MTH 320

1. (a) $[4 \mathrm{pts}]$ State Mean Value Theorem.
(b) [6pts] Suppose that f is differentiable on \mathbb{R} and $f^{\prime}(x)>0$ on \mathbb{R}. Prove that f is strictly increasing.

Solution. (a) If f is continuous on $[a, b]$ and differentiable on (a, b), then there is $c \in$ (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

(b) Let $x<y \in \mathbb{R}$. By Mean Value Theorem, there is $z \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(z) .
$$

By the assumption, $f^{\prime}(z)>0$. From $y>x$ we get $f(y)-f(x)=(y-x) f^{\prime}(z)>0$. So $f(y)>f(x)$. Thus, f is strictly increasing.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) $(4 \mathrm{pts})$ What does it mean for f to be differentiable at a ?
(b) (6 pts) Let $f(x)=x \sin \left(\frac{1}{x}\right)$ when $x \neq 0$ and $f(0)=0$. Is f differentiable at $x=0$? Justify your answer.

Solution. (a) We say that f is differentiable at a if the limit

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists and is finite.
(b) We have

$$
\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}=\sin \left(\frac{1}{x}\right) .
$$

We know that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist. To see this, we may choose a sequence $x_{n}=\frac{1}{n \pi+\pi / 2}$, which tends to 0 . Then we have $\sin \left(\frac{1}{x_{n}}\right)=\sin (n \pi+\pi / 2)=(-1)^{n}$. But the sequence $\left((-1)^{n}\right)$ does not converge. So $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist, which implies that f is not differentiable at 0 .
3. (a) [5 pts] Prove that the exact interval of convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ in $[-1,1)$.
(b) [5 pts] What function does the power series above represent on $(-1,1)$? Justify your answer.

Solution. (a) This is a power series with coefficients $a_{n}=\frac{1}{n}$. Since $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n}{n+1} \rightarrow 1$, by ratio test, the radius of the series is 1 . Thus, the power series converges at every point in $(-1,1)$, and diverges at every point in $[-1,1]^{c}$. At $x=1$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges by the p-test. At $x=-1$, the series becomes $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges by the alternative series test. So the exact interval of convergence is $[-1,1)$.
(b) Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}, x \in(-1,1)$. Differentiating the power series, we get

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Thus, for some constant $C \in \mathbb{R}, f(x)=\log _{e}\left(\frac{1}{1-x}\right)+C=-\log _{e}(1-x)+C$. Since the series has no constant term, $f(0)=0$. Taking $x=0$, we get $0=f(0)=-\log (1)+C=$ C. Thus, $f(x)=-\log _{e}(1-x)$.
4. (a) $[4 \mathrm{pts}]$ Define $\liminf s_{n}$
(b) $[6 \mathrm{pts}]$ Prove that if $\lim \sup s_{n}=\liminf s_{n}=s \in \mathbb{R}$, then $\left(s_{n}\right)$ converges to s.

Solution. (a) Let $u_{n}=\inf \left\{s_{m}: m \geq n\right\}, n \in \mathbb{N}$. Either $s_{n}=-\infty$ for all $n \in \mathbb{N}$, or $s_{n} \in \mathbb{R}$ for all $n \in \mathbb{N}$. In the first case, we define $\lim \inf s_{n}=-\infty$; in the second case, we define $\lim \inf s_{n}=\lim u_{n}$. (b) Let $v_{n}=\sup \left\{s_{m}: m \geq n\right\}, n \in \mathbb{N}$. The $\lim \sup s_{n}$ is defined as $\lim v_{n}$ (if $v_{n}=+\infty$ for all n, then $\limsup s_{n}=+\infty$. From $\limsup s_{n}=\liminf s_{n}=s \in \mathbb{R}$ we know that $\lim u_{n}=\lim v_{n}=s$. Since for every n, $u_{n} \leq s_{n} \leq v_{n}$, by squeeze lemma we have $\lim s_{n}=s$.
5. (a) $[4$ pts. $]$ State Weierstrass M-test.
(b) [6 pts.] Prove that the series of functions $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{3}}$ converges to a continuous function on all of \mathbb{R}, being careful to justify all of your steps.

Solution. (a) Suppose $\left(f_{n}\right)$ is a sequence of functions defined on $S \subseteq \mathbb{R}$. Let (a_{n}) be a sequence of nonnegative real numbers such that $\sum a_{n}$ converges. If $\left|f_{n}(x)\right| \leq a_{n}$ for each $n \in \mathbb{N}$ and $x \in S$. Then $\sum f_{n}$ converges uniformly on S.
(b) Applying Weierstrass M-test to $f_{n}(x)=\frac{\sin (n x)}{n^{3}}$ and $a_{n}=\frac{1}{n^{3}}$, and noting that $\left|\frac{\sin (n x)}{n^{3}}\right|=\frac{|\sin (n x)|}{n^{3}} \leq \frac{1}{n^{3}}$ and $\sum \frac{1}{n^{3}}$ converges, we conclude that $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{3}}$ converges uniformly on \mathbb{R}. Since each f_{n} is continuous on \mathbb{R}, the uniform limit of the series is also continuous on \mathbb{R}.
6. Suppose $\left(s_{n}\right)$ is an increasing sequence of real numbers. Prove that $\lim _{n \rightarrow \infty} s_{n}=$ $\sup \left\{s_{n}: n \in \mathbb{N}\right\}$. You need to consider two cases: (i) $\sup \left\{s_{n}: n \in \mathbb{N}\right\} \in \mathbb{R}$; and (ii) $\sup \left\{s_{n}: n \in \mathbb{N}\right\}=+\infty$.

Solution. (a) Let f_{n} be a sequence of functions defined on $S \subseteq \mathbb{R}$. Let $\left(a_{n}\right)$ be a sequence of nonnegative real numbers such that $\sum a_{n}$ converges. Suppose $\left|f_{n}(x)\right| \leq a_{n}$ for every $n \in \mathbb{N}$ and $x \in S$. Then $\sum f_{n}$ converges uniformly on S.
(b) We have $\left|\frac{\sin (n x)}{n^{3}}\right| \leq \frac{1}{n^{3}}$ for every $x \in \mathbb{R}$. Since $\sum \frac{1}{n^{3}}$ converges, by Weierstrass M-test, $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{3}}$ converges uniformly on \mathbb{R}. Since every $\frac{\sin (n x)}{n^{3}}$ is continuous on \mathbb{R}, the uniform limit of the series is continuous on \mathbb{R}.
7. (a) [4 pts] State L'Hospital's rule. Be sure to include all conditions.
(b) [6 pts] Find the following limits

- $\lim _{y \rightarrow \infty}\left(1+\frac{2}{y}\right)^{y}$
- $\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1-x}$

Proof. (a) Let s be one of $a, a^{+}, a^{-},+\infty,-\infty$, where $a \in \mathbb{R}$. Let $L \in \mathbb{R} \cup\{+\infty,-\infty\}$. Suppose in a neighborhood of s, f and g are differentiable and $g^{\prime} \neq 0$. If

$$
\lim _{x \rightarrow s} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

and either

$$
\lim _{x \rightarrow s} f(x)=\lim _{x \rightarrow s} g(x)=0
$$

or

$$
\lim _{x \rightarrow s}|g(x)|=+\infty
$$

then

$$
\lim _{x \rightarrow s} \frac{f(x)}{g(x)}=L
$$

(b) For the first limit, we write $\left(1+\frac{2}{y}\right)^{y}=e^{y \log _{e}\left(1+\frac{2}{y}\right)}$. Since $1 / y \rightarrow 0$ as $y \rightarrow \infty$, we get

$$
\lim _{y \rightarrow \infty} y \log _{e}\left(1+\frac{2}{y}\right)=\lim _{y \rightarrow \infty} \frac{\log _{e}\left(1+\frac{2}{y}\right)}{\frac{1}{y}}=\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}
$$

if the latter limit exists. Since

$$
\lim _{x \rightarrow 0} \log _{e}(1+2 x)=\log _{e}(1)=0=\lim _{x \rightarrow 0} x
$$

by L'Hospital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \log _{e}(1+2 x)}{\frac{d}{d x} x}
$$

if the latter limit exists. Direct calculation shows

$$
\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \log _{e}(1+2 x)}{\frac{d}{d x} x}=\lim _{x \rightarrow 0} \frac{2}{1+2 x}=2
$$

Thus, $\lim _{y \rightarrow \infty} y \log _{e}\left(1+\frac{2}{y}\right)=2$, which implies that

$$
\lim _{y \rightarrow \infty}\left(1+\frac{2}{y}\right)^{y}=e^{\lim _{y \rightarrow \infty} y \log _{e}\left(1+\frac{2}{y}\right)}=e^{2}
$$

For the second limit, we observe that

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(\cos x-1)=\cos 0-1=1-1=0 \\
& \lim _{x \rightarrow 0}\left(e^{x}-1-x\right)=e^{0}-1=1-1=0
\end{aligned}
$$

Thus, by L'Hospital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1-x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\cos x-1)}{\frac{d}{d x}\left(e^{x}-1-x\right)}=\lim _{x \rightarrow 0} \frac{-\sin x}{e^{x}-1},
$$

if the latter limit exists. Since

$$
\lim _{x \rightarrow 0}(-\sin x)=-\sin 0=0=e^{0}-1=\lim _{x \rightarrow 0}\left(e^{x}-1\right)
$$

by L'Hospital's rule, we have

$$
\lim _{x \rightarrow 0} \frac{-\sin x}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(-\sin x)}{\frac{d}{d x}\left(e^{x}-1\right)}=\lim _{x \rightarrow 0} \frac{-\cos x}{e^{x}}
$$

if the latter limit exists. Using the continuity of $\cos x$ and e^{x}, we get $\lim _{x \rightarrow 0} \frac{-\cos x}{e^{x}}=$ $\frac{-\cos 0}{e^{0}}=-1$. Thus, $\lim _{x \rightarrow 0} \frac{\cos x-1}{e^{x}-1-x}=-1$.
8. (a) [4 pts] For $a, L \in \mathbb{R}$, define the expressions $\lim _{x \rightarrow a^{-}} f(x)=L, \lim _{x \rightarrow a^{+}} f(x)=L$, and $\lim _{x \rightarrow a} f(x)=L$.
(b) [6 pts] Prove that if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a} f(x)=L$.

Solution. (a) We first give definitions using sequences. By saying that $\lim _{x \rightarrow a^{-}} f(x)=$ L we mean that there is $r>0$ such that f is defined on $(a-r, a)$, and for any sequence $\left(s_{n}\right)$ in $(a-r, a)$ with $s_{n} \rightarrow a$, we have $f\left(s_{n}\right) \rightarrow L$. By saying that $\lim _{x \rightarrow a^{+}} f(x)=L$ we mean that there is $r>0$ such that f is defined on $(a, a+r)$, and for any sequence $\left(s_{n}\right)$ in $(a, a+r)$ with $s_{n} \rightarrow a$, we have $f\left(s_{n}\right) \rightarrow L$. By saying that $\lim _{x \rightarrow a} f(x)=L$ we mean that there is $r>0$ such that f is defined on $(a-r, a) \cup(a, a+r)$, and for any sequence $\left(s_{n}\right)$ in $(a-r, a) \cup(a, a+r)$ with $s_{n} \rightarrow a$, we have $f\left(s_{n}\right) \rightarrow L$.
We then give definitions using the " $\varepsilon-\delta^{\prime}$ " language. We say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if for any $\varepsilon>0$, there is $\delta>0$ such for any $x \in(a-\delta, a), f(x)$ is defined and $|f(x)-L|<\varepsilon$. We say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if for any $\varepsilon>0$, there is $\delta>0$ such that for any $x \in(a, a+\delta), f(x)$ is defined and $|f(x)-L|<\varepsilon$. We say that $\lim _{x \rightarrow a} f(x)=L$ if for any $\varepsilon>0$, there is $\delta>0$ such for any $x \in(a-\delta, a) \cup(a, a+\delta), f(x)$ is defined and $|f(x)-L|<\varepsilon$.
(b) We give two proofs. The first is easier, and based on " $\varepsilon-\delta$ " definitions. Suppose that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$. Let $\varepsilon>0$. Then there exist $\delta_{+}, \delta_{-}>0$ such that for any $x \in\left(a-\delta_{-}, a\right), f(x)$ is defined and $|f(x)-L|<\varepsilon$, and for any $x \in(a, a+\delta), f(x)$ is defined and $|f(x)-L|<\varepsilon$. Let $\delta=\min \left\{\delta_{+}, \delta_{-}\right\}>0$. Since $(a-\delta, a) \cup(a, a+\delta) \subset\left(a-\delta_{-}, a\right) \cup\left(a, a+\delta_{+}\right)$, we find that for any $x \in(a-\delta, a) \cup(a, a+\delta)$, $f(x)$ is defined and $|f(x)-L|<\varepsilon$. Thus, $\lim _{x \rightarrow a} f(x)=L$.
The second proof is longer, and based on the sequential definitions. Suppose that $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=L$. Then there are $r_{+}, r_{-}>0$ such that f is defined on ($a-r_{-}, a$) and ($a, a+r_{+}$), and for any sequence $\left(s_{n}\right)$ in $\left(a-r_{-}, a\right)$ or ($a, a+r_{+}$) with $s_{n} \rightarrow a$, we have $f\left(s_{n}\right) \rightarrow L$. Let $r=\min \left\{r_{+}, r_{-}\right\}>0$. Then f is defined on $(a-r, a) \cup(a, a+r)$. Let $\left(s_{n}\right)$ be a sequence in $(a-r, a) \cup(a, a+r)$ with $s_{n} \rightarrow a$. We need to show that $f\left(s_{n}\right) \rightarrow L$. For this purpose, it suffices to show that L is the only subsequential limit of $\left(f\left(s_{n}\right)\right)$. If this is not true, then $\left(s_{n}\right)$ contains a subsequence $\left(s_{n_{k}}\right)$ such that $f\left(s_{n_{k}}\right) \rightarrow L^{\prime} \neq L$. Here L^{\prime} could be $+\infty$ or $-\infty$. One of the following two cases must happen: 1) there are infinitely many k such that $\left.s_{n_{k}}>a ; 2\right)$ there are infinitely many k such that $s_{n_{k}}<a$. In the first case, we get a subsequence $\left(s_{n_{k_{l}}}\right)$ of $\left(s_{n_{k}}\right)$, which lies in $(a, a+r) \subset\left(a, a+r_{+}\right)$. In the second case, we get a subsequence $\left(s_{n_{k_{l}}}\right)$ of $\left(s_{n_{k}}\right)$, which lies in $(a-r, a) \subset\left(a-r_{-}, a\right)$. In either case, we have $s_{n_{k_{l}}} \rightarrow a$, but $f\left(s_{n_{k_{l}}}\right) \rightarrow L^{\prime} \neq L$, which contradicts the assumption. Thus, $f\left(s_{n}\right) \rightarrow L$.

