
MTH 320 Section 004 Final Sample

1. (a) [4pts] State Mean Value Theorem.

(b) [6pts] Suppose that f is differentiable on R and f ′(x) > 0 on R. Prove that f is
strictly increasing.

Solution. (a) If f is continuous on [a, b] and differentiable on (a, b), then there is c ∈
(a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

(b) Let x < y ∈ R. By Mean Value Theorem, there is z ∈ (x, y) such that

f(y)− f(x)

y − x
= f ′(z).

By the assumption, f ′(z) > 0. From y > x we get f(y)− f(x) = (y − x)f ′(z) > 0. So
f(y) > f(x). Thus, f is strictly increasing.

2. Let f : R→ R.

(a) (4 pts) What does it mean for f to be differentiable at a?

(b) (6 pts) Let f(x) = x sin( 1
x
) when x 6= 0 and f(0) = 0. Is f differentiable at x = 0?

Justify your answer.

Solution. (a) We say that f is differentiable at a if the limit

lim
x→a

f(x)− f(a)

x− a

exists and is finite.

(b) We have
f(x)− f(0)

x− 0
=
f(x)

x
= sin(

1

x
).

We know that limx→0 sin( 1
x
) does not exist. To see this, we may choose a sequence

xn = 1
nπ+π/2

, which tends to 0. Then we have sin( 1
xn

) = sin(nπ + π/2) = (−1)n. But

the sequence ((−1)n) does not converge. So limx→0 sin( 1
x
) does not exist, which implies

that f is not differentiable at 0.

3. (a) [5 pts] Prove that the exact interval of convergence of
∑∞

n=1
xn

n
in [−1, 1).

(b) [5 pts] What function does the power series above represent on (−1, 1)? Justify
your answer.



Solution. (a) This is a power series with coefficients an = 1
n
. Since |an+1

an
| = n

n+1
→ 1,

by ratio test, the radius of the series is 1. Thus, the power series converges at every
point in (−1, 1), and diverges at every point in [−1, 1]c. At x = 1, the series becomes∑∞

n=1
1
n
, which diverges by the p-test. At x = −1, the series becomes

∑∞
n=1

(−1)n
n

,
which converges by the alternative series test. So the exact interval of convergence is
[−1, 1).

(b) Let f(x) =
∑∞

n=1
xn

n
, x ∈ (−1, 1). Differentiating the power series, we get

f ′(x) =
∞∑
n=1

xn−1 =
∞∑
n=0

xn =
1

1− x
.

Thus, for some constant C ∈ R, f(x) = loge(
1

1−x) + C = − loge(1− x) + C. Since the
series has no constant term, f(0) = 0. Taking x = 0, we get 0 = f(0) = − log(1)+C =
C. Thus, f(x) = − loge(1− x).

4. (a) [4pts] Define lim inf sn

(b) [6pts] Prove that if lim sup sn = lim inf sn = s ∈ R, then (sn) converges to s.

Solution. (a) Let un = inf{sm : m ≥ n}, n ∈ N. Either sn = −∞ for all n ∈ N,
or sn ∈ R for all n ∈ N. In the first case, we define lim inf sn = −∞; in the second
case, we define lim inf sn = limun. (b) Let vn = sup{sm : m ≥ n}, n ∈ N. The
lim sup sn is defined as lim vn (if vn = +∞ for all n, then lim sup sn = +∞. From
lim sup sn = lim inf sn = s ∈ R we know that limun = lim vn = s. Since for every n,
un ≤ sn ≤ vn, by squeeze lemma we have lim sn = s.

5. (a) [4 pts.] State Weierstrass M-test.

(b) [6 pts.] Prove that the series of functions
∑∞

n=1
sin(nx)
n3 converges to a continuous

function on all of R, being careful to justify all of your steps.

Solution. (a) Suppose (fn) is a sequence of functions defined on S ⊆ R. Let (an) be
a sequence of nonnegative real numbers such that

∑
an converges. If |fn(x)| ≤ an for

each n ∈ N and x ∈ S. Then
∑
fn converges uniformly on S.

(b) Applying Weierstrass M-test to fn(x) = sin(nx)
n3 and an = 1

n3 , and noting that

| sin(nx)
n3 | = | sin(nx)|

n3 ≤ 1
n3 and

∑
1
n3 converges, we conclude that

∑∞
n=1

sin(nx)
n3 converges

uniformly on R. Since each fn is continuous on R, the uniform limit of the series is
also continuous on R.

6. Suppose (sn) is an increasing sequence of real numbers. Prove that limn→∞ sn =
sup{sn : n ∈ N}. You need to consider two cases: (i) sup{sn : n ∈ N} ∈ R; and (ii)
sup{sn : n ∈ N} = +∞.



Solution. (a) Let fn be a sequence of functions defined on S ⊆ R. Let (an) be a
sequence of nonnegative real numbers such that

∑
an converges. Suppose |fn(x)| ≤ an

for every n ∈ N and x ∈ S. Then
∑
fn converges uniformly on S.

(b) We have | sin(nx)
n3 | ≤ 1

n3 for every x ∈ R. Since
∑

1
n3 converges, by Weierstrass

M-test,
∑∞

n=1
sin(nx)
n3 converges uniformly on R. Since every sin(nx)

n3 is continuous on R,
the uniform limit of the series is continuous on R.

7. (a) [4 pts] State L’Hospital’s rule. Be sure to include all conditions.

(b) [6 pts] Find the following limits

• limy→∞(1 + 2
y
)y

• limx→0
cosx−1
ex−1−x

Proof. (a) Let s be one of a, a+, a−,+∞,−∞, where a ∈ R. Let L ∈ R ∪ {+∞,−∞}.
Suppose in a neighborhood of s, f and g are differentiable and g′ 6= 0. If

lim
x→s

f ′(x)

g′(x)
= L

and either
lim
x→s

f(x) = lim
x→s

g(x) = 0,

or
lim
x→s
|g(x)| = +∞,

then

lim
x→s

f(x)

g(x)
= L.

(b) For the first limit, we write (1 + 2
y
)y = ey loge(1+

2
y
). Since 1/y → 0 as y → ∞, we

get

lim
y→∞

y loge(1 +
2

y
) = lim

y→∞

loge(1 + 2
y
)

1
y

= lim
x→0

loge(1 + 2x)

x
,

if the latter limit exists. Since

lim
x→0

loge(1 + 2x) = loge(1) = 0 = lim
x→0

x,

by L’Hospital’s rule, we have

lim
x→0

loge(1 + 2x)

x
= lim

x→0

d
dx

loge(1 + 2x)
d
dx
x

,

if the latter limit exists. Direct calculation shows

lim
x→0

d
dx

loge(1 + 2x)
d
dx
x

= lim
x→0

2

1 + 2x
= 2.



Thus, limy→∞ y loge(1 + 2
y
) = 2, which implies that

lim
y→∞

(1 +
2

y
)y = elimy→∞ y loge(1+

2
y
) = e2.

For the second limit, we observe that

lim
x→0

(cosx− 1) = cos 0− 1 = 1− 1 = 0;

lim
x→0

(ex − 1− x) = e0 − 1 = 1− 1 = 0.

Thus, by L’Hospital’s rule, we have

lim
x→0

cosx− 1

ex − 1− x
= lim

x→0

d
dx

(cosx− 1)
d
dx

(ex − 1− x)
= lim

x→0

− sinx

ex − 1
,

if the latter limit exists. Since

lim
x→0

(− sinx) = − sin 0 = 0 = e0 − 1 = lim
x→0

(ex − 1),

by L’Hospital’s rule, we have

lim
x→0

− sinx

ex − 1
= lim

x→0

d
dx

(− sinx)
d
dx

(ex − 1)
= lim

x→0

− cosx

ex
,

if the latter limit exists. Using the continuity of cosx and ex, we get limx→0
− cosx
ex

=
− cos 0
e0

= −1. Thus, limx→0
cosx−1
ex−1−x = −1.

8. (a) [4 pts] For a, L ∈ R, define the expressions limx→a− f(x) = L, limx→a+ f(x) = L,
and limx→a f(x) = L.

(b) [6 pts] Prove that if limx→a− f(x) = limx→a+ f(x) = L, then limx→a f(x) = L.

Solution. (a) We first give definitions using sequences. By saying that limx→a− f(x) =
L we mean that there is r > 0 such that f is defined on (a−r, a), and for any sequence
(sn) in (a − r, a) with sn → a, we have f(sn) → L. By saying that limx→a+ f(x) = L
we mean that there is r > 0 such that f is defined on (a, a+ r), and for any sequence
(sn) in (a, a+ r) with sn → a, we have f(sn)→ L. By saying that limx→a f(x) = L we
mean that there is r > 0 such that f is defined on (a − r, a) ∪ (a, a + r), and for any
sequence (sn) in (a− r, a) ∪ (a, a+ r) with sn → a, we have f(sn)→ L.

We then give definitions using the “ε − δ” language. We say that limx→a− f(x) = L
if for any ε > 0, there is δ > 0 such for any x ∈ (a − δ, a), f(x) is defined and
|f(x)−L| < ε. We say that limx→a+ f(x) = L if for any ε > 0, there is δ > 0 such that
for any x ∈ (a, a+ δ), f(x) is defined and |f(x)−L| < ε. We say that limx→a f(x) = L
if for any ε > 0, there is δ > 0 such for any x ∈ (a− δ, a) ∪ (a, a + δ), f(x) is defined
and |f(x)− L| < ε.



(b) We give two proofs. The first is easier, and based on “ε− δ” definitions. Suppose
that limx→a− f(x) = limx→a+ f(x) = L. Let ε > 0. Then there exist δ+, δ− > 0
such that for any x ∈ (a − δ−, a), f(x) is defined and |f(x) − L| < ε, and for any
x ∈ (a, a + δ), f(x) is defined and |f(x) − L| < ε. Let δ = min{δ+, δ−} > 0. Since
(a−δ, a)∪(a, a+δ) ⊂ (a−δ−, a)∪(a, a+δ+), we find that for any x ∈ (a−δ, a)∪(a, a+δ),
f(x) is defined and |f(x)− L| < ε. Thus, limx→a f(x) = L.

The second proof is longer, and based on the sequential definitions. Suppose that
limx→a− f(x) = limx→a+ f(x) = L. Then there are r+, r− > 0 such that f is defined
on (a − r−, a) and (a, a + r+), and for any sequence (sn) in (a − r−, a) or (a, a + r+)
with sn → a, we have f(sn) → L. Let r = min{r+, r−} > 0. Then f is defined on
(a− r, a)∪ (a, a+ r). Let (sn) be a sequence in (a− r, a)∪ (a, a+ r) with sn → a. We
need to show that f(sn) → L. For this purpose, it suffices to show that L is the only
subsequential limit of (f(sn)). If this is not true, then (sn) contains a subsequence
(snk

) such that f(snk
)→ L′ 6= L. Here L′ could be +∞ or −∞. One of the following

two cases must happen: 1) there are infinitely many k such that snk
> a; 2) there are

infinitely many k such that snk
< a. In the first case, we get a subsequence (snkl

) of
(snk

), which lies in (a, a + r) ⊂ (a, a + r+). In the second case, we get a subsequence
(snkl

) of (snk
), which lies in (a− r, a) ⊂ (a− r−, a). In either case, we have snkl

→ a,
but f(snkl

)→ L′ 6= L, which contradicts the assumption. Thus, f(sn)→ L.


