{-1}\left(\Omega^{k}\right)$, so the distance from $a\left(s_{0}\right)$ to $\left.\partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)\right)$ is less than e_{k}, if n is big enough. Now choose $z_{n} \in \partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$ that is the nearest to $a\left(s_{0}\right)$. Then the line segment $\left[a\left(s_{0}\right), z_{n}\right) \subset \widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)$. Hence $Q_{n}\left[a\left(s_{0}\right), z_{n}\right)$ is a simple curve in Ω_{n}^{k} such that $Q_{n}(z)$ tends to some $z_{n}^{\prime} \in \partial \Omega_{n}^{k}$, as $z \in\left[a\left(s_{0}\right), z_{n}\right)$ and $z \rightarrow z_{n}$. Since $z_{n} \notin \gamma_{n}^{k \pm 1}, z_{n}^{\prime} \notin Q_{n}\left(\gamma_{n}^{k \pm 1}\right)$. Thus z_{n}^{\prime} is on $\rho_{n, j}^{k}$ for some $j \in\{0,1\}$. Since $Q_{n}\left(\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)\right) \rightarrow Q_{0}\left(\widetilde{\mathbf{B}}_{0}\left(a\left(s_{0}\right) ; e_{k}\right)\right) \ni b\left(s_{0}\right)$, and $b\left(s_{0}\right) \in \Omega_{n, 0}^{k}$, so if n is big enough, $Q_{n}\left(\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)\right)$ intersects $\Omega_{n, 0}^{k}$. For such n, if $z_{n}^{\prime} \in \rho_{n, 1}^{k}$, then all curves in $Q_{n}^{-1}\left(\Omega_{n, 0}^{k}\right)$ that go from γ_{n}^{k-1} to γ_{n}^{k-1} will pass $\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)$. And so they all cross some annulus centered at $a\left(s_{0}\right)$ with inner radius e_{k} and outer radius greater than d_{k}. So the extremal distance between γ_{n}^{k-1} and γ_{n}^{k+1} in $Q_{n}^{-1}\left(\Omega_{n, j}^{k}\right)$ is greater than $\left(\ln d_{k}-\ln e_{k}\right) /(2 \pi)=I_{k}$. However, by conformal invariance, this extremal distance is equal to $\lambda_{n, j}$, which is not bigger than I_{k} if n is big enough. Thus $z_{n}^{\prime} \in \rho_{n, 0}^{k}$ for n big enough. Similarly, $z_{n}^{\prime} \in \rho_{n, 0}^{k}$ and $Q_{n}\left(\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)\right) \cap \overline{\Omega_{n, 1}^{k} \neq \emptyset}$ can not happen at the same time when n is big enough. So if n is big enough, $Q_{n}\left(\widetilde{\mathbf{B}}_{n}\left(a\left(s_{0}\right) ; e_{k}\right)\right)$ is contained in $\Omega_{n, 0}^{k}$. Similarly, we let $s_{1} \in\left(s_{0}, 1\right)$ be such that the diameter of $a\left(s_{1}, 1\right)$ is less than e_{k}, then $Q_{n}\left(\widetilde{\mathbf{B}}_{n}\left(a\left(s_{1}\right) ; e_{k}\right)\right) \subset \Omega_{n, 1}^{k}$, if n is big enough.

For $j=0,1, a\left(s_{j}\right)$ and $a(j)$ determine a square of side length $l_{j}=\mid a(j)-$ $a\left(s_{j}\right) \mid$ with vertices $v_{0, j}:=a\left(s_{j}\right), v_{2, j}, v_{1, j}$, and $v_{3, j}$, in the clockwise order, so that $a(j)$ is on one middle line $\left[\left(v_{0, j}+v_{3, j}\right) / 2,\left(v_{1, j}+v_{2, j}\right) / 2\right]$. This square is contained in $\overline{\mathbf{B}\left(a\left(s_{j}\right) ; \sqrt{2} l_{j}\right)} \subset \mathbf{B}\left(a\left(s_{j}\right) ; 0.8 e_{k}\right)$, since $l_{j}<e_{k} / 2$. And the union of line segments $\left[v_{0, j}, v_{1, j}\right],\left[v_{1, j}, v_{2, j}\right]$ and $\left[v_{2, j}, v_{3, j}\right]$ surrounds $\mathbf{B}\left(a(j) ; l_{j} / 8\right)$.

For $j=0,1$, let N_{j} be the $l_{j} / 20$-neighborhood of $\left[v_{0, j}, v_{1, j}\right] \cup\left[v_{1, j}, v_{2, j}\right] \cup$ $\left[v_{2, j}, v_{3, j}\right]$. Then $N_{j} \subset \mathbf{B}\left(a\left(s_{j}\right) ; e_{k}\right)$. Choose $q_{j} \in\left(0, l_{j} / 30\right)$ such that $\overline{\mathbf{B}\left(a\left(s_{j}\right) ; q_{j}\right)}$ $\subset Q_{0}^{-1}\left(\Omega^{k}\right)$. For $m=0,1,2,3$, let $W_{m, j}=\overline{\mathbf{B}\left(v_{m, j} ; q_{j}\right)}$. When n is big enough, $W_{0, j} \subset Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$, and $\mathbf{B}\left(a(j) ; l_{j} / 30\right)$ intersects $\partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$. Suppose β_{j} is a curve in N_{j} which starts from $W_{0, j}$, and reaches $W_{1, j}, W_{2, j}$ and $W_{3, j}$ in the order. Then β_{j} disconnects a subset of $\partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$ from ∞, if n is big enough. Since $Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$ is a simply connected domain, β_{j} hits $\partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$. Let β_{j}^{n} be the part of β_{j} before hitting $\partial Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$. Then $\beta_{j}^{n} \subset \widetilde{\mathbf{B}}_{n}\left(a\left(s_{j}\right) ; e_{k}\right) \subset Q_{n}^{-1}\left(\Omega_{n, j}^{k}\right)$, if n is big enough. So $Q_{n}\left(\beta_{j}^{n}\right)$ is a curve in $\Omega_{n, j}^{k}$ that tends to some point of $\partial \Omega_{n, j}^{k}$ at one end. This point is not on $Q_{n}\left(\gamma_{n}^{k \pm 1}\right)$, because the distance between γ^{k} and γ_{n}^{k+1} is greater than e_{k}. Hence $\overline{Q_{n}\left(\beta_{j}^{n}\right)}$ intersects $\rho_{n, j}^{k}$.

Suppose I is a closed ball in $Q_{0}^{-1}\left(\Omega^{k}\right)$. For $j=0,1$, let Π_{j} be a subdomain of $Q_{0}^{-1}\left(\Omega^{k}\right)$ that contains $I \cup W_{0, j}$ such that $\overline{\Pi_{j}}$ is a compact subset of $Q_{0}^{-1}\left(\Omega^{k}\right)$. Then Π_{j} is contained in $Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$ for n big enough. For $x \in \delta_{n} \mathbb{Z}^{2} \cap I$, let $\mathcal{A}_{n, j}^{x}$ be the set of lattice paths of $\delta_{n} \mathbb{Z}^{2}$ that start from x, and hit $W_{0, j}, W_{1, j}, W_{2, j}$ and $W_{3, j}$ in the order before exiting $\Pi_{j} \cup N_{j}$. We may view $\beta \in \mathcal{A}_{n, j}^{x}$ as a continuous curve. Let $\beta^{D_{n}}$ denote the part of $\beta \in \mathcal{A}_{n, j}^{x}$ before exiting $Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$. Then $\beta^{D_{n}}$ can be viewed as a lattice path on $D^{\delta_{n}}$. We proved in the last paragraph that if n is big enough, $\overline{Q_{n}\left(\beta^{D_{n}}\right)}$ intersects $\rho_{n, j}^{k}$, for any $\beta \in \mathcal{A}_{n, j}^{x}, x \in \delta_{n} \mathbb{Z}^{2} \cap I, j=0,1$.

Thus for any $\beta_{0} \in \mathcal{A}_{n, 0}^{x}$ and $\beta_{1} \in \mathcal{A}_{n, 1}^{x}, \beta_{0}^{D_{n}} \cup \beta_{1}^{D_{n}}$ disconnects γ_{n}^{k-1} from γ_{n}^{k+1} in $Q_{n}^{-1}\left(\Omega_{n}^{k}\right)$.

5.4. The behaviors of $g_{0} \circ J$ outside any neighborhood of 1

Let $P_{n, j}^{x}$ be the probability that a simple random walk on $\delta_{n} \mathbb{Z}^{2}$ started from x belongs to $\mathcal{A}_{n, j}^{x}$. By Lemma 3.8, if n is big enough, then $P_{n, j}^{x}$ is greater than some $a_{k}>0$ for all $x \in \delta_{n} \mathbb{Z}^{2} \cap I, j=0,1$. We may also choose n big enough such that $V\left(D^{\delta_{n}}\right) \cap I$ is non-empty, and $g_{n}(x)$ is less than some $b_{k} \in(0, \infty)$ for all $x \in \delta_{n} \mathbb{Z}^{2} \cap I$. We claim that if n is big enough, then $g_{n}(x) \leq \max \left\{b_{k} / a_{k}, 1\right\}$ for every $x \in \delta_{n} \mathbb{Z}^{2} \cap\left(D_{n} \backslash U\left(\gamma_{n}^{k-1}\right)\right)$. Suppose for infinitely many n, there are $x_{n} \in \delta_{n} \mathbb{Z}^{2} \cap D_{n} \backslash U\left(\gamma_{n}^{k-1}\right)$ such that $g_{n}\left(x_{n}\right) \geq M>\max \left\{b_{k} / a_{k}, 1\right\}$. Since g_{n} is discrete harmonic on $\delta_{n} \mathbb{Z}^{2} \cap D_{n}$, and $g_{n} \leq 1$ on the boundary vertices of D_{n} except at $P\left(w_{n}\right)$, the tip point of w_{n}, so there is a lattice path β_{n} in D_{n} that goes from x_{n} to $P\left(w_{n}\right)$ such that the value of g_{n} at each vertex of β_{n} is not less than M. By the construction of γ_{n}^{k+1}, if n is big enough, then $U\left(Q_{n}\left(\gamma_{n}^{k+1}\right)\right)$ is some neighborhood of 1 in $\mathbf{A}_{p_{n}}$, and so $U\left(\gamma_{n}^{k+1}\right)$ is some neighborhood of $P\left(w_{n}\right)$ in D_{n}. Thus β_{n} intersects both γ_{n}^{k-1} and γ_{n}^{k+1}. Choose $v_{0} \in \delta_{n} \mathbb{Z}^{2} \cap I$. For every $\rho_{n, 0} \in \mathcal{A}_{n, 0}^{v_{0}}$ and $\rho_{n, 1} \in \mathcal{A}_{n, 1}^{v_{0}}$, the path $\rho_{n, 0}^{D_{n}} \cup \rho_{n, 1}^{D_{n}}$ disconnects γ_{n}^{k-1} from γ_{n}^{k+1}. Therefore $\rho_{n, 0}^{D_{n}} \cup \rho_{n, 1}^{D_{n}}$ intersects β_{n}. This implies that for some $j_{n} \in\{0,1\}$, for every $\rho \in \mathcal{A}_{n, j}^{v_{0}}$, we have $\rho^{D_{n}}$ intersects β_{n}. Thus the probability that a simple random walk on $\delta_{n} \mathbb{Z}^{2}$ started from v_{0} hits β_{n} before ∂D_{n} is greater than a_{k}. Let τ_{n} be the first time this random walk hits $\beta_{n} \cup \partial D_{n}$. Since g_{n} is non-negative, bounded, and discrete harmonic on $\delta_{n} \mathbb{Z}^{2} \cap D_{n}$, so $g_{n}\left(v_{0}\right)=\mathbf{E}\left[g_{n}\left(\operatorname{RW}_{v_{0}}^{x}\left(\tau_{n}\right)\right)\right] \geq a_{k} M>b_{k}$, which is a contradiction. So the claim is proved.

By passing to a subsequence depending on k, we can now assume the following. $U\left(\gamma_{n}^{k+1}\right)$ is some neighborhood of $P\left(w_{n}\right)$ in D_{n}; the value of g_{n} on $\delta_{n} \mathbb{Z}^{2} \cap D_{n} \backslash$ $U\left(\gamma_{n}^{k+1}\right)$ is bounded by some $M_{k} \geq 1 ; U\left(\gamma_{n}^{k+1}\right) \subset U\left(\gamma_{n}^{k}\right) \subset U\left(\gamma_{n}^{k-1}\right)$; the spherical distance between γ_{n}^{k} and γ_{n}^{k-1} is greater than some $R_{k}>0$; and the (Euclidean) distance between γ_{n}^{k} and γ_{n}^{k+1} is greater than δ_{n}. Since the end points of γ_{n}^{k} and γ_{n}^{k-1} are on B_{1}^{n}, the spherical diameter of B_{1}^{n} is at least R_{k}. Let R be the spherical distance between B_{2} and α_{2}. Then the spherical distance between B_{2} and B_{1}^{n} is at least R, as α_{2} disconnects B_{2} from B_{1}^{n}. Suppose $v \in V\left(D^{\delta_{n}}\right) \cap D_{n} \backslash U\left(\gamma_{n}^{k-1}\right)$, and $\operatorname{dist}^{\#}\left(v, B_{1}^{n}\right)=d<R / 2$. Then $\operatorname{dist}^{\#}\left(v, B_{2}\right)>R / 2$. Let RW_{v}^{n} be a simple random walk on $\delta_{n} \mathbb{Z}^{2}$ started from v, and τ_{n}^{k} be the first time that RW_{v}^{n} leaves $D_{n} \backslash U\left(\gamma_{n}^{k}\right)$. Then $\mathrm{RW}_{v}^{n}\left(\tau_{n}^{k}\right)$ is either on B_{2}, or on B_{1}^{n}, or in $U\left(\gamma_{n}^{k}\right)$. In the first case, $g_{n}\left(\operatorname{RW}_{v}^{n}\left(\tau_{n}^{k}\right)\right)=1$, and v should first exit $\mathbf{B}^{\#}(v, R / 2)$ before hitting B_{2}. In the second and third cases, since $\mathrm{RW}_{v}^{n}\left(\tau_{n}^{k}-1\right) \in D_{n} \backslash U\left(\gamma_{n}^{k}\right)$, and the Euclidean distance between γ_{n}^{k} and γ_{n}^{k+1} is greater than δ by construction, so $\left[\operatorname{RW}_{v}^{n}\left(\tau_{n}^{k}-1\right), \operatorname{RW}_{v}^{n}\left(\tau_{n}^{k}\right)\right]$ does not intersect γ_{n}^{k+1}. Thus in the second case, $\operatorname{RW}_{v}^{n}\left(\tau_{n}^{k}\right) \neq P\left(w_{n}\right)$, and so $g_{n}\left(\operatorname{RW}_{v}^{n}\left(\tau_{n}^{k}\right)\right)=0$. In the third case, $\mathrm{RW}_{v}^{n}\left(\tau_{n}^{k}\right) \in D_{n} \backslash U\left(\gamma_{n}^{k+1}\right)$, so $g_{n}\left(\mathrm{RW}_{v}^{n}\left(\tau_{n}^{k}\right)\right) \leq$ M_{k}; and RW_{v}^{n} first uses some edge that intersects γ_{n}^{k-1}, then uses some edge that intersects γ_{n}^{k} at time τ_{n}^{k}. So the spherical diameter of $\mathrm{RW}_{v}^{n}\left[0, \tau_{n}^{k}\right]$ is at least R_{k}. This implies that RW_{v}^{n} should first exit $\mathbf{B}^{\#}\left(v ; R_{k} / 2\right)$ before hitting $U\left(\gamma_{n}^{k}\right)$. Let
$R_{k}^{\prime}=\min \left\{R / 2, R_{k} / 2\right\}$, then by Lemma 3.7,

$$
\mathbf{P}\left[\mathrm{RW}_{v}^{n}\left(\tau_{n}^{k}\right) \notin B_{1}^{n}\right] \leq C_{0}\left(\left(\delta_{n}+d\right) / R_{k}^{\prime}\right)^{C_{1}},
$$

for some absolute constants $C_{0}, C_{1}>0$. So we have $g_{n}(v) \leq M_{k} C_{0}\left(\left(\delta_{n}+\right.\right.$ d) $\left./ R_{k}^{\prime}\right)^{C_{1}}$.

Suppose $z \in D_{0} \backslash U\left(\gamma^{k-1}\right) \backslash \gamma^{k-1}$, and $\operatorname{dist}^{\#}\left(z, B_{1}^{0}\right)=d<R / 4$. Choose $r \in(0, d / 2)$ such that $\mathbf{B}^{\#}(z, r)$ is bounded and $\overline{\mathbf{B}^{\#}(z ; r)} \subset D_{0} \backslash U\left(\gamma^{k-1}\right) \backslash \gamma^{k-1}$. If n is big enough, then $\overline{\mathbf{B}^{\#}(z ; r)} \subset D_{n} \backslash U\left(\gamma_{n}^{k-1}\right)$, and the spherical distance from every $v \in \mathbf{B}^{\#}(z ; r)$ to B_{1}^{n} is less than $2 d<R / 2$. Thus

$$
g_{n}(v) \leq M_{k} C_{0}\left(\left(\delta_{n}+2 d\right) / R_{k}^{\prime}\right)^{C_{1}}, \quad \forall v \in \delta_{n} \mathbb{Z}^{2} \cap \mathbf{B}^{\#}(z ; r) .
$$

Since g_{0} is the limit of $g_{n}, g_{0}(z) \leq M_{k} C_{0}(2 d / R)^{C_{1}}$. Thus for every $k \geq 2, g_{0}(z) \rightarrow$ 0 , as $z \in D_{0} \backslash U\left(\gamma^{k-1}\right) \backslash \gamma^{k-1}$, and $z \rightarrow B_{1}$ in the spherical metric, and so $g_{0} \circ J(z) \rightarrow 0$ as $z \in \mathbf{A}_{p_{0}} \backslash U\left(Q_{0}\left(\gamma^{k-1}\right)\right)$, and $z \rightarrow \mathbf{C}_{0}$. Since $U\left(Q_{0}\left(\gamma^{k}\right)\right)$, $k \in \mathbb{N}$, forms a neighborhood basis of 1 in $\mathbf{A}_{p_{0}}$, so for any $r>0, g_{0} \circ J(z) \rightarrow 0$ if $z \in \mathbf{A}_{p_{0}} \backslash \mathbf{B}(1, r)$ and $z \rightarrow \mathbf{C}_{0}$. This is what we need at the end of 5.1.

Acknowledgements. This work was proceeded under the instruction of Professor Nikolai Makarov, who let the author be interested in this subject, and gave many valuable comments on this paper.

References

[1] Ahlfors, L.V.: Conformal invariants: topics in geometric function theory. New York: McGraw-Hill Book Co., 1973
[2] Chandrasekharan, K.: Elliptic functions. Springer-Verlag Berlin Heidelberg, 1985
[3] Dubédat, J.: Critical percolation in annuli and SLE $_{6}$, arXiv:math.PR/0306056
[4] Lawler, G.F.: Intersection of random walks. Boston: Birkhäuser, 1991
[5] Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents I: Half-plane exponents. Acta Mathematica 187, 237-273 (2001)
[6] Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents II: Plane exponents. Acta Mathematica 187, 275-308 (2001)
[7] Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents III: two-sided exponents. Ann. Int. Henri Poincaré 38, 109-123, (2002)
[8] Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees, arXiv: math.PR/012234
[9] Lawler, G.F., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Amer. Math. Soc. 16 (4), 917-955 (2003)
[10] Oksendal, B.: Stochastic Differential Equations: an introduction with applications. Berlin-Heidelberg-New York: Springer-Verlag, 1995
[11] Pommerenke, C.: On the Löwner differential equation. Michigan Math. J. 13, 435-443 (1968)
[12] Pommerenke, C.: Univalent functions. Göttingen: Vandenhoeck \& Ruprecht, 1975
[13] Pommerenke, C.: Boundary behaviour of conformal maps. Berlin-Heidelberg-New York: Springer-Verlag, 1991
[14] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer-Verlag, 1991
[15] Rohde, S., Schramm, O.: Basic properties of SLE, arXiv:math.PR/ 0106036
[16] Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221-228 (2000)
[17] Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 (3), 239-244 (2001)
[18] Villat, H.: Le problème de Dirichlet dans une aire annulaire. Rend. circ. mat. Palermo 134-175 (1912)
[19] Werner, W.: Critical exponents, conformal invariance and planar Brownian motion. Proceedings of the 3rd Europ. Congress Math., Prog. Math. 202, 87-103 (2001)

[^0]: D. Zhan: Department of Mathematics, Mail code: 253-37, California Institute of Technology, Pasadena, CA 91125, USA. e-mail: dapeng@its.caltech. edu

