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Abstract. We derive some geometric properties of chordal SLE(κ; �ρ) pro-
cesses. Using these results and the method of coupling two SLE processes,
we prove that the outer boundary of the final hull of a chordal SLE(κ; �ρ)
process has the same distribution as the image of a chordal SLE(κ′; �ρ′) trace,
where κ > 4, κ′ = 16/κ, and the forces �ρ and �ρ′ are suitably chosen. We
find that for κ ≥ 8, the boundary of a standard chordal SLE(κ) hull stopped
on swallowing a fixed x ∈ R \ {0} is the image of some SLE(16/κ; �ρ) trace
started from x. Then we obtain a new proof of the fact that chordal SLE(κ)
trace is not reversible for κ > 8. We also prove that the reversal of SLE(4; �ρ)
trace has the same distribution as the time-change of some SLE(4; �ρ′) trace
for certain values of �ρ and �ρ′.

1 Introduction

The Schramm–Loewner evolution (SLE) has become a fast growing area
in probability theory since 1999 [12]. SLE describes some random fractal
curve, which is called an SLE trace, that grows in a plane domain. The
behavior of the trace depends on a real parameter κ > 0. We write SLE(κ)
to emphasize the parameter κ. If κ ∈ (0, 4], the trace is a simple curve; if
κ > 4, the trace is not simple; and if κ ≥ 8, the trace is space-filling. For
basic properties of SLE, see [6] and [11].

Many two-dimensional lattice models from statistical physics have been
proved to have SLE as their scaling limits when the mesh of the grid
tends to 0, e.g., the convergence of critical percolation on triangular lat-
tice to SLE(6) [16], loop-erased random walk (LERW) to SLE(2) [9,18],
uniform spanning tree (UST) Peano curve to SLE(8) [9], Gaussian free
field contour line to SLE(4) [13], and some Ising models to SLE(3) and
SLE(16/3) [15]. And there are some promising conjectures, e.g., the con-
vergence of self-avoiding walk to SLE(8/3) [8], and double domino tilling
to SLE(4) [11].
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For κ > 4, people are also interested in the hulls that are generated by
the SLE(κ) traces. Duplantier proposed a rough conjecture about the duality
between SLE(κ) and SLE(16/κ), which says that when κ > 4, the boundary
of an SLE(κ) hull looks locally like an SLE(16/κ) trace.

For κ ≤ 8, the Hausdorff dimension of an SLE(κ) trace was proved
to be 1 + κ/8 [3]. If the duality conjecture is true, then we may conclude
that for κ > 4, the Hausdorff dimension of the boundary of an SLE(κ) hull
is 1 + 2/κ.

For some parameter κ, the duality is already known. The duality between
SLE(8) and SLE(2) follows from the convergence of UST and LERW to
SLE(8) and SLE(2), respectively, and the Wilson’s algorithm [17] that links
UST with LERW. The duality between SLE(6) and SLE(8/3) follows from
the conformal restriction property [8]. The duality between SLE(16/3) and
SLE(3) follows from the convergence of Ising models.

In [4], J. Dubédat proposed some specific conjectures about the duality
of SLE, one of which says that for κ > 4, the right boundary of the
final hull of a chordal SLE(κ; κ − 4) process started from (0, 0+) has the
same law as a chordal SLE(κ′; 1

2 (κ′ − 4)) trace started from (0, 0−), where
κ′ = 16/κ. And he justified his conjecture by studying the distributions
of the sets obtained by adding Brownian loop soups to SLE(κ; κ − 4) and
SLE(κ′; 1

2 (κ′ − 4)), respectively.
Recently, a new technique about constructing a coupling of two SLE

processes that grow in the same domain was introduced in [19] to prove the
reversibility of chordal SLE(κ) trace when κ ∈ (0, 4]. In this paper, we will
use this technique to prove some specific versions of the duality conjecture,
which are not exactly the same as those in [4]. For example, one of our
results is that for κ > 4 and κ′ = 16/κ, the right boundary of the final
hull of a chordal SLE(κ; κ − 4) process started from (0, 0+) has the same
law as the image under the map z �→ 1/z of a chordal SLE(κ′; 1

2(κ
′ − 4))

trace started from (0, 0−). If the degenerate chordal SLE(κ′; 1
2 (κ′−4)) trace

satisfies reversibility, which is Conjecture 1 of this paper, then Dubédat’s
conjecture is proved.

This paper is organized in the following way. In Sect. 2, we review
the definitions of the chordal and strip (i.e., dipolar) Loewner equations
and SLE(κ; �ρ) processes. The conformal invariance of chordal and strip
SLE(κ; �ρ) processes are introduced. In Sect. 3, we study the tail behavior
of a chordal or strip SLE(κ; �ρ) trace when the force points and forces
satisfy certain conditions. In Sect. 4, for κ ≥ 4 ≥ κ′ > 0 with κκ′ = 16,
some commutation result of a chordal SLE(κ; �ρ) process with a chordal
SLE(κ′; �ρ′) process is described in terms of a two-dimensional martingale.
This is closely related with J. Dubédat’s work in [5]. Then the technique
in [19] is applied to get a coupling of the above two SLE processes. In Sect. 5,
we consider the coupling in the previous section with some special choices
of force points and forces, and apply the geometry results from Sect. 3 to
prove that in this coupling, the chordal SLE(κ′; �ρ′) trace becomes the outer
boundary of the chordal SLE(κ; �ρ) hull, and so prove the duality conjecture.
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Then we derive the equation of the boundary of a standard chordal SLE(κ)
hull, κ ≥ 8, at the time when a fixed x ∈ R \ {0} is swallowed. Then we
give a new proof of the fact that for κ > 8, the chordal SLE(κ) trace is
not reversible. This result was claimed in [11]. At the end, we derive the
reversibility property of some chordal SLE(4; �ρ) traces.

2 Preliminary

2.1 Chordal SLE. If H is a bounded and relatively closed subset of H =
{z ∈ C : Im z > 0}, and H \ H is simply connected, then we call H a hull
inHw.r.t. ∞. For such H , there is ϕH that mapsH\ H conformally onto H,
and satisfies ϕH(z) = z + c

z + O
(

1
z2

)
as z → ∞, where c = hcap(H) ≥ 0

is called the capacity of H in H w.r.t. ∞. If H1 ⊂ H2 are hulls in H
w.r.t. ∞, then H2/H1 := ϕH1(H2 \ H1) is also a hull in H w.r.t. ∞, and
hcap(H2/H1) = hcap(H2) − hcap(H1). If H1 ⊂ H2 ⊂ H3 are three hulls
in H w.r.t. ∞, then H2/H1 ⊂ H3/H1 and (H3/H1)/(H2/H1) = H3/H2.

Proposition 2.1 Suppose Ω is an open neighborhood of x0 ∈ R in H.
Suppose W maps Ω conformally into H such that for some r > 0, if
z ∈ Ω approaches (x0 − r, x0 + r) then W(z) approaches R. So W extends
conformally across (x0 − r, x0 + r) by Schwarz reflection principle. Then
for any ε > 0, there is some δ > 0 such that if a hull H in H w.r.t. ∞ is
contained in {z ∈ H : |z − x0| < δ}, then W(H) is also a hull in H w.r.t. ∞,
and

∣
∣hcap(W(H)) − W ′(x0)

2 hcap(H)
∣
∣ ≤ ε|hcap(H)|.

Proof. This is Lemma 2.8 in [7]. 
�
For a real interval I , we use C(I ) to denote the space of real continuous

functions on I . For T > 0 and ξ ∈ C([0, T )), the chordal Loewner equation
driven by ξ is

∂tϕ(t, z) = 2

ϕ(t, z) − ξ(t)
, ϕ(0, z) = z.

For 0 ≤ t < T , let K(t) be the set of z ∈ H such that the solution ϕ(s, z)
blows up before or at time t. We call K(t) and ϕ(t, · ), 0 ≤ t < T , chordal
Loewner hulls and maps, respectively, driven by ξ .

Definition 2.1 We call (K(t), 0 ≤ t < T ) a Loewner chain in H w.r.t. ∞, if
each K(t) is a hull in H w.r.t. ∞; K(0) = ∅; K(s) � K(t) if s < t; and for
each fixed a ∈ (0, T ) and compact F ⊂ H \ K(a), the extremal length [1]
of the curves in H \ K(t + ε) that disconnect K(t + ε) \ K(t) from F tends
to 0 as ε → 0+, uniformly in t ∈ [0, a].
Proposition 2.2 (a) Suppose K(t) and ϕ(t, · ), 0 ≤ t < T , are chordal

Loewner hulls and maps, respectively, driven by ξ ∈ C([0, T )). Then
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(K(t), 0 ≤ t < T ) is a Loewner chain inHw.r.t. ∞, ϕK(t) = ϕ(t, · ), and
hcap(K(t)) = 2t for any 0 ≤ t < T . Moreover, for every t ∈ [0, T ),

{ξ(t)} =
⋂

ε∈(0,T−t)

K(t + ε)/K(t).

(b) Let (L(s), 0 ≤ s < S) be a Loewner chain in H w.r.t. ∞. Let v(s) =
hcap(L(s))/2, 0 ≤ s < S. Then v is a continuous (strictly) increas-
ing function with u(0) = 0. Let T = v(S) and K(t) = L(v−1(t)),
0 ≤ t < T . Then K(t), 0 ≤ t < T , are chordal Loewner hulls driven by
some ξ ∈ C([0, T )).

Proof. This is almost the same as Theorem 2.6 in [7]. 
�
Let D be a domain and K ⊂ D. Let p1 and p2 be two boundary points

or prime ends of D. We say that K does not separate p1 from p2 in D if
there are neighborhoods U1 and U2 of p1 and p2, respectively, in D such
that U1 and U2 lie in the same pathwise connected component of D \ K .
In our definition, K may separates some p from itself. Let Q be a set of
boundary points or prime ends of D. We say that K does not divide Q in D
if for any p1, p2 ∈ D, K does not separate p1 from p2 in D.

Let ϕ(t, · ) and K(t) be as before. Let x ∈ R. If at time t, ϕ(t, x) does
not blow up, then K(t) does not separate x from ∞ in H, and vice versa.
In fact, we have a slightly stronger result: if ϕ(s, x) blows up before or at
s = t ∈ [0, T ), then

⋃
s<t K(s) also separates x from ∞ in H. This follows

from the property of a Loewner chain.
Let B(t), 0 ≤ t < ∞, be a (standard linear) Brownian motion. Let

κ ≥ 0. Then K(t) and ϕ(t, · ), 0 ≤ t < ∞, driven by ξ(t) = √
κB(t),

0 ≤ t < ∞, are called standard chordal SLE(κ) hulls and maps, respectively.
It is known [11,9] that almost surely for any t ∈ [0,∞),

β(t) := lim
H�z→ξ(t)

ϕ(t, · )−1(z) (2.1)

exists, and β(t), 0 ≤ t < ∞, is a continuous curve in H. Moreover, if
κ ∈ (0, 4] then β is a simple curve, which intersects R only at the initial
point, and for any t ≥ 0, K(t) = β((0, t]); if κ > 4 then β is not simple,
and intersects R at infinitely many points; and in general, H \ K(t) is the
unbounded component of H \ β((0, t]) for any t ≥ 0. Such β is called
a standard chordal SLE(κ) trace.

If (ξ(t)) is a semi-martingale, and d〈ξ(t)〉 = κdt for some κ > 0, then
from Girsanov theorem and the existence of standard chordal SLE(κ) trace,
almost surely for any t ∈ [0, T ), β(t) defined by (2.1) exists, and has the
same property as a standard chordal SLE(κ) trace (depending on the value
of κ) as described in the last paragraph.

Let κ ≥ 0, ρ1, . . . , ρN ∈ R, x ∈ R, and p1, . . . , pN ∈ R̂ \ {x}, where
R̂ = R ∪ {∞} is a circle. Let ξ(t) and pk(t), 1 ≤ k ≤ N, be the solutions to
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the SDE:
{

dξ(t) = √
κdB(t) + ∑N

k=1
ρkdt

ξ(t)−pk(t)

dpk(t) = 2dt
pk(t)−ξ(t) , 1 ≤ k ≤ N,

(2.2)

with initial values ξ(0) = x and pk(0) = pk , 1 ≤ k ≤ N. If ϕ(t, · ) are
chordal Loewner maps driven by ξ(t), then pk(t) = ϕ(t, pk). Here if some
pk = ∞ then pk(t) = ∞ and ρk

ξ(t)−pk(t)
= 0 for all t ≥ 0, so pk has no effect

on the equation. Suppose [0, T ) is the maximal interval of the solution.
Let K(t), 0 ≤ t < T , be chordal Loewner hulls driven by ξ . Then we
call K(t), 0 ≤ t < T , a (full) chordal SLE(κ;ρ1, . . . , ρN ) process started
from (x; p1, . . . , pN ). Since (ξ(t)) is a semi-martingale, and d〈ξ(t)〉 = κdt,
so the chordal Loewner trace β(t), 0 ≤ t < T , driven by ξ exists, and is
called a chordal SLE(κ;ρ1, . . . , ρN ) trace started from (x; p1, . . . , pN ). If
we let �ρ and �p to denote the vectors (ρ1, . . . , ρN ) and (p1, . . . , pN ), then
we may call K(t) and β(t), 0 ≤ t < T , chordal SLE(κ; �ρ) process and trace,
respectively, started from (x; �p). If S ∈ (0, T ] is a stopping time, then K(t)
and β(t), 0 ≤ t < S, are called partial chordal SLE(κ; �ρ) process and trace,
respectively, started from (x; �p).

These pk’s and ρk’s are called force points and forces, respectively. For
0 ≤ t < T and 1 ≤ k ≤ N, ϕ(t, pk) does not blow up, so K(t) does not
divide {∞, p1, . . . , pN } in H. If T < ∞ then there must exist some pk ∈ R
such that ϕ(t, pk)− ξ(t) → 0 as t → T , so

⋃
t<T K(t) separates pk from ∞

in H. If T = ∞ then
⋃

t<T K(t) is unbounded, so
⋃

t<T K(t) separates ∞
from itself inH. Thus in any case,

⋃
t<T K(t) divides {∞, p1, . . . , pN } inH.

The chordal SLE(κ; �ρ) defined above are of generic cases. We now intro-
duce degenerate SLE(κ; �ρ), where one of the force points takes value x+
or x−, or two of the force points take values x+ and x−, respectively,
where x ∈ R is the initial point of the trace. Let κ ≥ 0; ρ1, . . . , ρN ∈ R,
and ρ1 ≥ κ/2 − 2; p1 = x+, p2, . . . , pN ∈ R̂ \ {x}. Let ξ(t) and pk(t),
1 ≤ k ≤ N, 0 < t < T , be the maximal solution to (2.2) with initial values
ξ(0) = p1(0) = x, and pk(0) = pk , 1 ≤ k ≤ N. Moreover, we require that
p1(t) > ξ(t) for any 0 < t < T . If N = 1, the existence of the solution
follows from the Bessel process (see [8]). The condition ρ1 ≥ κ/2 − 2 is
to guarantee that p1 is not immediately swallowed after time 0. If N ≥ 2,
the existence of the solution follows from the above result and Girsanov
Theorem. Then we obtain chordal SLE(κ;ρ1, . . . , ρN ) process and trace
started from (x; x+, p2, . . . , pN ). If the condition p1(t) > ξ(t) is replaced
by p1(t) < ξ(t), then we get chordal SLE(κ;ρ1, . . . , ρN ) process and trace
started from (x; x−, p2, . . . , pN ). Now suppose N ≥ 2, ρ1, ρ2 ≥ κ/2 − 2,
p1 = x+, and p2 = x−. Let ξ(t) and pk(t), 1 ≤ k ≤ N, 0 < t < T , be the
maximal solution to (2.2) with initial values ξ(0) = p1(0) = p2(0) = x,
and pk(0) = pk , 1 ≤ k ≤ N, such that p1(t) > ξ(t) > p2(t) for all
0 < t < T . Then we obtain chordal SLE(κ;ρ1, . . . , ρN ) process and trace
started from (x; x+, x−, p3, . . . , pN ). The existence of the solution to the
equation follows from [13] and Girsanov theorem.
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The force point x+ or x− is called a degenerate force point. Other force
points are called generic force points. Let ϕ(t, · ) be the chordal Loewner
maps driven by ξ . Since for any generic force point pj , we have pj(t) =
ϕ(t, pj), so it is reasonable to write ϕ(t, pj) for pj(t) in the case that pj
is a degenerate force point. Suppose ρj is the force associated with some
degenerate force point pj . If we allow that the process continues growing
after pj is swallowed, the condition that ρj ≥ κ/2 − 2 may be weakened
to ρj > −2 [8].

From the work in [14], we get the conformal invariance of chordal
SLE(κ; �ρ) processes, which is the following lemma.

Lemma 2.1 Suppose κ ≥ 0 and �ρ = (ρ1, . . . , ρN ) with
∑N

m=1 ρm = κ −6.
For j = 1, 2, let Kj(t), 0 ≤ t < Tj, be a generic or degenerate chordal
SLE(κ; �ρ) process started from (xj; �pj), where �pj = (pj,1, . . . , pj,N), j =
1, 2. Suppose W is a conformal or conjugate conformal map fromH onto H
such that W(x1) = x2 and W(p1,m) = p2,m, 1 ≤ m ≤ N. Let p1,∞ =
W−1(∞) and p2,∞ = W(∞). For j = 1, 2, let Sj ∈ (0, Tj ] be the largest
number such that for 0 ≤ t < Sj, Kj(t) does not separate pj,∞ from ∞
inH. Then (W(K1(t)), 0 ≤ t < S1) has the same law as (K2(t), 0 ≤ t < S2)
up to a time-change. A similar result holds for the traces.

Proof. Here we only consider the generic cases. The proof of the degen-
erate cases is similar. Let Qj = {∞, pj,1, . . . , pj,N , pj,∞}, j = 1, 2. Then
W(Q1) = Q2, and Sj is the maximum number in (0, Tj] such that for
0 ≤ t < Sj , Kj(t) does not divide Qj in H. For 0 ≤ t < S1, since K1(t) does
not divide Q1 in H, so W(K1(t)) does not divide Q2 in H. From Theorem 3
in [14], after a time-change, (W(K1(t)), 0 ≤ t < S1) is a partial chordal
SLE(κ; �ρ) process started from (x2; �p2). We now suffice to show that this
chordal Loewner chain can not be further extended without dividing Q2
in H. If this is not true, then

⋃
0≤t<S1

W(K1(t)) does not divide Q2 in H.
So

⋃
0≤t<S1

K1(t) does not divide Q1 in H, which contradicts the choice
of S1. 
�

Note that if κ ∈ (0, 4] then Sj = Tj , j = 1, 2, so we conclude that
(W(K1(t)), 0 ≤ t < T1) has the same distribution as (K2(t), 0 ≤ t < T2) up
to a time-change. In general, by adding ∞ to be a force point with suitable
value of force, we may always make the sum of forces equals to κ − 6, so
the lemma can be applied.

2.2 Strip SLE. Strip SLE is studied independently in [20] and [2] (where
it is called dipolar SLE). For h > 0, let Sh = {z ∈ C : 0 < Im z < h}
and Rh = ih + R. If H is a bounded closed subset of Sπ , Sπ \ H is simply
connected, and has Rπ as a boundary arc, then we call H a hull in Sπ
w.r.t. Rπ . For such H , there is a unique ψH that maps Sπ \ H conformally
onto Sπ , such that for some c ≥ 0, ψH(z) = z ± c + o(1) as z → ±∞
in Sπ . We call such c the capacity of H in Sπ w.r.t. Rπ , and denote it by
scap(H).
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For ξ ∈ C([0, T )), the strip Loewner equation driven by ξ is

∂tψ(t, z) = coth

(
ψ(t, z) − ξ(t)

2

)
, ψ(0, z) = z. (2.3)

For 0 ≤ t < T , let L(t) be the set of z ∈ Sπ such that the solution ψ(s, z)
blows up before or at time t. We call L(t) and ψ(t, · ), 0 ≤ t < T ,
strip Loewner hulls and maps, respectively, driven by ξ . It turns out that
ψ(t, · ) = ψL(t) and scap(L(t)) = t for each t. From now on, we write
coth2(z), tanh2(z), cosh2(z), and sinh2(z) for functions coth(z/2), tanh(z/2),
cosh(z/2), and sinh(z/2), respectively.

Let κ ≥ 0, ρ1, . . . , ρN ∈ R, x ∈ R, and p1, . . . , pN ∈ R ∪ Rπ ∪
{+∞,−∞} \ {x}. Let B(t) be a Brownian motion. Let ξ(t) and pk(t),
1 ≤ k ≤ N, be the solutions to the SDE:

{
dξ(t) = √

κdB(t) + ∑N
k=1

ρk
2 coth2(ξ(t) − pk(t))dt

dpk(t) = coth2(pk(t) − ξ(t))dt, 1 ≤ k ≤ N,
(2.4)

with initial values ξ(0) = x and pk(0) = pk , 1 ≤ k ≤ N. Here if some
pk = ±∞ then pk(t) = ±∞ and coth2(ξ(t) − pk(t)) = ∓1 for all t ≥ 0,
so pk has a constant effect on the equation. Suppose [0, T ) is the maximal
interval of the solution. Let L(t), 0 ≤ t < T , be strip Loewner hulls driven
by ξ . Then we call L(t) , 0 ≤ t < T , a (full) strip SLE(κ; �ρ) process started
from (x; �p), where �ρ = (ρ1, . . . , ρN) and �p = (p1, . . . , pN ).

The following two lemmas show that strip SLE(κ; �ρ) processes also
satisfy conformal invariance, and are conformally equivalent to the corres-
ponding chordal SLE(κ; �ρ) processes. The proofs are similar to that of
Lemma 2.1, and use the result of Sect. 4 in [14], so we omit the proofs.

Lemma 2.2 Suppose κ ≥ 0 and �ρ = (ρ1, . . . , ρN ) with
∑N

m=1ρm = κ − 6.
For j = 1, 2, let L j(t), 0 ≤ t < Tj, be a strip SLE(κ; �ρ) process started
from (xj; �pj), where �pj = (pj,1, . . . , pj,N). Suppose W is a conformal or
conjugate conformal map from Sπ onto Sπ such that W(x1) = x2 and
W(p1,m) = p2,m, 1 ≤ m ≤ N. Let I1 = W−1(Rπ) and I2 = W(Rπ). For
j = 1, 2, let Sj ∈ (0, Tj] be the largest number such that for 0 ≤ t < Sj,
L j(t) does not separate Ij from Rπ in Sπ . Then (W(L1(t)), 0 ≤ t < S1) has
the same law as (L2(t), 0 ≤ t < S2) up to a time-change.

Lemma 2.3 Suppose κ ≥ 0 and �ρ = (ρ1, . . . , ρN ) with
∑N

m=1ρm = κ − 6.
Let K(t), 0 ≤ t < T , be a chordal SLE(κ; �ρ) process started from (x; �p),
where �p = (p1, . . . , pN ). Let L(t), 0 ≤ t < S, be a strip SLE(κ; �ρ) process
started from (y; �q), where �q = (q1, . . . , qN ). Suppose W is a conformal
or conjugate conformal map from H onto Sπ such that W(x) = y and
W(pk) = qk, 1 ≤ k ≤ N. Let I = W−1(Rπ) and q∞ = W(∞). Let
T ′ ∈ (0, T ] be the largest number such that for 0 ≤ t < T ′, K(t) does not
separate I from ∞ in H. Let S′ ∈ (0, S] be the largest number such that for
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0 ≤ t < S′, L(t) does not separate q∞ fromRπ . Then (W(K(t)), 0 ≤ t < T ′)
has the same law as (L(t), 0 ≤ t < S′) up to a time-change.

As usual, if κ ∈ [0, 4], then Sj = Tj , j = 1, 2, in Lemma 2.2, and
T ′ = T and S′ = S in Lemma 2.3. In general, for a strip SLE(κ; �ρ) process,
by adding +∞ and −∞ to be force points with suitable values of forces,
we may always make the sum of forces equals to κ − 6, so the above two
lemmas can be applied. From Lemma 2.3, we have the existence of the strip
SLE(κ; �ρ) trace, and the above two lemmas also hold for traces.

3 Geometric properties

Suppose β(t), 0 ≤ t < T , is a chordal SLE(κ; �ρ) trace. In this section, we
will study the existence and property of the limit or subsequential limit of
β(t) as t → T in certain cases. The three lemmas in the last section will be
frequently used.

3.1 Many force points. Let κ > 0, �p± = (p±1, . . . , p±N± ), �ρ± =
(ρ±1, . . . , ρ±N±), where 0 < p1 < · · · < pN+ , 0 > p−1 > · · · > p−N−,
and ρ± j ∈ R, j = 1, . . . , N±. Let β(t), 0 ≤ t < T , be a chordal
SLE(κ; �ρ+, �ρ−) trace started from (0; �p+, �p−). Let ϕ(t, · ) and ξ(t),
0 ≤ t < T , be the chordal Loewner maps and driving function, respectively,
for the trace γ .

Theorem 3.1 Suppose for any 1 ≤ k ≤ N±,
∑k

j=1 ρ± j ≥ κ/2 − 2.

(i) Almost surely T = ∞, so ∞ is a subsequential limit of β(t) as t → T .
(ii) If in addition, κ ∈ (0, 4], then almost surely β((0,∞))∩ (R \ {0}) = ∅.

Proof. Let ρ∞ = κ−6−∑N+
j=1ρj −∑N−

j=1ρ− j . Let χ0 = 0. For 1 ≤ k ≤ N±,
let χ±k = ∑k

j=1 ρ± j ≥ κ/2 − 2. Let χ±
max = max{χ±k : 1 ≤ k ≤ N±}.

(i) If T = ∞, then the diameter of β((0, t]) tends to ∞ as t → ∞,
so ∞ is a subsequential limit of β(t) as t → T . So we suffice to prove that
T = ∞ a.s. If T < ∞, then for x = p1 or p−1, ϕ(t, x) − ξ(t) → 0 as
t → T , where ξ(t) and ϕ(t, · ) are the driving function and chordal Loewner
map. For any t ∈ [0, T ), ϕ(t, p−1) < ξ(t) < ϕ(t, p1), so ∂tϕ(t, p1) =
2/(ϕ(t, p1) − ξ(t)) > 0 and ∂tϕ(t, p−1) = 2/(ϕ(t, p−1) − ξ(t)) < 0. Thus
ϕ(t, p1)−ϕ(t, p−1) increases. If ϕ(t, p1)−ξ(t) → 0, then (ϕ(t, p1)−ξ(t))/
(ϕ(t, p1)−ϕ(t, p−1)) → 0, so (ϕ(t, p1)−ξ(t))/(ξ(t)−ϕ(t, p−1)) → 0. Simi-
larly, if ξ(t)−ϕ(t, p−1) → 0, then (ξ(t)−ϕ(t, p−1))/(ϕ(t, p1)− ξ(t)) → 0.
Thus if T < ∞, then ln(ξ(t) − ϕ(t, p−1)) − ln(ϕ(t, p1) − ξ(t)) tends to +∞
or −∞ as t → T .

Suppose W maps H conformally onto Sπ such that W(0) = 0 and
W(p±1) = ±∞. Let q∞ = W(∞) and q± j = W(p± j ), 1 ≤ j ≤ N±. Let
γ(t) = β(u−1(t)) for 0 ≤ t < S = u(T ), where u is a continuous increasing
function on [0, T ) such that scap(L(t)) = t for any t, and L(t) is the hull
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in Sπ w.r.t. Rπ generated by γ((0, t]). From Lemma 2.3, γ(t), 0 ≤ t < S,
is a strip SLE(κ;ρ∞, �ρ+, �ρ−) trace started from (0; q∞, �q+, �q−), where
�q± = (q±1, . . . , q±N±). Since all qj’s are either ±∞ or lie on Rπ , which
will never be swallowed, so S = ∞.

Let ψ(t, · ) and η(t), 0 ≤ t < ∞, be the strip Loewner maps and driving
function, respectively, for the trace γ . Let X∞(t) = Re ψ(t, q∞) − η(t)
and X± j(t) = Re ψ(t, q± j ) − η(t), 1 ≤ j ≤ N±. Then X−2(t) < · · · <
X−N−(t) < X∞(t) < X N+(t) < · · · < X2(t). And for some Brownian
motion B(t), η(t) satisfies the SDE:

dη(t) = √
κdB(t) − ρ∞

2
tanh2(X∞(t))dt

−
N+∑

j=1

ρj

2
tanh2(Xj(t))dt −

N−∑

j=1

ρ− j

2
tanh2(X− j(t))dt.

For 0 ≤ t < T , let Wt = ψ(u(t), · ) ◦ W ◦ ϕ(t, · )−1. Then Wt maps H
conformally onto Sπ , Wt(ξ(t)) = η(u(t)), Wt(∞) = ψ(u(t), q∞), and
Wt(ϕ(t, p±1)) = ±∞. Thus

ln(ξ(t) − ϕ(t, p−1)) − ln(ϕ(t, p1) − ξ(t)) = Re ψ(u(t), q∞) − η(u(t))
= X∞(u(t)).

Thus if T < ∞ then X∞(t) tends to +∞ or −∞ as t → ∞. So now we
suffice to show that a.s. lim supt→∞ X∞(t) = +∞ and lim inft→∞ X∞(t) =
−∞. We will prove that a.s. lim supt→∞ X∞(t) = +∞. The other statement
follows from symmetry.

Let X N++1(t) = X−N−−1(t) = X∞(t). Then X∞(t) satisfies the SDE:

dX∞(t) = −√
κdB(t) +

(
κ

2
− 2 − χN+ + χ−N−

2

)
tanh2(X∞(t))dt

+
N+∑

j=1

χj − χj−1

2
tanh2(Xj(t))dt

+
N−∑

j=1

χ− j − χ− j+1

2
tanh2(X− j(t))dt

= −√
κdB(t) +

(
κ

2
− 2

)
tanh2(X∞(t))dt

+
N+∑

j=1

χj

2
(tanh2(Xj(t)) − tanh2(Xj+1(t)))dt

+
N−∑

j=1

χ− j

2
(tanh2(X− j(t)) − tanh2(X− j−1(t)))dt.
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Note that for 1 ≤ j ≤ N±, ±(tanh2(X± j(t))− tanh2(X± j±1(t))) > 0. Since
κ/2 − 2 ≤ χj ≤ χ±

max for 1 ≤ j ≤ N±, so for some adapted process
A(t) ≥ 0,

dX∞(t) = −√
κdB(t) + A(t)dt +

(
κ

2
− 2

)
tanh2(X∞(t))dt

+
(

κ

4
− 1

) N+∑

j=1

(tanh2(Xj(t)) − tanh2(Xj+1(t)))dt

+ χ−
max

2

N−∑

j=1

(tanh2(X− j(t)) − tanh2(X− j−1(t)))dt

= −√
κdB(t) + A(t)dt +

(
κ

4
− 1 − χ−

max

2

)
(1 + tanh2(X∞(t)))dt.

Note that tanh2(X±1(t)) = ±1. Define f on R such that for any x ∈ R,
f ′(x) = (ex + 1)

2
κ (χ−

max+2−κ/2). Since χ−
max ≥ κ/2 − 2, so f ′(x) ≥ 1 for

any x ∈ R. Thus f maps R onto R. Let Y(t) = f(X∞(t)), and Ã(t) =
f ′(X∞(t))A(t) ≥ 0. From Ito’s formula, we have

dY(t) = −√
κ f ′(X∞(t))dB(t) + Ã(t)dt.

Let M(t) = Y(t) − ∫ t
0 Ã(s)ds. Then we have Y(t) ≥ M(t) and dM(t) =

−√
κ f ′(X∞(t))dB(t). Let v(t) = ∫ t

0 κ f ′(X∞(s))2ds. Then v is a continu-
ous increasing function on [0,∞), and maps [0,∞) onto [0,∞). And
M(v−1(t)), 0 ≤ t < ∞, is a Brownian motion. Thus a.s. lim supt→∞ M(t) =
+∞. Since Y(t) ≥ M(t) for any t, so a.s. lim supt→∞ Y(t) = +∞. Since
X∞(t) = f −1(Y(t)), so a.s. lim supt→∞X∞(t) = +∞, as desired.

(ii) From symmetry, we suffice to show that a.s. β((0,∞)) ∩
(−∞, 0) = ∅. Fix any r+ ∈ (−∞, p−N− )∩Q and r− ∈ (p−1, 0)∩Q. We suf-
fice to show that a.s. β((0,∞))∩ (r+, r−) = ∅. Choose W that mapsH con-
formally ontoSπ such that W(0) = 0 and W(r±) = ±∞. Let q± j = W(p± j ),
1 ≤ j ≤ N±, and �q± = (q±1, . . . , q±N± ). Let q∞ = W(∞) ∈ (0,∞). Let
γ(t) = β(u−1(t)) for 0 ≤ t < S = u(T ), where u is a continuous increasing
function on [0, T ) such that scap(γ((0, t])) = t for any t ∈ [0, S). From
Lemma 2.3, γ(t), 0 ≤ t < S, is a strip SLE(κ;ρ∞, �ρ+, �ρ−) trace started
from (0; q∞, �q+, �q−).

Let ψ(t, · ) and η(t), 0 ≤ t < S, be the strip Loewner maps and driving
function, respectively, for the trace γ . Let X∞(t) = ψ(t, q∞)−η(t), qN++1 =
q−N−−1 = q∞, and X± j(t) = ψ(t, q± j)− η(t), 1 ≤ j ≤ N± + 1. Then there
is a Brownian motion B(t) such that X∞(t) satisfies:

dX∞(t) = −√
κdB(t) +

(
1 + ρ∞

2

)
coth2(X∞(t))dt

+
N+∑

j=1

ρj

2
coth2(Xj(t))dt +

N−∑

j=1

ρ− j

2
coth2(X− j(t))dt
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= −√
κdB(t) +

(
κ

2
− 2

)
coth2(X∞(t))dt

+
N+∑

j=1

χj

2
(coth2(Xj(t)) − coth2(Xj+1(t)))dt

+
N−∑

j=1

χ− j

2
(coth2(X− j(t)) − coth2(X− j−1(t)))dt.

Since Xj(t), 1 ≤ j ≤ N+ +1, lie on the boundary of Sπ in the counterclock-
wise direction; and X− j(t), 1 ≤ j ≤ N−+1, lie on the boundary of Sπ in the
clockwise direction, so we have ±(coth2(X± j(t)) − coth2(X±( j+1))) > 0
for 1 ≤ j ≤ N±. Since χ− j ≥ κ/2 − 2, 1 ≤ j ≤ N−, and χj ≤ χ+

max,
1 ≤ j ≤ N+, so for some adapted process A1(t) ≥ 0,

dX∞(t) = −√
κdB(t) − A1(t)dt +

(
κ

2
− 2

)
coth2(X∞(t))dt

+
(

κ

4
− 1

)
(coth2(X−1(t)) − coth2(X−N−−1(t)))dt

+ χ+
max

2
(coth2(X1(t)) − coth2(X N++1(t)))dt

= −√
κdB(t) − A1(t)dt

+
(

κ

4
− 1

)
(coth2(X−1(t)) + coth2(X∞(t)))dt

+ χ+
max

2
(coth2(X1(t)) − coth2(X∞(t)))dt.

We have coth2(X−1(t)) + coth2(X∞(t)) > 0 because X−1(t) ∈ Rπ and
X∞(t) ∈ (0,∞). Since κ ∈ (0, 4], so κ/4 − 1 ≤ 0. Thus for some adapted
process A2(t) ≥ A1(t) ≥ 0,

dX∞(t) = −√
κdB(t) − A2(t)dt + χ+

max

2
(coth2(X1(t)) − coth2(X∞(t)))dt.

For 0 ≤ t < S, since X∞(t) > 0, so

√
κB(t) ≤ χ+

max

2

∫ t

0
(coth2(X1(s)) − coth2(X∞(s)))ds.

Since 0 < X1(s) < X∞(s) for 0 ≤ s < S, so the integrand is positive. Thus
if χ+

max ≤ 0, then B(t) ≤ 0 for 0 ≤ t < S. Now suppose χ+
max > 0. Let

q1(t) = ψ(t, q1) and q∞(t) = ψ(t, q∞). From the strip Loewner equation,
for 0 ≤ t < S,

√
κB(t) ≤ χ+

max

2
(q1(s) − q∞(s))

∣∣s=t

s=0

≤ −χ+
max

2
(q1(s) − q∞(s))

∣∣
s=0 = χ+

max

2
(q∞ − q1),
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where the second “≤” follows from the fact that q1(t) < q∞(t). Thus in any
case, B(t) is uniformly bounded above on [0, S). So we have S < ∞ a.s.

For a hull H in Sπ w.r.t. Rπ , if scap(H) = s then the height of H is
no more than 2 cos−1(e−s/2), and the equality is attained when H is some
vertical line segment. Now for 0 ≤ t < S, scap(γ((0, t])) = t < S, so the
distance between γ((0, t]) and Rπ is bigger than π − 2 cos−1(e−S/2). Since
a.s. S < ∞, so γ((0, S)) is bounded away from Rπ . From the property of W
and the definition of γ , we conclude that a.s. β((0,∞)) is bounded away
from (r+, r−). So we are done. 
�
Theorem 3.2 Suppose x ∈ R, κ ∈ (0, 4], ρ1, ρ2 ≥ κ/2 − 2, and β(t),
0 ≤ t < ∞, is a chordal SLE(κ;ρ1, ρ2) trace started from (x; p1, p2).

(i) If p1 = x− and p2 = x+, then a.s. limt→∞ β(t) = ∞.
(ii) If p1 ∈ (−∞, x) and p2 ∈ (x,+∞), then a.s. limt→∞ β(t) = ∞.

Proof. We may suppose x = 0. We first consider the case that p1 =
x− = 0− and p2 = x+ = 0+. Let Z denote the set of subsequential
limits in H of β(t) as t → ∞. We suffice to show that Z = ∅ a.s. From
Lemma 2.1, for any a > 0, a2β(t), 0 ≤ t < ∞, has the same distribution as
β(at), 0 ≤ t < ∞, which implies that a2 Z has the same distribution as Z.
Thus we suffice to show that a.s. 0 /∈ Z.

Let ϕ(t, · ) and ξ(t) be the chordal Loewner maps and driving function
for the trace β. Choose Wt that maps (H; ξ(t), ϕ(t, 0+), ϕ(t, 0−)) conform-
ally onto (Sπ; 0,+∞,−∞), and let X∞(t) = Re Wt(∞). Then X∞(t) =
ln(ϕ(t, 0+)− ξ(t))− ln(ξ(t)−ϕ(t, 0−)). From the proof of Theorem 3.1 (i),
we see that a.s. lim sup X∞(t) = +∞ and lim inf X∞(t) = −∞. Thus a.s.
there is t ≥ 1 such that X∞(t) = 0, i.e., ϕ(t, 0+) − ξ(t) = ξ(t) − ϕ(t, 0−).
Let T denote the first t with this property. So T is a finite stopping time.

Let g(z) = (ϕ(T, z) − ξ(T ))/(ϕ(T, 0+) − ξ(T )) and f = g−1. Then
g maps H \ β((0, T ]) conformally onto H, g(β(T )) = 0; and f extends
continuously toH∪R such that f −1(0) = {−1, 1}. Let γ(t) = g(β(T + t)),
t ≥ 0. Then after a time-change, γ(t), 0 ≤ t < ∞, has the same dis-
tribution as a chordal SLE(κ;ρ1, ρ2) trace started from (0;−1, 1). From
Theorem 3.1 (ii), γ((0,∞)) is bounded away from {−1, 1} a.s. Thus a.s.
β([T,∞)) is bounded away from 0, which implies that 0 /∈ Z. So we
proved (i).

(ii) Suppose p1 ∈ (−∞, x) and p2 ∈ (x,∞). Let r = (p2 −x)/(x − p1).
Let β0(t) be a chordal SLE(κ;ρ1, ρ2) trace started from (0; 0−, 0+). Let
ϕ(t, · ) and ξ(t), 0 ≤ t < ∞, be the chordal Loewner maps and driving
function for the trace β0. Let X∞(t) be defined as in the last paragraph
with β replaced by β0. Then there is a.s. t ≥ 1 such that X∞(t) = ln(r),
i.e., (ϕ(t, 0+) − ξ(t))/(ξ(t) − ϕ(t, 0−)) = r. Let Tr denote this time. Since
(X∞(t)) is recurrent, T is a finite stopping time. Let

g(z) = x + (p2 − p1)(ϕ(Tr, z) − ξ(Tr))

ϕ(Tr, 0+) − ϕ(Tr, 0−)
.
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Then we see that g maps (H\β0((0, Tr]);β0(Tr), 0−, 0+) conformally onto
(H; x, p1, p2). So after a time-change, (g(β0(Tr + t)), 0 ≤ t < ∞), has the
same distribution as (β(t), 0 ≤ t < ∞). From (i), a.s. limt→∞ β0(t) = ∞,
so we have a.s. limt→∞ β(t) = ∞. 
�
Conjecture 1 (Reversibility) Suppose κ ∈ (0, 4), ρ−, ρ+ ≥ κ/2 − 2, and
β(t), 0 ≤ t < ∞, is a chordal SLE(κ;ρ−, ρ+) trace started from (0; 0−, 0+).
Let W(z) = 1/z. Then after a time-change, the reversal of (W(β(t))) has
the same distribution as (β(t)).

If κ = 0, the conjecture is trivial because the trace is a half line. If
ρ+ = ρ− = 0, i.e., β is a standard chordal SLE(κ) trace, the reversibility is
known in [19]. If κ = 4, the reversibility is a result of the convergence of
discrete Gaussian free field contour line in [13]; and is also a special case
of Theorem 5.5 in this paper. To prove this conjecture using the technique
in [19] and this paper, one may need to know the conditional distribution
of β(t), T1 ≤ t < T2, given its initial segment β([0, T1]) and final segment
β([T2,∞)), where T1 is a stopping time, T2 is a “backward” stopping time,
and T1 < T2. In the case that β is a standard chordal SLE(κ) trace, we find
that β(t), T1 ≤ t < T2, is a chordal SLE(κ) trace inH\(β((0, T1]∪[T2,∞)))
from β1(T1) to β2(T2), up to a time-change. If κ = 4, we will see in the
proof of Theorem 5.5 that after a time-change, β(t), T1 ≤ t < T2, is
a generic SLE(κ;ρ−, ρ+) trace in H \ (β((0, T1] ∪ [T2,∞))). In general,
this conditional distribution may not be an SLE(κ; �ρ) trace.

3.2 Two force points. We now study a strip SLE process with two force
points at ∞ and −∞. Let κ > 0 and ρ+, ρ− ∈ R. Suppose β(t), 0 ≤ t < T ,
is a strip SLE(κ;ρ+, ρ−) trace started from (0;+∞,−∞). Let σ =
(ρ− − ρ+)/2. Then T = ∞ and the driving function is ξ(t) = √

κB(t)+σt,
0 ≤ t < ∞, for some Brownian motion B(t). Let L(t) and ψ(t, · ),
0 ≤ t < ∞, be the strip Loewner hulls and maps, respectively, driven by ξ .

We first consider the case that |σ | < 1. Then ξ(t) satisfies

|ξ(t)| ≤ A(ω) + σ ′t, ∀t ≥ 0, (3.1)

where σ ′ := (1 + |σ |)/2 < 1 and A(ω) > 0 is a random number.

Lemma 3.1 If |σ | < 1, then L(∞) is bounded.

Proof. Let σ ′′ = (1+|σ ′|)/2. We may choose R > 0 such that Re coth2(z) >
σ ′′ when z ∈ Sπ and Re z ≥ R. From (3.1) there is a = a(ω) ≥ R + 1
such that R + 1 + ξ(t) − σ ′′t ≤ a for all t ≥ 0. Consider a point z ∈ Sπ
with Re z ≥ a. Suppose there is t such that Re ψ(t, z) − ξ(t) < R. Since
ψ(0, z) = z, so Re ψ(0, z) = Re z ≥ a > R. Since ξ(0) = 0, so
Re ψ(0, z) − ξ(0) ≥ a > R. Thus there is a first t0 such that Re ψ(t0, z) −
ξ(t0) = R. For t ∈ [0, t0], we have Re ψ(t, z) − ξ(t) ≥ R, and so

∂t Re ψ(t, z) = Re coth2(ψ(t0, z) − ξ(t0)) ≥ σ ′′.
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Integrating the above inequality w.r.t. t from 0 to t0, we get

R = Re ψ(t0, z) − ξ(t0) ≥ Re ψ(0, z) + σ ′′t0 − ξ(t0)

≥ a + σ ′′t0 − ξ(t0) ≥ R + 1,

where the last inequality uses the property of a. So we get a contradiction.
Therefore Re ψ(t, z) − ξ(t) ≥ R for all t ≥ 0. So ψ(t, z) will never blow
up, which means that z /∈ L(t) for all t ≥ 0, and so z /∈ L(∞). Similarly,
there is a′ = a′(ω) > 0 such that if z ∈ Sπ and Re z ≤ −a′ then z /∈ L(∞).
Thus L(∞) is contained in {x + iy : −a′ < x < a, 0 < y < π}, and so is
bounded. 
�

Let

fκ,σ (x) =
∫ x

−∞
exp(s/2)

4σ
κ cosh2(s)

− 4
κ ds. (3.2)

Since |σ | < 1, so fκ,σ mapsR onto the interval (0, Aκ,σ ) for some Aκ,σ < ∞.
Let

Xt(z) = Re ψ(t, z) − ξ(t).

Now fix z0 = x0 + πi ∈ Rπ . Then ψ(t, z0) ∈ Rπ for all t. Let Xt denote
Xt(z0) temporarily. Then dXt = tanh2(Xt)dt − dξ(t). From Ito’s formula,
we have

d fκ,σ (Xt) = − exp(Xt/2)
4σ
κ cosh2(Xt)

− 4
κ
√

κdB(t).

Thus fκ,σ (Xt) is a local martingale.
Let u(0) = 0 and u′(t) = [exp(Xs/2)

4σ
κ cosh2(Xs)

− 4
κ
√

κ]2. Then u
is a continuous increasing function. Let T = u(∞) ∈ (0,+∞], and
v = u−1. Then ( fκ,σ (Xv(t)), 0 ≤ t < T ) has the same distribution as
(B(t), 0 ≤ t < T ). Since fκ,σ (Xv(t)) stays inside (0, Aκ,σ ), so from the prop-
erty of Brownian motion, we have a.s. T < ∞ and limt→T fκ,σ (Xv(t)) exists.
If limt→T fκ,σ (Xv(t)) is neither 0 nor Aκ,σ , then fκ,σ (Xv(t)) is uniformly
bounded away from 0 and Aκ,σ on [0, T ), so Xt is uniformly bounded
on [0,∞), which implies that u′(t) is uniformly bounded below, and so
T = u(∞) = ∞. Since T < ∞ a.s., so limt→T fκ,σ (Xv(t)) ∈ {0, Aκ,σ } a.s.
Thus limt→∞ Xt ∈ {±∞} a.s. Moreover, the probability that Xt → +∞ is
equal to fκ,σ (x0)/Aκ,σ by the Markov property.

Define

J+ = inf{x ∈ R : lim
t→∞ Xt(x + πi) = +∞};

J− = sup{x ∈ R : lim
t→∞ Xt(x + πi) = −∞}.

Since x1 < x2 implies Re ψ(t, x1 + πi) < Re ψ(t, x2 + πi) for all t, so
we have J− ≤ J+; and for x < J−, Xt(x + πi) → −∞, for x > J+,
Xt(x + πi) → +∞ as t → ∞. Hence P{J+ < x} ≤ fκ,σ (x)/Aκ,σ ≤
P{J− ≤ x} for all x ∈ R. Since fκ,σ is strictly increasing, so J− = J+ a.s.
By discarding an event of probability 0, we may assume that J+ = J−, and
let it be denoted by J . The density of J is exp(x/2)

4σ
κ cosh2(x)− 4

κ /Aκ,σ .



Duality of chordal SLE

Lemma 3.2 L(∞) ∩ Rπ = {J + πi}.
Proof. If J + πi /∈ L(∞), then there are b, c > 0 such that dist(x + πi,
L(∞)) > c for all x ∈ [J − b, J + b]. From the definition of J , Xt(J ±
b + πi) → ±∞ as t → ∞. Thus Re ψ(t, J + b + πi) − Re ψ(t, J −
b + πi) → +∞ as t → ∞. By mean value theorem, for each t, there is
xt ∈ [J − b, J + b] such that |∂zψ(t, xt + πi)| → ∞ as t → ∞. From
Koebe’s 1/4 theorem, we conclude that dist(xt + πi, L(t)) → 0, which is
a contradiction. Thus J + πi ∈ L(∞).

Suppose x0 > J . Then Xt(x0 + πi) → +∞ as t → ∞. Thus ∂tψ(t,
x0 + πi) → 1 as t → ∞. Recall that 0 < σ ′ < 1, and |ξ(t)| ≤ A(ω) + σ ′t
for all t ≥ 0. So there is H > 0 such that when t ≥ H , Xt(x0 + πi) =
Re ψ(t, x0 + πi) − ξ(t) > 1−σ ′

2 t. So Xt(x + πi) > 1−σ ′
2 t for all x ≥ x0 and

t ≥ H .
Differentiate (2.3) w.r.t. z, then we get

∂t∂zψ(t, z) = −1/2 · ∂zψ(t, z) · sinh2(ψ(t, z) − ξ(t))−2.

Thus

∂t ln |∂zψ(t, z0)| = Re
(−1/2 · sinh2(ψ(t, z0) − ξ(t))−2). (3.3)

It follows that for all x ≥ x0,

|∂zψ(t, x + πi)| = exp
( ∫ t

0
Re

( −1/2

sinh2(ψ(s, x + πi) − ξ(s))2

)
ds

)

= exp
( ∫ t

0
Re

( −1/2

sinh2(Xs(x + πi) + πi)2

)
ds

)

= exp
( ∫ t

0

1/2

cosh2(Xs(x + πi))2
ds

)

≤ exp

(∫ H

0

ds

2
+

∫ ∞

H

1

2 cosh2
(

1−σ ′
2 s

)2 ds

)
< +∞.

Then by Koebe’s 1/4 theorem, for all x ≥ x0, x +πi is bounded away from
L(∞) uniformly. Thus L(∞) is disjoint from [x0 +πi,+∞) for all x0 > J .
So L(∞) is disjoint from (J + πi,+∞). Similarly, L(∞) is disjoint from
(−∞, J + πi). Thus L(∞) intersects Rπ only at J + πi. 
�
Theorem 3.3 If κ ∈ (0, 4] and |σ | < 1, then a.s. limt→∞ β(t) ∈ Rπ .

Proof. Let Q = ⋂
0≤t<∞ β[t,∞). By Lemma 3.1, Q is nonempty and

compact. Suppose ξ̃ has the same law as ξ , and is independent of ξ . Let β̃(t)
and ψ̃(t, · ), 0 ≤ t < ∞, be the strip Loewner trace and maps driven by ξ̃ ,
respectively. Let (F̃t) be the filtration generated by ξ̃ . For h ∈ (0, 1), let Th
be the first t such that Im β̃(t) = π −h. From Lemma 3.2, Th is a finite (F̃t)-



D. Zhan

stopping time. Let ξ∗(t) = ξ̃(t) for 0 ≤ t ≤ Th ; ξ∗(t) = ξ̃(Th) + ξ(t − Th)
for t ≥ Th . Then ξ∗ has the same distribution as ξ . Let β∗(t) be the strip
Loewner trace driven by ξ∗. Then β∗(t) = WTh (β(t − Th)) for t ≥ Th , where
WTh (z) := ψ̃(Th, · )−1(̃ξ(Th) + z). Since β∗ has the same distribution as β,
so WTh (Q) has the same law as Q.

Let Λ− denote the set of curves in Sπ \ β̃((0, Th]) that connecting
(−∞, 0) with the union of [0,∞) and the righthand side of β̃((0, Th]).
Let p = Re β̃(Th) + πi, and A = {z ∈ Sπ : h < |z − p| < π}. Then
every curve in Λ− crosses A. Thus the extremal length [1] of Λ− is at least
(ln(π) − ln(h))/π. From the property of ψTh , WTh maps Sπ conformally
onto Sπ \ β̃((0, Th]). There are ch < 0 < dh such that WTh ((−∞, ch]) =
(−∞, 0] and WTh ([dh,∞)) = [0,∞). Since κ ∈ (0, 4], so WTh ((ch, dh)) =
β((0, Th]) ⊂ Sπ . Moreover, WTh (0) = β̃(Th), and WTh maps [0, dh) to
the righthand side of β̃((0, Th]). From conformal invariance of extremal
length, the extremal distance between (−∞, ch) and [0,∞) in Sπ is not less
than (ln(π) − ln(h))/π. Thus ch → −∞ uniformly as h → 0. Similarly,
dh → +∞ uniformly as h → 0.

For any z ∈ Sπ , we have Im WTh (z) ≥ Im z; and the strict inequality holds
when z ∈ Sπ or z ∈ (ch, dh). Thus min{Im WTh (Q)} ≥ min{Im Q}. Since
WTh (Q) has the same law as Q, so a.s. min{Im WTh (Q)} = min{Im Q}. Sup-
pose now Q �⊂ Rπ holds with a positive probability. Since Q is a bounded
set, there is R > 0 such that P[ER] > 0, where ER denotes the event that
Q ⊂ {z : | Re z| < R} and Q �⊂ Rπ both hold. If h is small enough, we
have |ch |, |dh | > R. Assume that ER occurs. For any z ∈ Q \ Rπ , either
z ∈ Sπ or z ∈ (ch, dh). In both cases, we have Im WTh (z) > Im z. Thus
min{Im WTh (Q)} > min{Im Q} on ER, which is a contradiction. Thus a.s.
Q ⊂ Rπ . From Lemma 3.2, we have a.s. Q = {J + πi}, which means that
limt→∞ β(t) = J + πi. 
�

Now we consider the case that |σ | ≥ 1.

Theorem 3.4 If κ ∈ (0, 4] and ±σ ≥ 1, then almost surely limt→∞ β(t) =
±∞.

Proof. Let σ ≥ 1. Let W(z) = ez − 1. Then W maps (Sπ; 0,+∞,−∞)
conformally onto (H; 0,∞,−1). From Lemma 2.3, after a time-change,
W(β(t)), 0 ≤ t < ∞, has the same distribution as a chordal SLE(κ; κ

2 −3+σ)
trace started from (0;−1), which is also a chordal SLE(κ; κ

2 −3+σ, 0) trace
started from (0;−1, 1). Since σ ≥ 1, so κ

2 −3+σ ≥ κ
2 −2. Since κ ∈ (0, 4],

so 0 ≥ κ
2 −2. Thus from Theorem 3.2 (ii), a.s. limt→∞ W(β(t)) = ∞, which

implies that limt→∞ β(t) = +∞. The case σ ≤ −1 is similar. 
�
Remark. Theorems 3.3 and 3.4 should hold true in the case κ > 4. For
example, the only part that the condition κ ∈ (0, 4] is used in the proof of
Theorem 3.3 is that Im WTh (x) > 0 = Im x for ch < x < dh . If this is not
true for any κ > 4, then we get some cut point of the hull that lies on the
real line, which does not seem to be possible. If κ > 4 in Theorem 3.4, we
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can prove that if σ ≥ 1 (resp. σ ≤ −1), then L(∞) is bounded from left
(resp. right) and unbounded from right (resp. left), and L(∞) ∩ Rπ = ∅.

3.3 Three or four force points. First, we consider a strip Loewner process
with three force points. Let κ > 0 and ρ+ + ρ− + ρ = κ − 6. Suppose β(t),
0 ≤ t < T , is a strip SLE(κ;ρ+, ρ−, ρ) trace started from (0;+∞,−∞, p)
for some p ∈ Rπ . Then T = ∞. Let p̄ = Re p. Then the driving function
ξ(t), 0 ≤ t < ∞, is the solution to the SDE:

{
dξ(t) = √

κdB(t) + ρ−−ρ+
2 dt − ρ

2 tanh2( p̄(t) − ξ(t))dt;
dp̄(t) = tanh2( p̄(t) − ξ(t))dt.

(3.4)

Here p̄(t) ∈ R and p̄(t) + πi = ψ(t, p) for any t ≥ 0, where ψ(t, · ),
0 ≤ t < ∞, are strip Loewner maps driven by ξ . Let X(t) = p̄(t) − ξ(t).
Then X(t) satisfies the SDE:

dX(t) = −√
κdB(t) − ρ− − ρ+

2
dt +

(
1 + ρ

2

)
tanh2(X(t))dt. (3.5)

Suppose f is a real valued function on R, and for any x ∈ R,

f ′(x) = exp(x/2)
4
κ · ρ−−ρ+

2 cosh2(x)
− 4

κ (1+ ρ
2 ).

From Ito’s formula, f(X(t)) is a local martingale.
Let I = f(R). Recall that ρ = κ − 6 − ρ+ − ρ−. If ρ+ ≥ κ/2 − 2 and

ρ− ≥ κ/2 − 2, then I = R, so a.s. lim sup X(t) = +∞ and lim inf X(t) =
−∞. If ρ+ < κ/2 − 2 and ρ− ≥ κ/2 − 2, then I = (a,∞) for some
a ∈ R, so a.s. lim X(t) = −∞. If ρ+ ≥ κ/2 − 2 and ρ− < κ/2 − 2, then
I = (−∞, b) for some b ∈ R, so a.s. lim X(t) = +∞. If ρ+ < κ/2 − 2
and ρ− < κ/2 − 2, then I = (a, b) for some a, b ∈ R, so with some
probability P ∈ (0, 1), lim X(t) = −∞; and with probability 1 − P,
lim X(t) = +∞.

Let I1 = [κ/2−2,∞), I2 = (κ/2−4, κ/2−2), and I3 = (−∞, κ/2−4].
Let Case ( jk) denote the case that ρ+ ∈ Ij and ρ− ∈ Ik. We use (p,+∞) or
(−∞, p) to denote the open subarc of Rπ between p and +∞ or between p
and −∞, respectively.

Theorem 3.5 Suppose κ ∈ (0, 4]. In Case (11), a.s. limt→∞ β(t) = p.
In Case (12), a.s. limt→∞ β(t) ∈ (−∞, p). In Case (21), a.s. limt→∞ β(t) ∈
(p,+∞). In Case (13), a.s. limt→∞ β(t) = −∞. In Case (31), a.s.
limt→∞ β(t) = +∞. In Case (22), a.s. limt→∞ β(t) ∈ (−∞, p) or ∈
(p,+∞). In Case (23), a.s. limt→∞ β(t) = −∞ or ∈ (p,+∞). In Case (32),
a.s. limt→∞ β(t) ∈ (−∞, p) or = +∞. In Case (33), a.s. limt→∞ β(t) =
−∞ or = +∞. And in each of the last four cases, both events happen with
some positive probability.
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Proof. The result in Case (11) follows from Theorem 3.2 and Lemma 2.3.
Now consider Case (12). We have a.s. lim X(t) = +∞. Let Y(t) = X(t) +√

κB(t). From (3.5), a.s.

Y ′(t) = −ρ− − ρ+
2

+
(

1 + ρ

2

)
tanh2(X(t))

→ ρ + ρ+ − ρ−
2

+ 1 = κ

2
− 2 − ρ−

as t → ∞. Thus a.s.

lim
t→∞ X(t)/t = lim

t→∞ Y(t)/t = κ/2 − 2 − ρ− > 0. (3.6)

From (3.4), we see that as t → ∞, the SDE for ξ(t) tends to dξ(t) =√
κdB(t) + σdt, where σ := ρ−−ρ+

2 − ρ/2 = ρ− − (κ/2 − 3) ∈ (−1, 1).
From Theorem 3.3, it is reasonable to guess that a.s. limt→∞ β(t) ∈ Rπ .
This will be rigorously proved below.

Let

a(t) = ρ/2√
κ

(1 − tanh2(X(t))); (3.7)

M(t) = exp
(

−
∫ t

0
a(s)dB(s) − 1

2

∫ t

0
a(s)2ds

)
. (3.8)

From (3.6), a.s.
∫ ∞

0 a(t)2dt < ∞, so a.s. limt→∞ M(t) ∈ (0,∞). From Ito’s
formula, M(t) is a positive local martingale, and dM(t)/M(t) = −a(t)dB(t).
For N ∈ N, let TN ∈ [0,∞] be the largest number such that M(t) ∈
(1/N, N) for 0 ≤ t < TN . Then TN is a stopping time, M(t ∧ TN ) is
a bounded martingale, and P[{TN = ∞}] → 1 as N → ∞. Define Q
such that dQ = M(TN )dP, where M(∞) := limt→∞ M(t). Then Q is also
a probability measure. For t ≥ 0, let B̃(t) = B(t) + ∫ t

0 a(s)ds. From (3.4),
we have

ξ(t) = ξ(0) + √
κ B̃(t) + σt.

From Girsanov theorem, B̃(t), 0 ≤ t < TN , is a partial Q-Brownian
motion. Since κ ∈ (0, 4] and |σ | < 1, so from Theorem 3.3, Q-a.s.
limt→TN β(t) ∈ Rπ on {TN = ∞}. Since 1/N ≤ dQ /dP ≤ N, so Q is
equivalent to P. Thus (P-)a.s. limt→TN β(t) ∈ Rπ on {TN = ∞}. For any
ε > 0, there is N such that P[{TN = ∞}] > 1 − ε. Thus with probability
greater than 1 − ε, limt→∞ β(t) ∈ Rπ . Since ε > 0 is arbitrary, so a.s.
limt→∞ β(t) ∈ Rπ . Now for any x ∈ R and x ≥ p̄, ψ(t, x + πi) ∈ Rπ and
Re ψ(t, x + πi) ≥ Re ψ(t, p̄ + πi) for any t ≥ 0. Thus Re ψ(t, x + πi) −
ξ(t) → ∞ as t → ∞. From an argument in the proof of Lemma 3.2, we
have dist(x + πi, β((0,∞))) > 0. Thus limt→∞ β(t) /∈ [p,+∞), so a.s.
limt→∞ β(t) ∈ (−∞, p).

Now consider Case (13). The argument is similar to that in Case (12)
except that now σ = ρ− − (κ/2 − 3) ≤ −1, so from Theorem 3.4, we have
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a.s. limt→∞ β(t) = −∞. Cases (21) and (31) are symmetric to the above two
cases. In Case (22), a.s. limt→∞ X(t) = +∞ or = −∞. If limt→∞ X(t) =
+∞, then as t → ∞, the SDE for ξ(t) tends to dξ(t) = √

κdB(t) + σdt,
where σ = ρ− − (κ/2 − 3) ∈ (−1, 1). Using the argument in Case (12), we
get a.s. limt→∞ β(t) ∈ (−∞, p) whenever limt→∞ X(t) = +∞. Similarly,
a.s. limt→∞ β(t) ∈ (p,+∞) whenever limt→∞ X(t) = −∞. The arguments
in the other three cases are similar to that in Case (22). 
�

Next, we consider a strip Loewner process with four force points. Let
κ > 0 and ρ+ + ρ− + ρ1 + ρ2 = κ − 6. Suppose β(t), 0 ≤ t < T , is a strip
SLE(κ;ρ+, ρ−, ρ1, ρ2) trace started from (0;+∞,−∞, p1, p2) for some
p1, p2 ∈ R with p1 > 0 > p2. Then the driving function ξ(t), 0 ≤ t < T ,
is the maximal solution to the SDE:

{
dξ(t) = √

κdB(t) + ρ−−ρ+
2 dt − ∑2

j=1
ρj

2 coth2(pj(t) − ξ(t))dt;
dpj(t) = coth2(pj(t) − ξ(t))dt, j = 1, 2.

(3.9)

Here pj(t) = ψ(t, pj) ∈ R, 0 ≤ t < T , j = 1, 2, where ψ(t, · ), 0 ≤ t < T ,
are strip Loewner maps driven by ξ .

Theorem 3.6 Suppose κ ∈ (0, 4], ρ1, ρ2 ≥ κ−4
2 , |(ρ1 +ρ+)−(ρ2 +ρ−)|<2,

and min{ρ1, ρ2} ≤ 0. Then a.s. T = ∞ and limt→∞ β(t) ∈ Rπ .

Proof. We only consider the case that ρ2 ≤ 0. The case ρ1 ≤ 0 is symmetric.
Let Xj(t) = pj(t) − ξ(t), j = 1, 2. Then X1(t) > 0 > X2(t), 0 ≤ t < T .
And we have

dX1(t) = −√
κdB(t) − ρ− − ρ+

2
dt

+
(

1 + ρ1

2

)
coth2(X1(t))dt + ρ2

2
coth2(X2(t))dt.

Define f on (0,∞) such that for any x > 0,

f ′(x) = exp(x/2)
4
κ · ρ−−ρ++ρ2

2 sinh2(x)
− 4

κ (1+ ρ1
2 ).

Then for any x > 0,

κ

2
f ′′(x) = f ′(x)

(
ρ− − ρ+ + ρ2

2
−

(
1 + ρ1

2

)
coth2(x)

)
.

Let Y(t) = f(X1(t)) for any t ∈ [0, T ). From Ito’s formula, we have

dY(t) = −√
κ f ′(X1(t))dB(t) + ρ2

2
f ′(X1(t))(1 + coth2(X2(t)))dt.

From the conditions of ρj’s, f maps (0,∞) onto (−∞, b) for some b ∈ R.
Since ρ2 ≤ 0 and X2(t) < 0, so the drift is non-negative. Thus a.s.
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limt→T Y(t) = b, which implies that limt→T X1(t) = +∞. Let Z(t) =
X1(t) + √

κB(t). Since coth2(X2(t)) < −1 and ρ2 ≤ 0, so if T = ∞, then
as t → ∞,

Z ′(t) ≥ ρ+ − ρ− − ρ2

2
+

(
1 + ρ1

2

)
coth2(X1(t))

→ 1 + ρ+ + ρ1 − ρ− − ρ2

2
.

Then lim inf t→∞ X1(t)/t = lim inf t→∞ Z(t)/t ≥ σ := 1 + (ρ+ + ρ1 −
ρ− − ρ2)/2 > 0.

Let a(t) and M(t) be defined by (3.7) and (3.8) except that ρ and
tanh2(X(t)) in (3.7) are replaced by ρ1 and coth2(X1(t)), respectively. If
T = ∞, since lim inf t→∞ X1(t)/t ≥ σ > 0, so a.s. limt→∞ M(t) ∈ (0,∞).
This is clearly true if T < ∞ because a(s) is bounded. Let B̃(t) =
B(t) + ∫ t

0 a(s)ds, 0 ≤ t < T . From (3.9) we have

dξ(t) = √
κdB̃(t) + ρ− − ρ+ − ρ1

2
dt − ρ2

2
coth2(X2(t))dt.

If under some probability measure Q, (B̃(t)) is a partial Brownian mo-
tion, then β(t), 0 ≤ t < T , is a partial strip SLE(κ;ρ′+, ρ−, ρ2) pro-
cess started from (0;+∞,−∞, p2), where ρ′+ = ρ+ + ρ1. Since ρ′+ +
ρ− + ρ2 = κ − 6, ρ′+ ∈ (κ/2 − 4, κ/2 − 2) and ρ2 ≥ κ/2 − 2, so from
Lemma 2.2 and Theorem 3.6, we have Q-a.s. limt→T β(t) ∈ Rπ ∪ Sπ . From
the proof in Case (12) of Theorem 3.6, we have a.s. limt→T β(t) ∈ Rπ ∪ Sπ .
Since β is a full trace, it separates either p1 or p2 from Rπ in Sπ , so
limt→T β(t) ∈ Sπ is not possible. Thus limt→T β(t) ∈ Rπ a.s. This implies
that T = limt→T scap(β((0, t])) = ∞. 
�

4 Coupling of two SLE processes

Let κ1, κ2 > 0; κ1κ2 = 16; ρj,m ∈ R, 1 ≤ m ≤ N, j = 1, 2, N ∈ N;
ρ2,m = −κ2ρ1,m/4, 1 ≤ m ≤ N; x1, x2, p1, . . . , pN ∈ R are distinct points.
Let �ρj = (ρj,1, . . . , ρj,N), j = 1, 2, and �p = (p1, . . . , pN ). Note that if
κ1 = κ2 = 4, then �ρ1+ �ρ2 = �0; if κ1, κ2 �= 4, then �ρ1/(κ1−4) = �ρ2/(κ2−4).
The goal of this section is to prove the following theorem.

Theorem 4.1 There is a coupling of K1(t), 0 ≤ t < T1, and K2(t), 0 ≤
t < T2, such that (i) for j = 1, 2, Kj(t), 0 ≤ t < Tj, is a chordal
SLE(κj;− κj

2 , �ρj) process started from (xj; x3− j , �p); and (ii) for j �=
k ∈ {1, 2}, if t̄k is an (F k

t )-stopping time with t̄k < Tk, then conditioned
on F k

t̄k
, ϕk(t̄k, Kj(t)), 0 ≤ t ≤ Tj(t̄k), has the same distribution as a time-

change of a partial chordal SLE(κj;− κj

2 , �ρj) process started from
(ϕk(t̄k, xj); ξk(t̄k), ϕk(t̄k, �p)), where ϕk(t, �p) = (ϕk(t, p1), . . . , ϕk(t, pN )),
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ϕk(t, · ) = ϕKk(t), Tj(t̄k) ∈ (0, Tj ] is the largest number such that Kj(t) ∩
Kk(t̄k) = ∅ for 0 ≤ t < Tj(t̄k), and (F

j
t ) is the filtration generated by

(Kj(t)), j = 1, 2.

In many cases we can prove that ϕk(t̄k, Kj(t)), 0 ≤ t ≤ Tj(t̄k), has the
same distribution as a time-change of a full chordal SLE(κj;− κj

2 , �ρj) pro-
cess started from (ϕk(t̄k, xj); ξk(t̄k), ϕk(t̄k, �p)). From the property of Tj(t̄k),⋃

0≤t<Tj (t̄k)
Kj(t) touches Kk(t̄k), so

⋃
0≤t<Tj(t̄k)

ϕk(t̄k, Kj(t)) touches R. So
the chain can not be further extended while staying bounded away from the
boundary. Thus if κj ≤ 4, it is a full process. Another case is when there
is some force point pk that lies between x1 and x2. Then

⋃
0≤t<Tj(t̄k)Kj(t)

separates ϕk(t̄k, pk) from ∞. So again we get a full process.

4.1 Ensembles. Let’s review the results in Sect. 3 of [19]. For j = 1, 2,
let Kj(t) and ϕj(t, · ), 0 ≤ t < Sj , be chordal Loewner hulls and maps driven
by ξj ∈ C([0, Sj)). Suppose K1(t1) ∩ K2(t2) = ∅ for any t1 ∈ [0, S1) and
t2 ∈ [0, S2). For j �= k ∈ {1, 2}, t0 ∈ [0, Sk) and t ∈ [0, Sj), let

Kj,t0(t) = (Kj(t) ∪ Kk(t0))/Kk(t0), ϕj,t0(t, · ) = ϕKj,t0(t). (4.1)

Then for any t1 ∈ [0, S1) and t2 ∈ [0, S2),

ϕK1(t1)∪K2(t2) = ϕ1,t2(t1, · ) ◦ ϕ2(t2, · ) = ϕ2,t1(t2, · ) ◦ ϕ1(t1, · ). (4.2)

We use ∂1 and ∂z to denote the partial derivatives of ϕj( · , · ) and ϕj,t0( · , · )
w.r.t. the first (real) and second (complex) variables, respectively, inside the
bracket; and use ∂0 to denote the partial derivative of ϕj,t0( · , · ) w.r.t. the
subscript t0. From (3.10)–(3.14) in Sect. 3 of [19], we have

∂0ϕk,t(s, ξj(t)) = −3∂2
z ϕk,t(s, ξj(t)); (4.3)

∂0∂zϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))
= 1

2
·
(

∂2
z ϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))

)2

− 4

3
· ∂3

z ϕk,t(s, ξj(t))

∂zϕk,t(s, ξj(t))
; (4.4)

∂1ϕj,t0(t, z) = 2∂zϕk,t(t0, ξj(t))2

ϕj,t0(t, z) − ϕk,t(t0, ξj(t))
; (4.5)

∂1∂zϕj,s(t, z)

∂zϕj,s(t, z)
= −2∂zϕk,t(s, ξj(t))2

(ϕj,s(t, z) − ϕk,t(s, ξj(t)))2
; (4.6)

∂1

(
∂2

z ϕj,s(t, z)

∂zϕj,s(t, z)

)
= 4∂zϕk,t(s, ξj(t))2∂zϕj,s(t, z)

(ϕj,s(t, z) − ϕk,t(s, ξj(t)))3
; (4.7)

∂1∂z

(
∂2

z ϕj,s(t, z)

∂zϕj,s(t, z)

)
= 4∂zϕk,t(s, ξj(t))2∂2

z ϕj,s(t, z)

(ϕj,s(t, z) − ϕk,t(s, ξj(t)))3

− 12∂zϕk,t(s, ξj(t))2∂zϕj,s(t, z)2

(ϕj,s(t, z) − ϕk,t(s, ξj(t)))4
. (4.8)



D. Zhan

4.2 Martingales. Suppose x1, x2, p1, . . . , pN are distinct points on R. Let
ξj ∈ C([0, Tj)), j = 1, 2, be two independent semi-martingales that satisfy
d〈ξj(t)〉 = κjdt, where κ1, κ2 > 0. Let ϕ(t, · ) and Kj(t), 0 ≤ t < ∞, be
chordal Loewner maps and hulls driven by ξj , j = 1, 2. Let

D := {
(t1, t2) : K1(t1) ∩ K2(t2) = ∅,

ϕ(tj, pm) does not blow up, 1 ≤ m ≤ N, j = 1, 2
}
. (4.9)

For (t1, t2) ∈ D , j �= k ∈ {1, 2}, and h ∈ Z≥0, define Aj,h(t1, t2) =
∂h

z ϕk,tj (tk, ξj(tj)). For (t1, t2) ∈ D , 1 ≤ m ≤ N, and h ∈ Z≥0, let
Bm,h(t1, t2) = ∂h

z ϕK1(t1)∪K2(t2)(pm). For j = 1, k = 2, and 1 ≤ m ≤ N, we
have the following SDEs:

∂j Aj,0 = Aj,1∂ξj(tj) +
(

κj

2
− 3

)
Aj,2∂tj; (4.10)

∂j Aj,1

Aj,1
= Aj,2

Aj,1
∂ξj(tj) +

(
1

2
· A2

j,2

A2
j,1

+
(

κj

2
− 4

3

)
· Aj,3

Aj,1

)
∂tj; (4.11)

∂j Ak,0 = 2A2
j,1

Ak,0 − Aj,0
∂tj,

∂j Ak,1

Ak,1
= −2A2

j,1

(Ak,0 − Aj,0)
2
∂tj; (4.12)

∂j Bm,0 = 2A2
j,1

Bm,0 − Aj,0
∂tj,

∂j Bm,1

Bm,1
= −2A2

j,1

(Bm,0 − Aj,0)2
∂tj . (4.13)

Here ∂j means the partial derivative w.r.t. tj . Note that (4.10) and (4.11)
are (4.10) and (4.11) in [19]; (4.12) follows from (4.5) and (4.6) here;
and (4.13) follows from (4.5), (4.6), and (4.2). By symmetry, (4.10)–(4.13)
also hold for j = 2 and k = 1.

For j �= k ∈ {1, 2}, let Ej,0 = Aj,0 − Ak,0 = −Ek,0; Ej,m =
Aj,0 − Bm,0, 1 ≤ m ≤ N; and Cm1,m2 = Bm1,0 − Bm2,0, 1 ≤ m1 < m2 ≤ N.
From (4.10), (4.12), and (4.13), for 0 ≤ m ≤ N,

∂j Ej,m

Ej,m
= Aj,1

Ej,m
∂ξj(tj) +

((
κj

2
− 3

)
· Aj,2

Ej,m
+ 2

A2
j,1

E2
j,m

)
∂tj . (4.14)

From (4.12) and (4.13), for 1 ≤ m ≤ N and 1 ≤ m1 < m2 ≤ N

∂j Ek,m

Ek,m
= −2A2

j,1

Ej,0Ej,m
∂tj,

∂jCm1,m2

Cm1,m2

= −2A2
j,1

Ej,m1 Ej,m2

∂tj . (4.15)

Now suppose κ1κ2 = 16. For j = 1, 2, let

αj = 6 − κj

2κj
, λj = (8 − 3κj)(6 − κj)

2κj
. (4.16)
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Then λ1 = λ2. Let it be denoted by λ. From (4.11) and (4.12), we have

∂j A
αj

j,1

A
αj

j,1

= 6 − κj

2κj
· Aj,2

Aj,1
∂ξj(tj) + λ

(
1

4
· A2

j,2

A2
j,1

− 1

6
· Aj,3

Aj,1

)
∂tj; (4.17)

∂j Aαk
k,1

Aαk
k,1

= −2αk

A2
j,1

E2
j,0

∂tj = −3κj − 8

8

A2
j,1

E2
j,0

∂tj . (4.18)

Suppose �ρj = (ρj,1, . . . , ρj,N) ∈ RN , j = 1, 2, and �ρ2 = − κ2
4 �ρ1. Let

ρ∗
j,m = ρj,m/κj , 1 ≤ m ≤ N, j = 1, 2. Then ρ∗

2,m = −κ1ρ
∗
1,m/4 and ρ∗

1,m =
−κ2ρ

∗
2,m/4 for 1 ≤ m ≤ N. From (4.14) and (4.15), for j �= k ∈ {1, 2} and

1 ≤ m ≤ N, we have

∂j |Ej,m|ρ∗
j,m

|Ej,m|ρ∗
j,m

= ρ∗
j,m

Aj,1

Ej,m
∂ξj(tj) + ρ∗

j,m · κj − 6

2
· Aj,2

Ej,m
∂tj

+
(

κj

2
ρ∗

j,m(ρ∗
j,m − 1) + 2ρ∗

j,m

)
A2

j,1

E2
j,m

∂tj; (4.19)

∂j |Ek,m |ρ∗
k,m

|Ek,m |ρ∗
k,m

= −2ρ∗
k,m

A2
j,1

Ej,0Ej,m
∂tj = κjρ

∗
j,m

2
· A2

j,1

Ej,0Ej,m
∂tj . (4.20)

Let E = |E1,0| = |E2,0|. From (4.14), for j = 1, 2,

∂j E−1/2

E−1/2
= −1

2
· Aj,1

Ej,0
∂ξj(tj) +

(
6 − κj

4
· Aj,2

Ej,0
+ 3κj − 8

8

A2
j,1

E2
j,0

)
∂tj .

(4.21)

For 1 ≤ m ≤ N, let

γm = κ1

4
ρ∗

1,m(ρ∗
1,m − 1) + ρ∗

1,m = κ2

4
ρ∗

2,m(ρ∗
2,m − 1) + ρ∗

2,m.

For j = 1, 2, from (4.13) we have

∂j Bγm
m,1

Bγm
m,1

= −
(

κj

2
ρ∗

j,m(ρ∗
j,m − 1) + 2ρ∗

j,m

)
A2

j,1

E2
j,m

∂tj . (4.22)

For 1 ≤ m1 < m2 ≤ N, let

δm1,m2 = κ1

2
ρ∗

1,m1
ρ∗

1,m2
= κ2

2
ρ∗

2,m1
ρ∗

2,m2
.

From (4.15), for j = 1, 2,

∂j|Cm1,m2 |δm1,m2

|Cm1,m2 |δm1,m2
= −κjρ

∗
j,m1

ρ∗
j,m2

A2
j,1

Ej,m1 Ej,m2

∂tj . (4.23)
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For (t1, t2) ∈ D , let

F(t1, t2) = exp
( ∫ t2

0

∫ t1

0

2A1,1(s1, s2)A2,1(s1, s2)

E(s1, s2)2
ds1ds2

)
. (4.24)

From (4.15) in [19], for j = 1, 2,

∂j F−λ

F−λ
= −λ

(
1

4
· A2

j,2

A2
j,1

− 1

6
· Aj,3

Aj,1

)
∂tj. (4.25)

Let

M̃ = Aα1
1,1 Aα2

2,1

E1/2
F−λ

N∏

m=1

(
Bγm

m,1

2∏

j=1

|Ej,m|ρ∗
j,m

) ∏

1≤m1<m2≤N

|Cm1,m2 |δm1,m2 .

(4.26)

Now we compute the SDE for ∂j M̃/M̃ in terms of ∂ξj(tj) and ∂tj . The
coefficient of the ∂ξj(tj) term should be the sum of the coefficients of
the ∂ξj(tj) terms in (4.17)–(4.25). The SDEs in (4.17)–(4.25) that contain
stochastic terms are (4.17), (4.19) and (4.21). So the sum is equal to

6 − κj

2κj
· Aj,2

Aj,1
− 1

2
· Aj,1

Ej,0
+

N∑

m=1

ρ∗
j,m

Aj,1

Ej,m
. (4.27)

The coefficient of the ∂tj term equals to the sum of the coefficients of
the ∂tj terms in (4.17)–(4.25) plus the sum of the coefficients of the drift
terms coming out of products. The drift term in the SDE for ∂j M̃/M̃ con-
tributed by the products of (4.17) and SDEs in (4.19) is

κj ·
N∑

m=1

6 − κj

2κj
· Aj,2

Aj,1
· ρ∗

j,m · Aj,1

Ej,m
= −

N∑

m=1

ρ∗
j,m · κj − 6

2
· Aj,2

Ej,m
. (4.28)

The drift term contributed by the products of (4.21) and SDEs in (4.19) is

κj ·
N∑

m=1

ρ∗
j,m · Aj,1

Ej,m
·
(

−1

2
· Aj,1

Ej,0

)
= −

N∑

m=1

κjρ
∗
j,m

2
· A2

j,1

Ej,0Ej,m
. (4.29)

The drift term contributed by the product of (4.17) and (4.21) is

κj · 6 − κj

2κj
· Aj,2

Aj,1
·
(

−1

2
· Aj,1

Ej,0

)
= −6 − κj

4
· Aj,2

Ej,0
. (4.30)

The drift term contributed by the products of pairs of SDEs in (4.19) is

κj ·
∑

1≤m1<m2≤N

ρ∗
j,m1

· Aj,1

Ej,m1

·ρ∗
j,m2

· Aj,1

Ej,m2

=
∑

1≤m1<m2≤N

κjρ
∗
j,m1

ρ∗
j,m2

A2
j,1

Ej,m1 Ej,m2

.

(4.31)
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The sum of the coefficients of the ∂tj terms in (4.17)–(4.25) is equal to

λ

(
1

4
· A2

j,2

A2
j,1

− 1

6
· Aj,3

Aj,1

)
− 3κj − 8

8

A2
j,1

E2
j,0

+
N∑

m=1

ρ∗
j,m · κj − 6

2
· Aj,2

Ej,m

+
N∑

m=1

(
κj

2
ρ∗

j,m(ρ∗
j,m − 1) + 2ρ∗

j,m

)
A2

j,1

E2
j,m

+
N∑

m=1

κjρ
∗
j,m

2
· A2

j,1

Ej,0Ej,m

+
(

6 − κj

4
· Aj,2

Ej,0
+ 3κj − 8

8

A2
j,1

E2
j,0

)
−

N∑

m=1

(
κj

2
ρ∗

j,m(ρ∗
j,m − 1) + 2ρ∗

j,m

)
A2

j,1

E2
j,m

−
∑

1≤m1<m2≤N

κjρ
∗
j,m1

ρ∗
j,m2

A2
j,1

Ej,m1 Ej,m2

− λ

(
1

4
· A2

j,2

A2
j,1

− 1

6
· Aj,3

Aj,1

)

=
N∑

m=1

ρ∗
j,m · κj − 6

2
· Aj,2

Ej,m
+

N∑

m=1

κjρ
∗
j,m

2
· A2

j,1

Ej,0Ej,m

+ 6 − κj

4
· Aj,2

Ej,0
−

∑

1≤m1<m2≤N

κjρ
∗
j,m1

ρ∗
j,m2

A2
j,1

Ej,m1 Ej,m2

. (4.32)

From (4.28)–(4.32), the SDE for ∂j M̃/M̃ has no ∂tj terms. Thus from (4.27),
for j = 1, 2, we have

∂j M̃

M̃
=

(
6 − κj

2κj
· Aj,2

Aj,1
− 1

2
· Aj,1

Ej,0
+

N∑

m=1

ρ∗
j,m

Aj,1

Ej,m

)
∂ξj(tj). (4.33)

For (t1, t2) ∈ D , let

M(t1, t2) = M̃(t1, t2)M̃(0, 0)

M̃(t1, 0)M̃(0, t2)
. (4.34)

Then M(t1, 0) = M(0, t2) = 1 for tj ∈ [0, Tj), j = 1, 2.
The process M̃ turns out to be the local Radon–Nikodym derivative

of the coupling measure in Theorem 4.1 w.r.t. the product measure of two
standard chordal SLE(κ) processes. Fix j �= k ∈ {1, 2}. Such M̃ must satisfy
SDE (4.33). So there are factors A

αj

j,1,
∏

m |Ej,m|ρ∗
j,m , and E−1/2 in (4.26).

Other factors in (4.26) make M̃ a local martingale in tj , for any fixed tk.
Moreover, if tj is fixed, M̃ should also be a local martingale in tk. And
we expect some symmetry between j and k in the definition of M̃. This
gives restrictions on the values of κj and ρj,m, j = 1, 2, 1 ≤ m ≤ N.
The process M then becomes the local Radon–Nikodym derivative of the
coupling measure in Theorem 4.1 w.r.t. the product of its marginal measures.
The property of M will be checked later.



D. Zhan

Let B1(t) and B2(t) be independent Brownian motions. Let (F j
t ) be the

filtration generated by Bj(t), j = 1, 2. Fix j �= k ∈ {1, 2}. Suppose ξj(t),
0 ≤ t < Tj , is the maximal solution to the SDE:

dξj(t) = √
κjdBj(t) +

( −κj/2

ξj(t) − ϕj(tj, xk)
+

N∑

m=1

ρj,m

ξj(t) − ϕj(tj, pm)

)
dt,

(4.35)

with ξj(0) = xj . Then (Kj(t), 0 ≤ t < Tj) is an SLE(κj;− κj

2 , �ρj) process
started from (x1; x2, �p). Since ϕk,t(t, · ) = id, so at tj = t and tk = 0,
Aj,1 = 1, Aj,2 = 0, Ej,0 = ξ( j) − ϕj(t, ξk), and Ej,m = ξ( j) − ϕj(t, pm),
1 ≤ m ≤ N. Thus

(
6 − κj

2κj
· Aj,2

Aj,1
− 1

2
· Aj,1

Ej,0
+

N∑

m=1

ρ∗
j,m

Aj,1

Ej,m

)∣
∣∣
∣
tj=t,tk=0

= −1/2

ξj(t) − ϕj(tj, xk)
+

N∑

m=1

ρ∗
j,m

ξj(t) − ϕj(tj, pm)
. (4.36)

For j �= k ∈ {1, 2} and tk ∈ [0, Tk), let Tj(tk) ∈ (0, Tj ] be the largest number
such that for 0 ≤ t < Tj(tk), Kj(t) ∩ Kk(tk) = ∅.

Theorem 4.2 Fix j �= k ∈ {1, 2}. Let t̄k be an (F k
t )-stopping time. Then

the process t �→ M|tj=t,tk=t̄k , 0 ≤ t < Tj(t̄k), is an (F j
t × F k

t̄k
)t≥0-local

martingale, and

∂j M

M

∣∣
∣∣
tj=t,tk=t̄k

=
[(

6 − κj

2κj
· Aj,2

Aj,1
− 1

2
· Aj,1

Ej,0
+

N∑

m=1

ρ∗
j,m

Aj,1

Ej,m

)∣∣
∣∣
tj=t,tk=t̄k

−
( −1/2

ξj(t) − ϕj(t, xk)
+

N∑

m=1

ρ∗
j,m

ξj(t) − ϕj(t, pm)

)]√
κj∂Bj(t).

(4.37)

Proof. This follows from (4.33)–(4.36), where all functions are valued at
tj = t and tk = t̄k, and all SDE are (F j

t × F k
t̄k )-adapted. 
�

Now we make some improvement over the above theorem. Let t̄2 be an
(F 2

t )-stopping time with t̄2 < T2. Suppose R is an (F 1
t × F 2

t̄2
)t≥0-stopping

time with R < T1(t̄2). Let FR,t̄2 denote the σ -algebra obtained from the
filtration (F 1

t × F 2
t̄2
)t≥0 and its stopping time R, i.e., E ∈ FR,t̄2 iff for

any t ≥ 0, E ∩ {R ≤ t} ∈ F 1
t × F 2

t̄2
. For every t ≥ 0, R + t is also an

(F 1
t × F 2

t̄2
)t≥0-stopping time. So we have a filtration (FR+t,t̄2)t≥0.

Theorem 4.3 Let t̄2 and R be as above. Let I ∈ [0, t̄2] be FR,t̄2-measurable.
Then (M(R + t, I ), 0 ≤ t < T1(I ) − R) is a continuous (FR+t,t̄2)t≥0-local
martingale.
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Proof. Let BR
1 (t) = B1(R + t) − B1(R), 0 ≤ t < ∞. Since B1(t) is

an (F 1
t × F 2

t̄2
)t≥0-Brownian motion, so BR

1 (t) is an (FR+t,t̄2)t≥0-Brownian
motion. Since ϕ1(R + t, · ) is (F 1

t × F 2
t̄2
)t≥0-adapted, so ξ1(R + t) satisfies

the (F 1
t × F 2

t̄2
)t≥0-adapted SDE

dξ1(R + t) = √
κdBR

1 (t)dξj(t) + −κ1/2

ξ1(R + t) − ϕ1(R + t, x2)
dt

+
N∑

m=1

ρ1,m

ξ1(R + t) − ϕ1(R + t, pm)
dt.

Now we show that ϕ2(I, · ) is FR,t̄2-measurable. Fix n ∈ N. Let In = �nI�/n.
For m ∈ N ∪ {0}, let En(m) = {m/n ≤ I < (m + 1)/n}. Then En(m) is
FR,t̄2-measurable, and In = m/n on En(m). Since m/n ≤ t̄2 and In = m/n
on En(m), so In agrees with (m/n) ∧ t̄2 on En(m). Now (m/n) ∧ t̄2 is an
(F 2

t )-stopping time, and F 2
(m/n)∧t̄2

⊂ F 2
t̄2

⊂ FR,t̄2. So ϕ2((m/n) ∧ t̄2, · ) is
FR,t̄2-measurable. Since ϕ2(In, · ) = ϕ2((m/n)∧ t̄2, · ) on En(m), and En(m)

is FR,t̄2-measurable for each m ∈ N ∪ {0}, so ϕ2(In, · ) is FR,t̄2-measurable.
Since ϕ2(In, · ) → ϕ2(I, · ) as n → ∞, so ϕ2(I, · ) is also FR,t̄2-measurable.
Thus K2(I ) is FR,t̄2-measurable. Hence for any t ≥ 0, ϕK1(R+t)∪K2(I ) is
FR+t,t̄2-measurable. From (4.2), ϕ1,I(R + t, · ) and ϕ2,R+t(I, · ) are both
FR+t,t̄2-measurable. If the tj and tk in (4.17)–(4.25) are replaced by R + t
and I , respectively, then all these SDEs are FR+t,t̄2-adapted. From the same
computation, we conclude that (M(R + t, I ), 0 ≤ t < T1(I ) − R) is a con-
tinuous (FR+t,t̄2)t≥0-local martingale. 
�

Let HP denote the set of (H1, H2) such that Hj is a hull in H w.r.t. ∞
that contains some neighborhood of xj in H, j = 1, 2, H1 ∩ H2 = ∅, and
pm /∈ H1 ∪ H2, 1 ≤ m ≤ N. For (H1, H2) ∈ HP, let Tj(Hj) be the first time
that Kj(t) ∩H \ Hj �= ∅, j = 1, 2. An argument that is similar to the proof
of Theorem 5.1 in [19] gives the following.

Theorem 4.4 For any (H1, H2) ∈ HP, there are C2 > C1 > 0 depend-
ing only on H1 and H2 such that M(t1, t2) ∈ [C1, C2] for any (t1, t2) ∈
[0, T1(H1)] × [0, T2(H2)].

Fix (H1, H2) ∈ HP. Let µ denote the joint distribution of (ξ1(t) :
0 ≤ t ≤ T1) and (ξ2(t) : 0 ≤ t ≤ T2). From Theorem 4.2 and Theorem 4.4,
we have

∫
M(T1(H1), T2(H2))dµ = Eµ[M(T1(H1), T2(H2))] = M(0, 0) = 1.

Note that M(T1(H1), T2(H2)) > 0. Suppose ν is a measure on F 1
T1(H1)

×
F 2

T2(H2)
such that dν/dµ = M(T1(H1), T2(H2)). Then ν is a probability

measure. Now suppose the joint distribution of (ξ1(t), 0 ≤ t ≤ T1(H1))
and (ξ2(t), 0 ≤ t ≤ T2(H2)) is ν instead of µ. Fix an (F 2

t )-stopping
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time t̄2 with t̄2 ≤ T2(H2). From (4.35)–(4.37) and Girsanov theorem,
there is an (F 1

t × F 2
t̄2
)-Brownian motion B̄1(t) such that ξ1(t) satisfies the

(F 1
t × F 2

t̄2
)-adapted SDE for 0 ≤ t ≤ T1(H1):

dξ1(t) = √
κ1dB̄1(t) +

(
6 − κ1

2
· A1,2

A1,1
− κ1

2
· A1,1

E1,0
+

N∑

m=1

ρ1,m
A1,1

E1,m

)∣
∣∣
∣
(t,t̄2)

dt.

Let ξ1,t̄2(t) = A1,0(t, t̄2) = ϕ2,t(t̄2, ξ1(t)), 0 ≤ t ≤ T1(H1). From Ito’s
formula and (4.3), ξ1,t̄2(t) satisfies

dξ1,t̄2(t) = A1,1(t, t̄2)
√

κ1dB̄1(t) +
(

−κ1

2
· A2

1,1

E1,0
+

N∑

m=1

ρ1,m
A2

1,1

E1,m

)∣
∣
∣∣
(t,t̄2)

dt.

(4.38)

Since ϕ2(t̄2, · ) is a conformal map, and from (4.1), for 0 ≤ t1 < T1(t̄2),

K1,t̄2(t) = (K1(t) ∪ K2(t̄2))/K2(t̄2) = ϕ2(t̄2, K1(t)),

so (K1,t̄2(t)) is a Loewner chain. Let v(t) = hcap(K1,t̄2(t))/2. From Prop-
osition 2.2, v(t) is a continuous increasing function with v(0) = 0, and
(K̃(t) = K1,t̄2(v

−1(t))) are chordal Loewner hulls driven by some real con-
tinuous function, say ξ̃(t), and the chordal Loewner maps are ϕ̃(t, · ) =
ϕK1,t̄2

(v−1(t)) = ϕ1,t̄2(v
−1(t), · ). Moreover,

{̃ξ(v(t))} =
⋂

ε>0

K̃(v(t + ε))/K̃(v(t)); {ξ1(t)} =
⋂

ε>0

K1(t + ε)/K1(t).

Let Wt = ϕ2,t(t̄2, · ). From (4.2), for ε > 0, we have

Wt(K1(t + ε)/K1(t))
= Wt ◦ ϕ1(t, · )(K1(t + ε) \ K1(t))
= ϕK1(t)∪K2(t̄2)(K1(t + ε) \ K1(t))

= ϕK1(t)∪K2(t̄2)((K1(t + ε) ∪ K2(t̄2)) \ (K1(t) ∪ K2(t̄2)))

= (K1(t + ε) ∪ K2(t̄2))/(K1(t) ∪ K2(t̄2))

= [(K1(t + ε) ∪ K2(t̄2))/K2(t̄2)]/[(K1(t) ∪ K2(t̄2))/K2(t̄2)]
= K1,t̄2(t + ε)/K1,t̄2(t) = K̃(v(t + ε))/K̃(v(t)).

Thus ξ̃(v(t)) = Wt(ξ1(t)) = ϕ2,t(t̄2, ξ1(t)) = ξ1,t̄2(t). Since hcap(K1(t + ε)/

K1(t)) = 2ε and hcap(K̃(v(t + ε))/K̃(v(t))) = 2v(t + ε) − 2v(t), so from
Proposition 2.1, v′(t) = W ′

t (ξ1(t))2 = ∂zϕ2,t(t̄2, ξ1(t))2 = A1,1(t, t̄2)2.
From the definitions of E1,0 and E1,m , and (4.2), we have

E1,0
(
v−1(t), t̄2

) = ξ̃(t) − ϕ̃(t, ξ2(t̄2)); (4.39)

E1,m
(
v−1(t), t̄2

) = ξ̃(t) − ϕ̃(t, ϕ2(t̄2, pm)). (4.40)
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From (4.38)–(4.40), and the properties of v(t) and ξ̃(t), there is a Brownian
motion B̃1(t) such that ξ̃(t), 0 ≤ t < v(T1(H1)), satisfies the SDE:

d̃ξ(t) = √
κ1dB̃1(t)+

( −κ1/2

ξ̃(t)− ϕ̃(t, ξ2(t̄2))
+

N∑

m=1

ρ1,m

ξ̃(t)− ϕ̃(t, ϕ2(t̄2, pm))

)
dt.

Note that ξ̃(0) = ξ1,t̄2(0) = ϕ2(t̄2, x1). Thus conditioned on F 2
t̄2

, K̃(t),
0 ≤ t < v(T1(H1)), is a partial chordal SLE(κ1;− κ1

2 , �ρ1) process started
from (ϕ2(t̄2, x1); ξ2(t̄2), ϕ2(t̄2, �p)). By symmetry, we may exchange the
subscripts 1 and 2 in the above statement.

Theorem 4.5 Suppose n ∈ N and (Hm
1 , Hm

2 ) ∈ HP, 1 ≤ m ≤ n. There
is a continuous function M∗(t1, t2) defined on [0,∞]2 that satisfies the
following properties:

(i) M∗ = M on [0, T1(Hm
1 )] × [0, T2(Hm

2 )] for 1 ≤ m ≤ n;
(ii) M∗(t, 0) = M∗(0, t) = 1 for any t ≥ 0;
(iii) M(t1, t2) ∈ [C1, C2] for any t1, t2 ≥ 0, where C2 > C1 > 0 are

constants depending only on Hm
j , j = 1, 2, 1 ≤ m ≤ n;

(iv) for any (F 2
t )-stopping time t̄2, (M∗(t1, t̄2), t1 ≥ 0) is a bounded con-

tinuous (F 1
t1 × F 2

t̄2
)t1≥0-martingale; and

(v) for any (F 1
t )-stopping time t̄1, (M∗(t̄1, t2), t2 ≥ 0) is a bounded con-

tinuous (F 1
t̄1

× F 2
t2
)t2≥0-martingale.

Proof. This is Theorem 6.1 in [19]. For reader’s convenience, we include
the proof here. The first quadrant [0,∞]2 will be divided by the vertical or
horizontal lines {xj = Tj(Hm

j )}, 1 ≤ m ≤ n, j = 1, 2, into small rectangles,
and M∗ will be piecewise defined on these rectangles. Theorem 4.4 will be
used to prove the boundedness, and Theorem 4.3 will be used to prove the
martingale properties.

Let Nn := {k ∈ N : k ≤ n}. Write T k
j for Tj(Hk

j ), k ∈ Nn, j = 1, 2.
Let S ⊂ Nn be such that

⋃
k∈S[0, T k

1 ] × [0, T k
2 ] = ⋃n

k=1[0, T k
1 ] × [0, T k

2 ],
and

∑
k∈S k ≤ ∑

k∈S′ k if S′ ⊂ Nn also satisfies this property. Such S is
a random nonempty set, and |S| ∈ Nn is a random number. Define a partial
order “�” on [0,∞]2 such that (s1, s2) � (t1, t2) iff s1 ≤ t1 and s2 ≤ t2.
If (s1, s2) � (t1, t2) and (st, s2) �= (t1, t2), we write (s1, s2) ≺ (t1, t2). Then
for each m ∈ Nn there is k ∈ S such that (T m

1 , T m
2 ) � (T k

1 , T k
2 ); and for each

k ∈ S there is no m ∈ Nn such that (T k
1 , T k

2 ) ≺ (T m
1 , T m

2 ).
There is a map σ from {1, . . . , |S|} onto S such that if 1 ≤ k1 < k2 ≤ |S|,

then

T σ(k1)
1 < T σ(k2)

1 , T σ(k1)
2 > T σ(k2)

2 . (4.41)

Define T σ(0)
1 = T σ(|S|+1)

2 = 0 and T σ(|S|+1)

1 = T σ(0)
2 = ∞. Then (4.41) still

holds for 0 ≤ k1 < k2 ≤ |S| + 1.
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Extend the definition of M to [0,∞] × {0} ∪ {0} × [0,∞] such that
M(t, 0) = M(0, t) = 1 for t ≥ 0. Fix (t1, t2) ∈ [0,∞]2. There are
k1 ∈ N|S|+1 and k2 ∈ N|S| ∪ {0} such that

T σ(k1−1)
1 ≤ t1 ≤ T σ(k1)

1 , T σ(k2+1)
2 ≤ t2 ≤ T σ(k2)

2 . (4.42)

If k1 ≤ k2, let

M∗(t1, t2) = M(t1, t2). (4.43)

If k1 ≥ k2 + 1, let

M∗(t1, t2) =
M

(
T σ(k2)

1 , t2
)
M

(
T σ(k2+1)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1−1)

1 , T σ(k1−1)
2

)
M

(
t1, T σ(k1)

2

)

M
(
T σ(k2)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1−2)

1 , T σ(k1−1)
2

)
M

(
T σ(k1−1)

1 , T σ(k1)
2

) .

(4.44)

In the above formula, there are k1 − k2 + 1 terms in the numerator, and
k1 − k2 terms in the denominator. For example, if k1 − k2 = 1, then

M∗(t1, t2) = M
(
T σ(k2)

1 , t2
)
M

(
t1, T σ(k1)

2

)
/M

(
T σ(k2)

1 , T σ(k1)
2

)
.

We need to show that M∗(t1, t2) is well-defined. First, we show that the
M( · , · ) in (4.43) and (4.44) are defined. Note that M is defined on

Z :=
|S|+1⋃

k=0

[
0, T σ(k)

1

] × [
0, T σ(k)

2

]
.

If k1 ≤ k2 then t1 ≤ T σ(k1)
1 ≤ T σ(k2)

1 and t2 ≤ T σ(k2)
2 , so (t1, t2) ∈ Z. Thus

M(t1, t2) in (4.43) is defined. Now suppose k1 ≥ k2+1. Since t2 ≤ T σ(k2)

2 and
t1 ≤ T σ(k1)

1 , so (T σ(k2)
1 , t2), (t1, T σ(k1)

2 ) ∈ Z. It is clear that (T σ(k)
1 , T σ(k)

2 ) ∈ Z
for k2 + 1 ≤ k ≤ k1 − 1. Thus the M( · , · ) in the numerator of (4.44) are
defined. For k2 ≤ k ≤ k1 −1, T σ(k)

1 ≤ T σ(k+1)
1 , so (T σ(k)

1 , T σ(k+1)
2 ) ∈ Z. Thus

the M( · , · ) in the denominator of (4.44) are defined.
Second, we show that the value of M∗(t1, t2) does not depend on the

choice of (k1, k2) that satisfies (4.42). Suppose (4.42) holds with (k1, k2)
replaced by (k′

1, k2), and k′
1 �= k1. Then |k′

1 − k1| = 1. We may assume
k′

1 = k1 + 1. Then t1 = T σ(k1)
1 . Let M′∗(t1, t2) denote the M∗(t1, t2) defined

using (k′
1, k2). There are three cases.

Case 1 k1 < k′
1 ≤ k2. Then from (4.43), M′∗(t1, t2) = M(t1, t2) = M∗(t1, t2).

Case 2 k1 = k2 and k′
1 − k2 = 1. Then T σ(k2)

1 = T σ(k1)
1 = t1. So from (4.43)

and (4.44),

M′
∗(t1, t2) = M

(
T σ(k2)

1 , t2
)
M

(
t1, T σ(k1)

2

)
/M

(
T σ(k2)

1 , T σ(k1)
2

)

= M(t1, t2) = M∗(t1, t2).
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Case 3 k′
1 > k1 > k2. From (4.44) and that T σ(k1)

1 = t1, we have

M′
∗(t1, t2)

= M
(
T σ(k2)

1 , t2
)
M

(
T σ(k2+1)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1)

1 , T σ(k1)
2

)
M

(
t1, T σ(k1+1)

2

)

M
(
T σ(k2)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1−1)

1 , T σ(k1)
2

)
M

(
T σ(k1)

1 , T σ(k1+1)
2

)

= M
(
T σ(k2)

1 , t2
)
M

(
T σ(k2+1)

1 , T σ(k2+1)

2

) · · · M
(
t1, T σ(k1)

2

)

M
(
T σ(k2)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1−1)

1 , T σ(k1)
2

) = M∗(t1, t2).

Similarly, if (4.42) holds with (k1, k2) replaced by (k1, k′
2), then M∗(t1, t2)

defined using (k1, k′
2) has the same value as M(t1, t2). Thus M∗ is well-

defined.
From the definition, it is clear that for each k1 ∈ N|S|+1 and k2 ∈

N|S| ∪ {0}, M∗ is continuous on [T σ(k1−1)
1 , T σ(k1)

1 ] × [T σ(k2+1)
2 , T σ(k2)

1 ]. Thus
M∗ is continuous on [0,∞]2. Let (t1, t2) ∈ [0,∞]2. Suppose (t1, t2) ∈
[0, T m

1 ]× [0, T m
2 ] for some m ∈ Nn . There is k ∈ N|S| such that (T m

1 , T m
2 ) �

(T σ(k)
1 , T σ(k)

2 ). Then we may choose k1 ≤ k and k2 ≥ k such that (4.42)
holds, so M∗(t1, t2) = M(t1, t2). Thus (i) is satisfied. If t1 = 0, we may
choose k1 = 1 in (4.42). Then either k1 ≤ k2 or k2 = 0. If k1 ≤ k2 then
M∗(t1, t2) = M(t1, t2) = 1 because t1 = 0. If k2 = 0, then

M∗(t1, t2) = M
(
T σ(0)

1 , t2
)
M

(
t1, T σ(1)

2

)
/M

(
T σ(0)

1 , T σ(1)
2

) = 1

because T σ(0)
1 = t1 = 0. Similarly, M∗(t1, t2) = 0 if t2 = 0. So (ii) is also

satisfied. And (iii) follows from Theorem 4.4 and the definition of M∗.
Now we prove (iv). Suppose (t1, t2) ∈ [0,∞]2 and t2 ≥ ∨n

m=1 T m
2 =

T σ(1)
2 . Then (4.42) holds with k2 = 0 and some k1 ∈ {1, . . . , |S| + 1}. So

k1 ≥ k2 + 1. Since T σ(k2)

1 = 0 and M(0, t) = 1 for any t ≥ 0, so from (4.44)
we have

M∗(t1, t2) = M
(
T σ(k2+1)

1 , T σ(k2+1)
2

) · · · M
(
T σ(k1−1)

1 , T σ(k1−1)
2

)
M

(
t1, T σ(k1)

2

)

M
(
T σ(k2+1)

1 , T σ(k2+2)
2

) · · · M
(
T σ(k1−1)

1 , T σ(k1)
2

) .

Since the right-hand side of the above equality has no t2, so M∗(t1, t2) =
M∗(t1,

∨n
m=1 T m

2 ) for any t2 ≥ ∨n
m=1 T m

2 . Similarly, M∗(t1, t2) =
M∗(

∨n
m=1 T m

1 , t2) for any t1 ≥ ∨n
m=1 T m

1 .
Fix an (F 2

t )-stopping time t̄2 . Since M∗( · , t̄2) = M∗( · , t̄2∧(
∨n

m=1 T m
2 )),

and t̄2 ∧ (
∨n

m=1 T m
2 ) is also an (F 2

t )-stopping time, so we may assume that
t̄2 ≤ ∨n

m=1 T m
2 . Let I0 = t̄2. For s ∈ N ∪ {0}, define

Rs = sup
{
T m

1 : m ∈ Nn, T m
2 ≥ Is

};
Is+1 = sup

{
T m

2 : m ∈ Nn, T m
2 < Is, T m

1 > Rs
}
. (4.45)
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Here we set sup(∅) = 0. Then we have a non-decreasing sequence (Rs) and
a non-increasing sequence (Is). Let S and σ(k), 0 ≤ k ≤ |S| + 1, be as in
the definition of M∗. From the property of S, for any s ∈ N ∪ {0},

Rs = sup
{
T k

1 : k ∈ S, T k
2 ≥ Is

}
. (4.46)

Suppose for some s ∈ N ∪ {0}, there is m ∈ Nn that satisfies T m
2 < Is and

T m
1 > Rs . Then there is k ∈ S such that T k

j ≥ T m
j , j = 1, 2. If T k

2 ≥ Is,
then from (4.46) we have Rs ≥ T k

1 ≥ T m
1 , which contradicts that T m

1 > Rs.
Thus T k

2 < Is. Now T k
2 < Is, T k

1 ≥ T m
1 > Rs , and T k

2 ≥ T m
2 . Thus for any

s ∈ N ∪ {0},
Is+1 = sup

{
T k

2 : k ∈ S, T k
2 < Is, T k

1 > Rs
}
. (4.47)

First suppose t̄2 > 0. Since t̄2 ≤ ∨n
m=1 T m

2 = T σ(0)
2 , so there is a unique

k2 ∈ N|S| such that T σ(k2)
2 ≥ t̄2 > T σ(k2+1)

2 . From (4.46) and (4.47), we
have Rs = T σ(k2+s)

1 for 0 ≤ s ≤ |S| − k2; Rs = T σ(|S|)
1 for s ≥ |S| − k2;

Is = T σ(k2+s)
2 for 1 ≤ s ≤ |S| − k2; and Is = 0 for s ≥ |S| − k2 + 1. Since

R0 = T σ(k2)

1 and t̄2 ≤ T σ(k2)

2 , so from (i),

M∗(t1, t̄2) = M(t1, t̄2), for t1 ∈ [0, R0]. (4.48)

Suppose t1 ∈ [Rs−1, Rs] for some s ∈ N|S|−k2 . Let k1 = k2 + s. Then
T σ(k1−1)

1 ≤ t1 ≤ T σ(k1)
1 . Since Is = T σ(k2+s)

2 = T σ(k1)
2 , so from (4.44),

M∗(t1, t̄2)/M∗(Rs−1, t̄2) = M(t1, Is)/M(Rs−1, Is), for t1 ∈ [Rs−1, Rs].
(4.49)

Note that if s ≥ |S|− k2 + 1, (4.49) still holds because Rs = Rs−1. Suppose
t1 ≥ Rn . Since n ≥ |S| − k2, so Rn = T σ(|S|)

1 = ∨n
m=1 T m

1 . From the
discussion at the beginning of the proof of (iv), we have

M∗(t1, t̄2) = M∗(Rn, t̄2), for t1 ∈ [Rn,∞]. (4.50)

If t̄2 = 0, (4.48)–(4.50) still hold because all Is = 0 and so M∗(t1, t̄2) =
M(t1, Is) = M(t1, 0) = 1 for any t1 ≥ 0.

Let R−1 = 0. We claim that for each s ∈ N∪{0}, Rs is an (F 1
t ×F 2

t̄2
)t≥0-

stopping time, and Is is FRs−1,t̄2-measurable. Recall that FRs−1 ,t̄2 is the σ -alge-
bra obtained from the filtration (F 1

t × F 2
t̄2
)t≥0 and its stopping time Rs−1.

It is clear that R−1 = 0 is an (F 1
t × F 2

t̄2
)t≥0-stopping time, and I0 = t̄2 is

FR−1,t̄2-measurable. Now suppose Is is FRs−1,t̄2-measurable. Since Is ≤ t̄2
and Rs−1 ≤ Rs, so for any t ≥ 0, {Rs ≤ t} = {Rs−1 ≤ t} ∩ Et , where

Et =
n⋂

m=1

({
T m

2 < Is
} ∪ {

T m
1 ≤ t

})

=
n⋂

m=1

( ⋃

q∈Q

({
T m

2 < q ≤ t̄2
} ∩ {q < Is}

) ∪ {
T m

1 ≤ t
})

.
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Thus Et ∈ FRs−1,t̄2 ∨ (F 1
t ×F 2

t̄2
), and so {Rs ≤ t} ∈ F 1

t ×F 2
t̄2

for any t ≥ 0.

Therefore Rs is an (F 1
t ×F 2

t̄2
)t≥0-stopping time. Next we consider Is+1. For

any h ≥ 0,

{Is+1 > h} =
n⋃

m=1

({
h < T m

2 < Is
} ∩ {

T m
1 > Rs

})

=
n⋃

m=1

( ⋃

q∈Q

({
h < T m

2 < q < t̄2
} ∩ {q < Is}

) ∩ {
T m

1 > Rs
})

∈ FRs,t̄2.

Thus Is+1 is FRs,t̄2-measurable. So the claim is proved by induction.
Since t̄2 ≤ ∨n

m=1 T m
2 < T2, so from Theorem 4.3, for any s ∈ Nn,

(M(Rs−1 + t, Is), 0 ≤ t < T1(Is) − Rs−1) is a continuous (FRs−1+t,t̄2)t≥0-
local martingale. For m ∈ Nn, if T m

2 ≥ Is, then T m
1 < T1(T m

2 ) ≤ T1(Is).
So from (4.45) we have Rs < T1(Is). From (4.49), we find that
(M∗(Rs−1 + t, t̄2), 0 ≤ t ≤ Rs − Rs−1) is a continuous (FRs−1+t,t̄2)t≥0-
local martingale for any s ∈ Nn. From Theorem 4.2 and (4.48), (M∗(t, t̄2),
0 ≤ t ≤ R0) is a continuous (Ft,t̄2)t≥0-local martingale. From (4.50),
(M∗(Rn + t, t̄2), t ≥ 0) is a continuous (FRn+t,t̄2)t≥0-local martingale. Thus
(M∗(t, t̄2), t ≥ 0) is a continuous (Ft,t̄2)t≥0-local martingale. Since by (iii)
M∗(t1, t2) ∈ [C1, C2], so this local martingale is a bounded martingale.
Thus (iv) is satisfied. Finally, (v) follows from the symmetry in the defini-
tions (4.43) and (4.44) of M∗. 
�
4.3 Coupling measures. Let C := ⋃

T∈(0,∞] C([0, T )). The map T : C →
(0,∞] is such that [0, T(ξ)) is the definition domain of ξ . For t ∈ [0,∞),
let Ft be the σ -algebra on C generated by {T > s, ξ(s) ∈ A}, where A is
a Borel set on R and s ∈ [0, t]. Then (Ft) is a filtration on C, and T is an
(Ft)-stopping time. Let F∞ = ∨

t Ft .
For ξ ∈ C, let Kξ (t), 0 ≤ t < T(ξ), denote the chordal Loewner hulls

driven by ξ . Let H be a hull in H w.r.t. ∞. Let TH(ξ) ∈ [0, T(ξ)] be the
maximal number such that Kξ (t) ∩ H \ H = ∅ for 0 ≤ t < TH . Then
TH is an (Ft)-stopping time. Let CH = {TH > 0}. Then ξ ∈ CH iff H
contains some neighborhood of ξ(0) in H. Define PH : CH → C such that
PH(ξ) is the restriction of ξ to [0, TH (ξ)). Then PH(CH) = {TH = T },
and PH ◦ PH = PH . Let CH,∂ denote the set of ξ ∈ {TH = T } such that⋃

0≤t<T(ξ) Kξ(t) ∩ (H \ H) �= ∅. If ξ ∈ CH ∩ {TH < T }, then PH(ξ) ∈ CH,∂ .
If A is a Borel set on R and s ∈ [0,∞), then

P−1
H ({ξ ∈ C : T(ξ) > s, ξ(s) ∈ A})
= {ξ ∈ CH : TH(ξ) > s, ξ(s) ∈ A} ∈ FT−

H
.

Thus PH is (FT−
H
,F∞)-measurable on CH . On the other hand, the restriction

of FT−
H

to CH is the σ -algebra generated by {ξ ∈ CH : TH(ξ) > s, ξ(s) ∈ A},
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where s ∈ [0,∞) and A is a Borel set on R. Thus P−1
H (F∞) agrees with the

restriction of FT−
H

to CH .
Let Ĉ = C ∪ {∞} be the Riemann sphere with spherical metric. Let

ΓĈ denote the space of nonempty compact subsets of Ĉ endowed with
Hausdorff metric. Then ΓĈ is a compact metric space. Define G : C → ΓĈ
such that G(ξ) is the spherical closure of {t + iξ(t) : 0 ≤ t < T(ξ)}. Then G
is a one-to-one map. Let IG = G(C). Let F H

IG
denote the σ -algebra on IG

generated by Hausdorff metric. Let

R = {{z ∈ C : a < Re z < b, c < Im z < d} : a, b, c, d ∈ R}.

Then F H
IG

agrees with the σ -algebra on IG generated by {{F ∈ IG :
F ∩ R �= ∅} : R ∈ R}. Using this result, one may check that G and G−1

(defined on IG) are both measurable with respect to F∞ and F H
IG

.
For j = 1, 2, let ξj(t), 0 ≤ t < Tj , be the maximal solution to (4.35).

Then ξj is a C-valued random variable, and T(ξj) = Tj . Since B1(t) and B2(t)
are independent, so are ξ1(t) and ξ2(t). Now we write Kj(t) for Kξj (t),
0 ≤ t < Tj , j = 1, 2. For j = 1, 2, let µj denote the distribution of ξj , which
is a probability measure on C. Let µ = µ1 × µ2 be a probability measure
on C2. Then µ is the joint distribution of ξ1 and ξ2. Let (H1, H2) ∈ HP.
For j = 1, 2, Hj contains some neighborhood of xj = ξj(0) in H, so
ξj ∈ CHj . Since

⋃
0≤t<Tj

Kj(t) disconnects some force point from ∞, so
we do not have

⋃
0≤t<Tj

Kj(t) ⊂ Hj , which implies that THj (ξj) < Tj ,
j = 1, 2. Thus PHj (ξj) ∈ CHj ,∂ , and so (PH1 × PH2)∗(µ) is supported by
CH1,∂ × CH2,∂ .

Let HP∗ be the set of (H1, H2) ∈ HP such that for j = 1, 2, Hj
is a polygon whose vertices have rational coordinates. Then HP∗ is count-
able. Let (Hm

1 , Hm
2 ), k ∈ N, be an enumeration of HP∗. For each

n ∈ N, let Mn∗ (t1, t2) be the M∗(t1, t2) given by Theorem 4.5 for (Hm
1 , Hm

2 ),
1 ≤ m ≤ n, in the above enumeration. For each n ∈ N define νn =
(νn

1 , ν
n
2) such that dνn/dµ = Mn∗(∞,∞). From Theorem 4.5,

Mn∗(∞,∞) > 0 and
∫

Mn∗ (∞,∞)dµ = Eµ[Mn∗(∞,∞)] = 1, so νn is
a probability measure on C2. Since dνn

1/dµ1 = Eµ[Mn∗ (∞,∞)|F 2∞] =
Mn∗(∞, 0) = 1, so νn

1 = µ1. Similarly, νn
2 = µ2. So each νn is a coupling

of µ1 and µ2.
Let ν̄n = (G × G)∗(νn) be a probability measure on Γ2

Ĉ
. Since Γ2

Ĉ

is compact, so (ν̄n) has a subsequence (ν̄nk) that converges weakly to
some probability measure ν̄ = (ν̄1, ν̄2) on ΓĈ × ΓĈ. Then for j = 1, 2,
ν̄

nk
j → ν̄j weakly. For n ∈ N and j = 1, 2, since νn

j = µj , so ν̄n
j =

G∗(µj). Thus ν̄j = G∗(µj), j = 1, 2. So ν̄ is supported by I 2
G . Let

ν = (ν1, ν2) = (G−1 × G−1)∗(ν̄) be a probability measure on C2. Here
we use the fact that G−1 is (F H

IG
,F j

∞)-measurable. For j = 1, 2, we
have νj = (G−1)∗(ν̄j) = µj . So ν is also a coupling measure of µ1
and µ2.
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Lemma 4.1 For any r ∈ N, the restriction of ν to F 1
THr

1
× F 2

THr
2

is

absolutely continuous w.r.t. µ, and the Radon–Nikodym derivative is
M(THr

1
(ξ1), THr

2
(ξ2)).

Proof. We may choose s ∈ N such that Hr
j ∩H \ Hs

j = ∅, j = 1, 2. Since M
is continuous, so M(THs

1
(ξ1), THs

2
(ξ2)) is F 1

T−
Hs

1

×F 2
T−

Hs
2

-measurable. Let ν(s) be

defined on F 1
T−

Hs
1

× F 2
T−

Hs
2

such that dν(s)/dµ = M(THs
1
(ξ1), THs

2
(ξ2)). From

Theorems 4.2 and 4.4, ν(s) is a probability measure on F 1
T−

Hs
1

× F 2
T−

Hs
2

. Let

ν̊(s) = (PHs
1
× PHs

2
)∗(ν(s)). Since PHs

j
is (F

j
T−

Hs
j

,F
j

∞)-measurable, j = 1, 2,

so ν̊(s) is a probability measure on C2, and is absolute continuous w.r.t.
(PHs

1
× PHs

2
)∗(µ). Let ν̄(s) = (G×G)∗(ν̊(s)). Since G is (F j

∞,F H
IG

)-measur-
able, j = 1, 2, so ν̄(s) is a probability measure on I 2

G . Since dνnk/dµ =
Mnk∗ (∞,∞), and Mnk∗ ( · , · ) satisfies the martingale properties, so the
Radon–Nikodym derivative of the restriction of νnk to F 1

T−
Hs

1

× F 2
T−

Hs
2

w.r.t. µ

is Mnk∗ (THs
1
(ξ1), THs

2
(ξ2)). If nk ≥ s then Mnk∗ (THs

1
(ξ1), THs

2
(ξ2)) =

M(THs
1
(ξ1), THs

2
(ξ2)). Thus the restriction of νnk to F 1

T−
Hs

1

× F 2
T−

Hs
2

equals
to ν(s), which implies that

(G × G)∗ ◦ (PHs
1
× PHs

2
)∗(νnk) = (G × G)∗ ◦ (PHs

1
× PHs

2
)∗(ν(s)) = ν̄(s).

For n ∈ N, let a C2-valued random variable (ζn
1 , ζn

2 ) have the distribu-
tion νn, and ηn

j = PHs
j
(ζn

j ), j = 1, 2. Let τ̄n
(s) denote the distribution of

(G(ζn
1 ), G(ζn

2 ), G(ηn
1), G(ηn

2)). Then τ̄n
(s) is supported by Ξ, which is the

set of (L1, L2, F1, F2) ∈ Γ4
Ĉ

such that Fj ⊂ Lj , j = 1, 2. It is easy to check
that Ξ is a closed subset of Γ4

Ĉ
. Then (nk) has a subsequence (n′

k) such that

(τ̄
n′

k
(s)) converges weakly to some probability measure τ̄(s) on Ξ. Since the

marginal of τ̄
n′

k
(s) at the first two variables equals to (G × G)∗(νn′

k) = ν̄n′
k ,

and ν̄n′
k → ν̄ weakly, so the marginal of τ̄(s) at the first two variables

equals to ν̄. Since the marginal of τ̄
n′

k
(s) at the last two variables equals to

(G × G)∗ ◦ (PHs
1
× PHs

2
)∗(νn′

k) = ν̄(s) when n′
k ≥ s, so the marginal of τ̄(s)

at the last two variables equals to ν̄(s).
Now τ̄(s) is supported by I 4

G . Let τ(s) = (G × G × G × G)−1∗ (τ̄(s)).
Let a C4-valued random variable (ζ1, ζ2, η1, η2) have distribution τ(s). Since
ν̄ = (G×G)∗(ν) and ν̄(s) = (G×G)∗(ν̊(s)), so the distribution of (ζ1 , ζ2) is ν,
and the distribution of (η1, η2) is ν̊(s). For j = 1, 2, since G(ηj) ⊂ G(ζj),
so ηj is some restriction of ζj . Note that for j = 1, 2, Kj(t) does not
always stay in Hs

j , so µj is supported by {THs
j

< Tj}, so (PHs
j
)∗(µj) is

supported by CHs
j ,∂ . Thus (PHs

1
× PHs

2
)∗(µ) is supported by CHs

1,∂ × CHs
2,∂ .

Since ν̊(s) is absolutely continuous w.r.t. (PHs
1

× PHs
2
)∗(µ), so ν̊(s) is also
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supported by CHs
1,∂ × CHs

2,∂ . Thus for j = 1, 2, Kηj (t) ∩ H \ Hs
j = ∅ for

0 ≤ t < T(ηj), and
⋃

0≤t<T(ηj)
Kηj (t)∩(H \ Hs

j ) �= ∅. Since ηj is a restriction
of ζj , so from the above observation, we have ηj = PHs

j
(ζj), j = 1, 2. Thus

ν̊(s) = (PHs
1
× PHs

2
)∗(ν).

We now have (PHs
1
× PHs

2
)∗(ν) = ν̊(s) = (PHs

1
× PHs

2
)∗(ν(s)). So ν(E) =

ν(s)(E) for any E ∈ P−1
Hs

1
(F 1∞) × P−1

Hs
2
(F2∞). Since P−1

Hs
j
(F j

∞) agrees with the

restriction of F
j

T−
Hs

j

to CHs
j
, j = 1, 2, and both ν and ν(s) are supported by

CHs
1
× CHs

2
, so the restriction of ν to F 1

T−
Hs

1

× F 2
T−

Hs
2

equals to ν(s). From the

definition of ν(s), the Radon–Nikodym derivative of the restriction of ν to
F 1

T−
Hs

1

× F 2
T−

Hs
2

w. r.t. µ is M(THs
1
(ξ1), THs

2
(ξ2)).

For j = 1, 2, since Hr
j ∩ H \ Hs

j = ∅, so µj and νj are supported

by {THr
j

< THs
j
}. Since F j

THr
j

⊂ F j
T−

Hs
j

on {THr
j

< THs
j
}, j = 1, 2, so the

restriction of ν to F 1
THr

1
× F 2

THr
2

is absolutely continuous w.r.t. µ, and the

Radon–Nikodym derivative equals to

Eµ

[
M(THs

1
(ξ1), THs

2
(ξ2))

∣∣ F 1
THr

1
× F 2

THr
2

] = M(THr
1
(ξ1), THs

2
(ξr)). 
�

Proof of Theorem 4.1 Now let the C2-valued random variable (ξ1, ξ2) have
distribution ν in the above theorem. Let Kj(t) and ϕj(t, · ), 0 ≤ t < Tj , be
the chordal Loewner hulls and maps, respectively, driven by ξj , j = 1, 2.
For j �= k ∈ {1, 2}, since νj = µj , so Kj(t), 0 ≤ t < Tj , is a chordal
SLE(κj;− κj

2 , �ρj) process started from (xj; xk, �p).
Fix j �= k ∈ {1, 2}. Suppose t̄k is an (F k

t )-stopping time with t̄k < Tk.
For n ∈ N, define

Rn = sup
{
Tj

(
Hm

j

) : 1 ≤ m ≤ n, Tk
(
Hm

k

) ≥ t̄k
}
.

Here we set sup(∅) = 0. Then for any t ≥ 0,

{Rn ≤ t} =
n⋂

m=1

({
t̄k > Tk

(
Hm

k

)} ∪ {
Tj

(
Hm

j

) ≤ t
}) ∈ F

j
t × F k

t̄k
.

So Rn is an (F j
t × F k

t̄k
)t≥0-stopping time for each n ∈ N. For 1 ≤

m ≤ n, let t̄ m
k = t̄k ∧ Tk(Hm

2 ). Then t̄ m
k is an (F k

t )-stopping time, and
t̄ m
k ≤ Tk(Hm

k ). Let (L(t)) be a chordal SLE(κj;− κj

2 , �ρj) process started
from (ϕk(t̄2, xj); ξk(t̄k), ϕk(t̄k, �p)). From Lemma 4.1 and the discussion
after Theorem 4.4, ϕk(t̄ m

k , Kj(t)), 0 ≤ t ≤ Tj(Hm
j ), has the distribution

of a time-change of a partial (L(t)), i.e., (L(t)) stopped at some stopping
time. Let En,m = {t̄k ≤ Tk(Hm

k )} ∩ {Rn = Tj(Hm
j )}. Since {Rn > 0} =⋃n

m=1 En,m , and on each E n,m , t̄k = t̄ m
k and Rn = Tj(Hm

j ), so ϕk(t̄k, Kj(t)),
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0 ≤ t ≤ Rn , has the distribution of a time-change of a partial (L(t)). Since
Tj(t̄k) = sup{Tj(Hm

j ) : m ∈ N, Tk(Hm
k ) ≥ t̄k} = ∨∞

n=1 Rn , so ϕk(t̄k, Kj(t)),
0 ≤ t < Tj(t̄k), has the distribution of a time-change of a partial (L(t)).
Thus after a time-change, ϕk(t̄k, Kj(t)), 0 ≤ t < Tj(t̄k), is a partial chordal
SLE(κj;− κj

2 , �ρj) process started from (ϕk(t̄2, xj); ξk(t̄k), ϕk(t̄k, �p)). 
�
4.4 Coupling in degenerate cases. Now we will prove that Theorem 4.1
still holds if one or more than one force points pm are degenerate, i.e., pm
equals to x±

1 or x±
2 . The results do not immediately follow from Theorem 4.1

in the generic case. However, we may modify the proof of Theorem 4.1
to deal with the degenerate cases. We need to find some suitable two-
dimensional local martingales, and obtain some boundedness.

We use the following simplest example to illustrate the idea. Suppose
there is only one degenerate force point, which is p1 = x+

1 . Then the (K1(t))
and (K2(t)) in Theorem 4.1 should be understood as follows: (K1(t)) is
a chordal SLE(κ1;− κ1

2 , �ρ1) process started from (x1; x2, x+
1 , p2, . . . , pN ),

and (K2(t)) is a chordal SLE(κ2;− κ2
2 +ρ2,1, ρ2,2, . . . , ρ2,N) process started

from (x2; x1, p2, . . . , pN ). Here the force points x1 and p1 = x+
1 for (K2(t))

are combined to be a single force point x1. And in Theorem 4.1, ϕ2(t2, p1) =
ϕ2(t2, x+

1 ) should be understood as ϕ2(t2, x1); and ϕ1(t1, p1) = ϕ1(t1, x+
1 )

should be understood as p1(t1), which is a component of the solution to the
equation that generates (K1(t)).

We want to define M(t1, t2) by (4.34) and (4.26). However, for the
case we study here, some factors in (4.26) does not make sense, and some
factors become zero, which will cause trouble in (4.34). Let’s check the
factors in (4.26) one by one. Let j �= k ∈ {1, 2}. First, Aj,h(t1, t2) =
∂h

z ϕk,tj (tk, ξj(tj)) is well defined for h = 0, 1, and Aj,1 is a positive num-
ber; and E(t1, t2) = |A1,0(t1, t2) − A2,0(t1, t2)| > 0 is well defined. Then
F(t1, t2) > 0 is well defined by (4.24). Now Bm,0(t1, t2) = ϕK1(t1)∪K2(t2)(pm)
is well defined for each 1 ≤ m ≤ n. For the degenerate force point p1 = x+

1 ,
the formula ϕK1(t1)∪K2(t2)(x

+
1 ) is understood as ϕ2,t1(t2, ϕ1(t1, x+

1 )) =
ϕ2,t1(p1(t1)). So Ej,m = Aj,0 − Bm,0 and Cm1,m2 = Bm1,0 − Bm2,0 are all well
defined. Among these numbers, |Cm1,m2(t1, t2)| is positive if m1 �= m2, and
|Ej,m(t1, t2)| is positive except when j = 1, m = 1 and t1 = 0. The factor
Bm,1(t1, t2) = ∂zϕK1(t1)∪K2(t2)(pm) is well defined and positive except when
m = 1. Now for (t1, t2) ∈ D , define

Ñ(t1, t2) = Aα1
1,1 Aα2

2,1

E1/2
Fλ|E2,1|ρ∗

2,1

×
N∏

m=2

(
Bγm

m,1

2∏

j=1

|Ej,m|ρ∗
j,m

) ∏

1≤m1<m2≤N

|Cm1,m2 |δm1,m2 ;

and

N(t1, t2) = (Ñ(t1, t2)Ñ(0, 0))/(Ñ(t1, 0)Ñ(0, t2)). (4.51)
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Then in the generic case, we have M(t1, t2)/N(t1, t2) = L1(t1, t2)/L2(t1, t2),
where

L1(t1, t2)

= ∂zϕK1(t1)∪K2(t2)(p1)
γ1|ϕ2,t1(t2, ξ1(t1)) − ϕ2,t1(t2, ϕ1(t1, p1))|ρ∗

1,1

∂zϕK1(t1)∪K2(0)(p1)γ1|ϕ2,t1(0, ξ1(t1)) − ϕ2,t1(0, ϕ1(t1, p1))|ρ∗
1,1

= ∂zϕ2,t1(t2, ϕ1(t1, p1))
γ1

|ϕ2,t1(t2, ξ1(t1)) − ϕ2,t1(t2, ϕ1(t1, p1))|ρ∗
1,1

|ξ1(t1) − ϕ1(t1, p1)|ρ∗
1,1

,

L2(t1, t2)

= ∂zϕK1(0)∪K2(t2)(p1)
γ1 |ϕ2,0(t2, ξ1(0)) − ϕ2,0(t2, ϕ1(0, p1))|ρ∗

1,1

∂zϕK1(0)∪K2(0)(p1)γ1 |ϕ2,0(0, ξ1(0)) − ϕ2,0(0, ϕ1(0, p1))|ρ∗
1,1

= ∂zϕ2(t2, p1)
γ1

|ϕ2(t2, x1) − ϕ2(t2, p1)|ρ∗
1,1

|x1 − p1|ρ∗
1,1

.

In the above equalities, (4.2) is used. Thus in the generic case,

M(t1, t2)

N(t1, t2)
=

(
∂zϕ2,t1(t2, ϕ1(t1, p1))

∂zϕ2(t2, p1)

)γ1

·
( |x1 − p1|

|ϕ2(t2, x1) − ϕ2(t2, p1)|
)ρ∗

1,1

·
( |ϕ2,t1(t2, ξ1(t1)) − ϕ2,t1(t2, ϕ1(t1, p1))|

|ξ1(t1) − ϕ1(t1, p1)|
)ρ∗

1,1

.

Now come back to the degenerate case p1 = x+
1 we are studying here.

Then

∂zϕ2,t1(t2, ϕ1(t1, p1)) = ∂zϕ2,t1(t2, ϕ1(t1, x+
1 )) and

∂zϕ2(t2, p1) = ∂zϕ2(t2, x1)

still make sense and are both positive. If t1 > 0, then |ϕ2,t1(t2, ξ1(t1)) −
ϕ2,t1(t2, ϕ1(t1, p1))| and |ξ1(t1) − ϕ1(t1, p1)| both make sense and are posi-
tive. And we have

lim
t1→0+ |ϕ2,t1(t2, ξ1(t1)) − ϕ2,t1(t2, ϕ1(t1, p1))|/|ξ1(t1) − ϕ1(t1, p1)|

= ∂zϕ2,t1(t2, ξ1(t1)).

Since p1 = x+
1 , we may view |x1 − p1|/|ϕ2(t2, x1) − ϕ2(t2, p1)| as

lim
p→x+

1

|x1 − p|/|ϕ2(t2, x1) − ϕ2(t2, p)| = 1/∂zϕ2(t2, x1).

These observations suggest us to define M(t1, t2) in the case p1 = x+
1

as follows. For (t1, t2) ∈ D , define U(t1, t2) such that U(0, t2) =
∂zϕ2,t1(t2, ξ1(t1)); and if t1 > 0, then

U(t1, t2) = |ϕ2,t1(t2, ξ1(t1)) − ϕ2,t1(t2, ϕ1(t1, p1))|/|ξ1(t1) − ϕ1(t1, p1)|.
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Then U is continuous on D . Now for (t1, t2) ∈ M, define

M(t1, t2) = N(t1, t2) · U(t1, t2)
ρ∗

1,1

U(0, t2)
ρ∗

1,1
· ∂zϕ2,t1(t2, ϕ1(t1, x+

1 ))γ1

∂zϕ2(t2, x1)γ1
. (4.52)

Then M is continuous on D . It is direct to check that M(t1, 0) =
M(0, t2) = 1 for any t1 ∈ [0, T1) and t2 ∈ [0, T2).

Suppose (ξ1(t), 0 ≤ t < T1) and (ξ2(t), 0 ≤ t < T2) are independent. Let
µj denote the distribution of (ξj(t)), j = 1, 2, and µ = µ1 × µ2. Let (F j

t )
be the filtration generated by (ξj(t)), j = 1, 2. Let j �= k ∈ {1, 2}. Then
for any fixed (F k

t )-stopping time t̄k with t̄k < Tk, the process M|tj=t,tk=t̄k ,
0 ≤ t < Tj(t̄k), is an (F j

t × F k
t̄k
)-adapted local martingale, under the

probability measure µ. The argument is similar to that used in Sect. 4.2.
Let HP denote the set of (H1, H2) such that Hj is a hull inHw.r.t. ∞ that

contains some neighborhood of xj in H, j = 1, 2, H1 ∩ H2 = ∅, and pm /∈
H1 ∪ H2, 2 ≤ m ≤ N. Here we only require that the non-degenerate force
points are bounded away from H1 and H2. Then Theorem 4.4 still holds here.
For the proof, one may check that Theorem 4.4 holds with M(t1, t2) replaced
by N(t1, t2), U(t1, t2), ∂zϕ2,t1(t2, ϕ1(t1, x+

1 )), and ∂zϕ2(t2, x1), respectively.
So for any (H1, H2) ∈ HP, Eµ[M(T1(H1), T2(H2))] = 1. Suppose ν is
a measure on F 1

T1(H1)
× F 2

T2(H2)
such that dν/dµ = M(T1(H1), T2(H2)).

Then ν is a probability measure. Now suppose the joint distribution of
(ξ1(t), 0 ≤ t ≤ T1(H1)) and (ξ2(t), 0 ≤ t ≤ T2(H2)) is ν instead of µ.
Let j �= k ∈ {1, 2}. Using Girsanov theorem, one may check that for
any fixed (F k

t )-stopping time t̄k with t̄k ≤ Tk(Hk), conditioned on F k
t̄k

,
(ϕk(t̄k, Kj(t))), 0 ≤ t < Tj(Hj), is a time-change of a partial chordal
SLE(κj;− κj

2 , �ρj) process started from (ϕk(t̄k, xj); ξk(t̄k), ϕk(t̄k, �p)). We now
can use the argument in Sect. 4.3 to derive Theorem 4.1 in this degenerate
case.

5 Applications

5.1 Duality. We say α is a crosscut in H on R if α is a simple curve that
lies inside H except for the two ends of α, which lie on R. If α is a crosscut,
then H \ α has two connected components: one is bounded, the other is
unbounded. Let D(α) denote the bounded component. We say that such α

strictly encloses some S ⊂ H if S ⊂ D(α) and S ∩ α = ∅.
In Theorem 4.1, let κ1 < 4 < κ2; x1 < x2; N = 3; p1 ∈ (−∞, x1), p2 ∈

(x2,∞), p3 ∈ (x1, x2); for j = 1, 2, ρj,1 = C1(κj − 4), ρj,2 = C2(κj − 4),
and ρj,3 = 1

2 (κj − 4) for some C1 ≤ 1/2 and C2 = 1 − C1. Let Kj(t),
0 ≤ t < Tj , j = 1, 2, be given by Theorem 4.1. Let ϕj(t, · ) and βj(t),
0 ≤ t < Tj , j = 1, 2, be the corresponding Loewner maps and traces.

Let K2(T
−
2 ) = ⋃

0≤t<T2
K2(t). Since κ1 ∈ (0, 4), so β1(t), 0 ≤ t < Tj ,

is a simple curve, and β1(t) ∈ H for 0 < t < Tj . From Theorem 3.6 and



D. Zhan

Lemma 2.3, a.s. β1(T1) := limt→T1 β1(t) exists and lies on (x2, p2). For
simplicity, we use β1 to denote the image {β1(t) : 0 ≤ t ≤ T1}. Thus β1 is
a crosscut in H on R.

Suppose S ⊂ H is bounded. Then there is a unique unbounded compo-
nent of H \ S, which is denoted by D∞. Then we call ∂D∞ ∩ H the outer
boundary of S in H. Let it be denoted by ∂out

H
S.

Lemma 5.1 Almost surely β1 = ∂out
H

K2(T
−
2 ).

Proof. For j = 1, 2, let Pj denote the set of polygonal crosscuts in H
on R whose vertices have rational coordinates, which strictly enclose xj ,
and which do not contain or enclose x3− j or pm , m = 1, 2, 3. For each
γ ∈ P j , let Tj(γ) denote the first time that βj hits γ . Then Tj(γ) is an
(F j

t )-stopping time, and Tj(γ) < Tj . Moreover, we have Tj = ∨
γ∈Pj

Tj(γ).
Let P ∗

2 denote the set of polygonal crosscuts inH on Rwhose vertices have
rational coordinates, and which strictly enclose x2.

We first show that K2(T
−
2 ) ⊂ D(β1) ∪ β1 a.s. Let E denote the event

that β2 intersects H \ (D(β1) ∪ β1). We need to show that P[E] = 0. For
α ∈ P ∗

2 and γ ∈ P2, let Eα;γ denote the event that α strictly encloses β1,
and β2 hits α before γ . Then E = ⋃

α∈P ∗
2 ;γ∈P2

Eα;γ . Since P ∗
2 and P2 are

countable, so we suffice to show P[Eα;γ ] = 0 for any α ∈ P ∗
2 and γ ∈ P2.

Now fix α ∈ P ∗
2 and γ ∈ P2. Let t̄2 denote the first time that β2 hits α∪γ .

Then t̄2 is an (F 2
t )-stopping time, and t̄2 ≤ T2(γ) < T2. From Theorem 4.1,

after a time-change, ϕ2(t̄2, β1(t)), 0 ≤ t < T1(t̄2), has the same distribution
as a full chordal SLE(κ1;− κ1

2 , C1(κ1 − 4), C2(κ1 − 4), 1
2 (κ1 − 4)) trace

started from (ϕ2(t̄2, x1); ξ2(t̄2), ϕ2(t̄2, p1), ϕ2(t̄2, p2), ϕ2(t̄2, p3)). Here we
have

ϕ2(t̄2, p1) < ϕ2(t̄2, x1) < ϕ2(t̄2, p3) < ξ2(t̄2) < ϕ2(t̄2, p2).

Since C1(κ1 − 4) ≥ κ1/2 − 2, 1
2(κ1 − 4) ≥ κ1/2 − 2, and

∣∣
∣∣(C1(κ1 − 4) + C2(κ1 − 4)) −

(
1

2
(κ1 − 4) +

(
−κ1

2

))∣∣
∣∣ = |κ1 − 2| < 2,

so from Theorem 3.6 and Lemma 2.3, a.s. limt→T1(t̄2) ϕ2(t̄2, β1(t)) ∈
(ξ2(t̄2), ϕ2(t̄2, p2)). Thus a.s. {ϕ2(t̄2, β1(t)) : 0 ≤ t < T1(t̄2)} disconnects
ξ2(t̄2) from ∞ in H. So a.s. β1 disconnects β2(t̄2) from ∞ in H \ K2(t̄2).

Assume that the event Eα;γ occurs. Since β2 starts from x2, which is
strictly enclosed by α, so β2(t) ∈ D(α) for 0 ≤ t ≤ t̄2, which implies
that K2(t̄2) ⊂ D(α). On the other hand, β1 is strictly enclosed by α, and
β2(t̄2) ∈ α. Thus β1 does not disconnect β2(t̄2) from ∞ in H \ K2(t̄2). So
we have P[Eα;γ ] = 0. Thus K2(T

−
2 ) ⊂ D(β1) ∪ β1 a.s.

Next we show that a.s. β1 ⊂ K2(T
−
2 ). Fix γ ∈ P1 and q ∈ Q≥0. Let

t̄1 = q∧T1(γ). Then t̄1 is an (F 1
t )-stopping time, and t̄1 ≤ T1(γ) < T1. From
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Theorem 4.1, after a time-change, ϕ1(t̄1, β2(t)), 0 ≤ t < T2(t̄1), has the same
distribution as a full chordal SLE(κ2;− κ2

2 , C1(κ2−4), C2(κ2−4), 1
2 (κ2−4))

trace started from (ϕ1(t̄1, x2); ξ1(t̄1), ϕ1(t̄1, p1), ϕ1(t̄1, p2), ϕ1(t̄1, p3)). Here
we have

ϕ1(t̄1, p1) < ξ1(t̄1) < ϕ1(t̄1, p3) < ϕ1(t̄1, x2) < ϕ1(t̄1, p2).

Since 1
2 (κ2 − 4) ≥ κ2/2 − 2, C2(κ2 − 4) ≥ κ/2 − 2, and C2(κ2 − 4) +

C1(κ2 − 4) = κ2 − 4 ≥ κ2/2 − 2, so from Theorem 3.1 and Lemma 2.1,
a.s. ξ1(t̄1) is a subsequential limit point of ϕ1(t̄1, β2(t)) as t → T2(t̄1).
Thus a.s. β1(t̄1) is a subsequential limit point of β2(t) as t → T2(t̄1).
So β1(t̄1) ∈ K2(T2(t̄1)−) ⊂ K2(T

−
2 ) a.s. Since Q≥0 is countable, so a.s.

β1(q ∧ T1(γ)) ∈ K2(T
−
2 ) for any q ∈ Q≥0. Since Q≥0 is dense in R≥0,

so a.s. β1(t) ∈ K2(T
−
2 ) for any t ∈ [0, T1(γ)]. Since P1 is countable and

T1 = ∨
γ∈P1

T1(γ), so almost surely β1(t) ∈ K2(T
−
2 ) for any t ∈ [0, T1),

i.e., β1 ⊂ K2(T
−
2 ) a.s. Finally, K2(T

−
2 ) ⊂ D(β1) ∪ β1 and β1 ⊂ K2(T

−
2 )

imply that β1 = ∂out
H

K2(T
−
2 ). 
�

Theorem 5.1 Suppose κ > 4; p1 < x1 < p3 < x2 < p2; C1 ≤ 1/2 ≤ C2
and C1 + C2 = 1. Let K(t), 0 ≤ t < T , be chordal SLE(κ;− κ

2 ,

C1(κ − 4), C2(κ − 4), 1
2 (κ − 4)) process started from (x2; x1, p1, p2, p3).

Let K(T −) = ⋃
0≤t<T K(t). Then a.s. K(T −) is bounded, and ∂out

H
K(T −)

has the distribution of the image of a chordal SLE(κ′; − κ′
2 , C1(κ

′ − 4),

C2(κ
′ − 4), 1

2 (κ′ − 4)) trace started from (x1; x2, p1, p2, p3), where κ′ =
16/κ.

Theorem 5.1 still holds if we let p1 ∈ (−∞, x1), or = −∞, or = x−
1 ; let

p2 ∈ (x2,∞), or = ∞, or = x+
2 ; and let p3 ∈ (x1, x2), or = x+

1 , or = x−
2 .

In some cases we may use Theorem 3.3, Theorem 3.4, or Theorem 3.5
instead of Theorem 3.9 to prove that β1 is a crosscut. We may derive some
interesting theorems from some cases.

Theorem 5.2 Suppose κ ≥ 8, and K(t), 0 ≤ t < ∞, is a standard chordal
SLE(κ) process, i.e., the chordal Loewner chain driven by ξ(t) = √

κB(t).
Let x ∈ R\{0} and Tx be the first t such that x ∈ K(t). Then ∂K(Tx)∩H has
the same distribution as the image of a chordal SLE(κ′; − κ′

2 ,− κ′
2 , κ′

2 − 2)

trace started from (x; 0, xa, xb), where κ′ = 16/κ, a = sign(x) and b =
sign(−x).

Proof. K(t), 0 ≤ t < Tx , is a full chordal SLE(κ; 0) process started from
(0; x). Since κ ≥ 8, so K(Tx) = ⋃

0≤t<Tx
Kt and ∂K(Tx) ∩H = ∂out

H
K(Tx).

If x < 0, this follows from Theorem 5.1 with x1 = x, x2 = 0, p1 = x−
1 ,

p2 = ∞, p3 = x+
1 ; C1 = 2/(κ − 4) and C2 = 1 − C1. If x > 0, this follows

from symmetry. 
�
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One may expect that after reasonable modifications, the above theorem
also holds for κ ∈ (4, 8). In this case, for the SLE(κ′; − κ′

2 ,− κ′
2 , κ′

2 −2) trace
started from (x; 0, xa, xb), the force − κ′

2 that corresponds to the degenerate
force point xa does not satisfy − κ′

2 ≥ κ′/2 − 2. So we must allow that
the process continue growing after the degenerate force point is swallowed.
This will make sense because − κ′

2 > −2.

Corollary 5.1 For κ > 8, chordal SLE(κ) trace is not reversible.

Proof. Let β(t), 0 ≤ t < ∞, be a standard chordal SLE(κ) trace. Let W(z) =
1/z and γ(t) = W(β(1/t)). Suppose chordal SLE(κ) trace is reversible,
then after a time-change, (γ(t), 0 < t < ∞) has the same distribution as
(β(t), 0 < t < ∞). Let T be the first time such that 1 ∈ β(t). Since κ > 8,
1 is visited by β exactly once a.s. Thus 1/T is the first time such that
1 ∈ γ(t). From the above theorem, ∂(β((0, T ]))∩H and ∂(γ((0, 1/T ]))∩H
both have the distribution of the image of a chordal SLE(κ′; − κ′

2 ,− κ′
2 , κ′

2 −2)

trace started from (1; 0, 1+, 1−), where κ′ = 16/κ. From Lemma 2.1 and
the definition of γ , we find that ∂(β([T,∞))) ∩ H has the distribution of
the image of a chordal SLE(κ′; 3κ′

2 − 4, κ′
2 − 2,− κ′

2 ) trace started from
(1; 0, 1+, 1−). Since κ′ < 2, so − κ′

2 �= 3κ′
2 − 4. Thus ∂(β((0, T ])) ∩ H and

∂(β([T,∞))) ∩ H have different distributions. However, since β is space-
filling and never crosses its past, the two boundary curves coincide, which
gives a contradiction. 
�

Suppose S ⊂ H and S ∩ [a,∞) = ∅ for some a ∈ R. Then there is
a unique component of H \ S, which has [a,∞) as part of its boundary. Let
D+ denote this component. Then ∂D+ ∩H is called the right boundary of S
in H. Let it be denoted by ∂+

H
S.

Theorem 5.3 Let κ > 4, C ≥ 1/2, and K(t), 0 ≤ t < ∞, be a chordal
SLE(κ; C(κ − 4), 1

2 (κ − 4)) process started from (0; 0+, 0−). Let K(∞) =⋃
t<∞ K(t). Let W(z) = 1/z. Then W(∂+

H
K(∞)) has the same distribution

as the image of a chordal SLE(κ′; C ′(κ′ − 4)) trace started from (0; 0+),
where κ′ = 16/κ and C′ = 1 − C.

Proof. Let W0(z) = 1/(1 − z). Then W0 is a conformal automorphism
of H, and W0(0) = 1, W0(∞) = 0, W0(0±) = 1±. From Lemma 2.1,
after a time-change, (W0(K(t))) has the same distribution as a chordal
SLE(κ; C′(κ−4)− κ

2 , C(κ−4), 1
2 (κ−4)) process started from (1; 0, 1+ , 1−).

Applying Theorem 5.1 with x1 = 0, x2 = 1, p1 = 0−, p2 = 1+, p3 = 1−,
C1 = C ′ and C2 = C, we find that ∂out

H
W0(K∞) has the same distribution as

the image of a chordal SLE(κ′; C(κ′ −4)−2, C′(κ′ −4)) trace started from
(0; 1, 0−). Let β denote this trace. From Lemma 2.3 and Theorem 3.4, β is
a crosscut in H from 0 to 1. Thus ∂+

H
K∞ = W−1

0 (β), and so W(∂+
H

K∞) =
W ◦ W−1

0 (β). Let W1 = W ◦ W−1
0 . Then W1(z) = z/(z − 1). So W1(0) = 0,
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W1(1) = ∞, W1(0−) = 0+. From Lemma 2.1, after a time-change, W1(β)
has the same distribution as the image of a chordal SLE(κ′; C ′(κ′ −4)) trace
started from (0; 0+). 
�
Theorem 5.4 Let κ > 4, C ≥ 1/2, and K(t), 0 ≤ t < ∞, be a chordal
SLE(κ; C(κ − 4)) process started from (0; 0+). Let K(∞) = ⋃

t<∞ K(t).
Let W(z) = 1/z. Then W(∂+

H
K(∞)) has the same distribution as the image

of a chordal SLE(κ′; C ′(κ′ − 4), 1
2(κ

′ − 4)) trace started from (0; 0+, 0−),
where κ′ = 16/κ and C′ = 1 − C.

Proof. This proof is similar to the previous one. We use the same W0, W1,
x1, x2, p1, and p2, except that now p3 = 0+ instead of 1−. And the β here is
a chordal SLE(κ′; C(κ′ − 4) − κ′

2 , 1
2 (κ′ − 4), C′(κ′ − 4)) trace started from

(0; 1, 0+, 0−). 
�
Corollary 5.2 Let κ > 4, and K(t), 0 ≤ t < ∞, be a chordal SLE(κ;
κ −4, 1

2(κ −4)) process started from (0; 0+, 0−). Let K(∞) = ⋃
t<∞ K(t).

Then ∂+
H

K(∞) has the same distribution as the image of a standard chordal
SLE(κ′) trace, where κ′ = 16/κ.

Proof. This follows from Theorem 5.3 and the reversibility of chordal
SLE(κ′) trace when κ′ ∈ (0, 4] (see [19]). 
�

If we assume that Conjecture 1 is true, then in Theorem 5.3 we conclude
that ∂+

H
K(∞) has the same distribution as a chordal SLE(κ′; C ′(κ′−4)) trace

started from (0; 0+); and in Theorem 5.4 we conclude that ∂+
H

K(∞) has the
same distribution as the image of a chordal SLE(κ′; C ′(κ′ − 4), 1

2 (κ′ − 4))

trace started from (0; 0+, 0−), where κ′ = 16/κ and C ′ = 1−C. Moreover,
assuming Conjecture 1, and letting C = 1 in Theorem 5.4, we conclude
that the right boundary of the final hull of a chordal SLE(κ; κ − 4) process
started from (0; 0+) has the same distribution as the image of a chordal
SLE(κ′; 1

2(κ − 4)) trace started from (0; 0−), which is Conjecture 2 in [4].
Moreover, we conjecture that for Cr, Cl ≥ 1/2, if (K(t)) is a chordal
SLE(κ; Cr(κ−4), Cl(κ−4)) started from (0; 0+, 0−), then ∂+

H
K(∞) has the

same distribution as the image of a chordal SLE(κ′; C ′
r(κ

′ − 4), C′
l(κ

′ − 4))
trace started from (0; 0+, 0−), where C ′

r = 1 − Cr and C ′
l = 1/2 − Cl.

5.2 Reversibility

Theorem 5.5 Let �p± = (p±1, . . . , p±N± ) and �ρ± = (ρ±1, . . . , ρ±N±),
where 0 < ±p±m < ±p±n for 1 ≤ m < n ≤ N±;

∑n
m=1 ρ±m ≥ 0 for

1 ≤ n ≤ N±, and
∑N±

m=1 ρ±m = 0. Let β(t), 0 ≤ t < ∞, be a chordal
SLE(4; �ρ+, �ρ−) trace started from (0; �p+, �p−). Let W(z) = 1/z. Then a.s.
limt→∞ β(t) = ∞, and after a time-change, the reversal of (W(β(t))) has
the same distribution as a chordal SLE(4;−�ρ+,−�ρ−) trace started from
(0; W( �p+), W( �p−)), where W( �p±) = (W(p±1), . . . , W(p±N± )).
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Proof. Choose x0 > pN+ . Let W0(z) = x0/(x0 − z). Then W0 maps H
conformally onto H, and W0(0) = 1, W0(∞) = 0. Let q± j = W0(p± j),
1 ≤ j ≤ N±. Then 0 < q−N− < · · · < q−1 < 1 < q1 < · · · < qN+ .
Let x1 = 1, x2 = 0, �ρ1,± = �ρ±, and �ρ2,± = −�ρ±. From Theorem 4.1,
there is a coupling of two curves βj(t), 0 ≤ t < Tj , j = 1, 2, such that
for fixed j �= k ∈ {1, 2}, (i) (βj(t)) is a chordal SLE(4;−2, �ρ j,+, �ρj,−)

trace started from (xj; xk, �p+, �p−); and (ii) for any (F k
t )-stopping time

t̄k with t̄k < Tk, ϕk(t̄k, βj(t)), 0 ≤ t < Tj(t̄k), has the same distribution
as a chordal SLE(4;−2, �ρj,+, �ρj,−) trace started from (ϕk(t̄k, xj); ξk(t̄k),
ϕk(t̄k, �p+), ϕk(t̄k, �p−)), where ϕj(t, · ) and ξj(t), 0 ≤ t < Tj , are chordal
Loewner maps and driving function for the trace βj , j = 1, 2. Note the
symmetry between �ρ1,± and �ρ2,±:

∑n
m=1 ρ1,±m ≥ 0 for all 1 ≤ n ≤ N±,

and
∑N±

m=1 ρ1,±m = 0;
∑N±

m=n ρ2,±m ≥ 0 for all 1 ≤ n ≤ N±, and
∑N±

m=1 ρ2,±m = 0.
Fix j �= k ∈ {1, 2}. From Lemma 2.1 and Theorem 3.1, we have a.s. xk ∈

βj((0, Tj)). Now fix an (F k
t )-stopping time t̄k ∈ (0, Tk). From Lemma 2.1

and Theorem 3.1, we have a.s. ϕk(t̄k, βj((0, Tj(t̄k)))) ∩ R = {ξk(t̄k)}, which
implies that βj((0, Tj(t̄k))) ∩ (R ∪ βk((0, t̄k))) = {βk(t̄k)}. Since t̄k > 0,
so βk(t̄k) �= βk(0) = xk . If Tj(t̄k) = Tj , then xk ∈ βj((0, Tj(t̄k))), which
a.s. does not happen. Thus a.s. Tj(t̄k) < Tj . So we have a.s. βj(Tj(t̄k)) =
limt→Tj (t̄k)− βj(t) ∈ βj((0, Tj(t̄k))). From the definition of Tj(t̄k), we have
a.s. βj(Tj(t̄k)) ∈ βk([0, t̄k]). Thus a.s. βj(Tj(t̄k)) = βk(t̄k).

We may choose a sequence of (F k
t )-stopping times (t̄ (n)

k ) on (0, Tk) such
that {t̄ (n)

k : n ∈ N} is dense on [0, Tk]. Then a.s. βk(t̄
(n)

k ) = βj(Tj(t̄
(n)

k )) for
any n ∈ N. From the denseness of {t̄ (n)

k : n ∈ N} and the continuity of βj
and βk, we have a.s. βk((0, Tk)) ⊂ βj((0, Tj)). Similarly, a.s. βj((0, Tj)) ⊂
βk((0, Tk)). So a.s. β2 is a time-change of the reversal of β1.

From Lemma 2.1, (W0(β(t))) has the same distribution as (β1(t)) after
a time-change. Thus the reversal of (W(β(t))) has the same distribution as
(W ◦ W−1

0 (β2(t))) after a time-change. From Lemma 2.1, (W ◦ W−1
0 (β2(t)))

has the same distribution as a chordal SLE(4;−�ρ+,−�ρ−) trace started from
(0; W( �p+), W( �p−)). 
�

This theorem may also be proved using the convergence of discrete
Gaussian free field on some triangle lattice with suitable boundary con-
ditions (see [13]). It also holds in the degenerate cases, i.e., p1 = 0+
and/or p−1 = 0− and/or pN+ = +∞ and/or p−N− = −∞. For example,
let ρ+, ρ− ≥ 0, and apply Theorem 5.5 with N+ = N− = 2, p1 = 0+,
p−1 = 0−, p2 = +∞, p−2 = −∞, ρ1 = ρ+, ρ2 = −ρ+, ρ−1 = ρ−,
and ρ−2 = −ρ−. Then we conclude that if β(t), 0 ≤ t < ∞, is a chordal
SLE(4;ρ+, ρ−) trace started from (0; 0+, 0−), then after a time-change, the
reversal of (W(β(t))) has the same distribution as (β(t)). This is the case
when κ = 4 in Conjecture 1 of this paper.
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