Solutions of Extra Problems

1. Let $f(x)=\sin \left(x^{2}\right), x \in \mathbb{R}$. Compute $f^{\prime}(x), f^{\prime \prime}(x)$, and $f^{\prime \prime \prime}(x)$ for $x \in \mathbb{R}$.

Solution. Since $\frac{d}{d x} \sin x=\cos x$ and $\frac{d}{d x} x^{2}=2 x$, by the chain rule, f is differentiable, and

$$
f^{\prime}(x)=\cos \left(x^{2}\right) \cdot 2 x .
$$

Since $\frac{d}{d x} \cos x=-\sin x$, by the product rule and chain rule, f^{\prime} is also differentiable and

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left[\cos \left(x^{2}\right)\right] \cdot 2 x+\cos \left(x^{2}\right) \cdot \frac{d}{d x}(2 x)=-\sin \left(x^{2}\right) \cdot(2 x)^{2}+2 \cos \left(x^{2}\right) .
$$

Further differentiation gives
$f^{\prime \prime \prime}(x)=-\cos \left(x^{2}\right) \cdot(2 x)^{3}-\sin \left(x^{2}\right) \cdot 8 x-2 \sin \left(x^{2}\right) \cdot(2 x)=-8 \cos \left(x^{2}\right) \cdot x^{3}-12 \sin \left(x^{2}\right) \cdot x$.
2. Let $g(x)=e^{-\frac{1}{x}}, x \in(0, \infty)$. Compute $g^{\prime}(x), g^{\prime \prime}(x)$, and $g^{\prime \prime \prime}(x)$ for $x \in(0, \infty)$.

Solution. Since $\frac{d}{d x} e^{x}=e^{x}$ and $\frac{d}{d x}\left(-\frac{1}{x}\right)=\frac{1}{x^{2}}$, by the chain rule, g is differentiable, and

$$
g^{\prime}(x)=e^{-\frac{1}{x}} \cdot \frac{1}{x^{2}} .
$$

Since $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)=\frac{-2}{x^{3}}$, by the product rule and chain rule, g^{\prime} is also differentiable and

$$
g^{\prime \prime}(x)=e^{-\frac{1}{x}} \cdot\left(\frac{1}{x^{2}}\right)^{2}+e^{-\frac{1}{x}} \cdot \frac{-2}{x^{3}}=e^{-\frac{1}{x}} \cdot\left(\frac{1}{x^{4}}-\frac{2}{x^{3}}\right) .
$$

Since $\frac{d}{d x}\left(\frac{1}{x^{4}}-\frac{2}{x^{3}}\right)=\frac{-4}{x^{5}}+\frac{6}{x^{4}}$, further differentiation gives

$$
\begin{gathered}
g^{\prime \prime \prime}(x)=e^{-\frac{1}{x}} \cdot \frac{1}{x^{2}} \cdot\left(\frac{1}{x^{4}}-\frac{2}{x^{3}}\right)+e^{-\frac{1}{x}} \cdot\left(\frac{-4}{x^{5}}+\frac{6}{x^{4}}\right) \\
=e^{-\frac{1}{x}} \cdot\left(\frac{1}{x^{6}}-\frac{6}{x^{5}}+\frac{6}{x^{4}}\right) .
\end{gathered}
$$

