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Abstract

A 2-SLEκ (κ ∈ (0, 8)) is a pair of random curves (η1, η2) in a simply connected domain D
connecting two pairs of boundary points such that conditioning on any curve, the other is a
chordal SLEκ curve in a complement domain. In this paper we prove that for any z0 ∈ D, the

limit limr→0+ r
−α0P[dist(z0, ηj) < r, j = 1, 2], where α0 = (12−κ)(κ+4)

8κ , exists. Such limit is
called a two-curve Green’s function. We find the convergence rate and the exact formula of
the Green’s function in terms of a hypergeometric function up to a multiplicative constant.
For κ ∈ (4, 8), we also prove the convergence of limr→0+ r

−α0P[dist(z0, η1 ∩ η2) < r], whose
limit is a constant times the previous Green’s function. To derive these results, we work
on two-time-parameter stochastic processes, and use orthogonal polynomials to derive the
transition density of a two-dimensional diffusion process that satisfies some system of SDE.

1 Introduction

The Schramm-Loewner evolution (SLE), first introduced by Oded Schramm in 1999 ([24]), is a
one-parameter (κ ∈ (0,∞)) family of measures on non-self-crossing curves, which has received a
lot of attention over the past two decades. It has been shown that, modulo time parametrization,
many discrete random paths on grids have SLE with different parameters as their scaling limits.
We refer the reader to Lawler’s textbook [8] for basic properties of SLE.

One of the most important functions associated to SLE is the Green’s function, which can be
roughly defined as the scaling limit of the probability that an SLE curve hits a small disc around
an interior or boundary point of its domain. The existence of chordal SLE Green’s function
for an interior point was given in [5], where conformal radius was used instead of Euclidean
distance. The existence of the original one-point Green’s function (using Euclidean distance)
was proved later in [9]. The existence of boundary point Green’s function for chordal SLE was
given in [7]. Other related works include the Green’s function for radial SLE ([1]), multipoint
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Green’s function for chordal SLE ([11, 7, 9] for 2-point, [19] for n-point), and Green’s function
for SLEκ(ρ) and hSLE ([12]).

A 2-SLEκ (also called bi-chordal SLEκ) is a pair of random curves in a simply connected
domain connecting two pairs of boundary points, which satisfy that, when any one curve is
given, the conditional law of the other curve is that of a chordal SLEκ curve in one complement
domain of the first curve. It is a special case of multiple N -SLEκ (when N = 2) studied in
[4], and exists for all κ ∈ (0, 8) and any admissible link pattern. A 2-SLE arises naturally as a
scaling limit of some lattice model with alternating boundary conditions ([26, 3]), as interacting
flow lines in imaginary geometry ([15, 14]), and as two exploration curves of a CLE ([16, 17]).

Suppose (η1, η2) is a 2-SLEκ in a simply connected domain D, and z0 ∈ D. Then the
probability that both η1 and η2 visit a small disc centered at z0 with radius ε tends to 0 as
ε → 0. It is expected that this probability decays like some power of ε, and the rescaled
probability tends to a nontrivial limit, which is called the two-curve Green’s function for this
2-SLEκ. A similar object considered in [12] is the rescaled probability that either γ1 or γ2

gets close to a given interior point. Their Green’s function is a sum of two one-curve Green’s
functions for the 2-SLEκ, and is different from the one considered here. In this paper we focus
on the interior point case, i.e., z0 ∈ D. In the subsequent paper [28], we will work on the
boundary point case, which uses a similar approach.

Below is our first main theorem, which holds for all κ ∈ (0, 8).

Theorem 1.1. Let κ ∈ (0, 8). Let

α0 =
(12− κ)(κ+ 4)

8κ
> 0. (1.1)

Let F be the hypergeometric function 2F1( 4
κ , 1−

4
κ ; 8

κ , ·), which is known to be positive on [0, 1].
Let D be a simply connected domain with four distinct boundary points (prime ends) a1, b1, a2, b2
such that a1 and a2 together separate b1 from b2 on ∂D. Let (η̂1, η̂2) be a 2-SLEκ in D with
link pattern (a1, b1; a2, b2). Let z0 ∈ D, and fz0 be the conformal map from D onto D such that
fz0(z0) = 0 and f ′z0(0) > 0. Let

GD;a1,b1;a2,b2(z0) := 41− 12
κ |f ′(z0)|α0

2∏
j=1

|fz0(aj)− fz0(bj)|
8
κ
−1

∏
x∈{a,b}

|fz0(x1)− fz0(x2)|
4
κ×

×F
( |fz0(a1)− fz0(b2)||fz0(a2)− fz0(b1)|
|fz0(a1)− fz0(a2)||fz0(b1)− fz0(b2)|

)−1
.

Let β0 =
2+κ

8
3+κ

8
. Let R = dist(z0, ∂D). Then there is a constant C0 > 0 depending only on κ

such that

P[dist(z0, η̂j) < r, j = 1, 2] = C0GD;a1,b1;a2,b2(z0)rα0

(
1 +O

(( r
R

)β0))
, as r → 0+. (1.2)
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Here the implicit constants in the O symbol depend only on κ. In particular, it implies that
there is a constant C ′0 > 0 depending only on κ such that

P[dist(z0, η̂j) < r, j = 1, 2] ≤ C ′0
( r
R

)α0

, ∀r > 0. (1.3)

Below is our second main theorem, which makes sense only for κ ∈ (4, 8).

Theorem 1.2. Let κ ∈ (4, 8). We adopt the notation in the last theorem. Then there is a
constant C1 > 0 depending only on κ such that

P[dist(z0, η̂1 ∩ η̂2) < r] = C1GD;a1,b1;a2,b2(z0)rα0

(
1 +O

( r
R

)β0)
, as r → 0+.

Similar theorems also hold in the case that z0 lies on the boundary, assuming that ∂D is
smooth near z0 ([28]), where the exponent α0 is replaced by another exponent: 2

κ(12 − κ).
Following the approach of [9], we expect that the second theorem above may be used to prove
the existence of the Minkowski content of η1 ∩ η2 of dimension 2 − α0, which is the Hausdorff
dimension of the double points of SLEκ ([18, Theorem 1.1]). This is closely related to the
existence of Minkowski content of double points of a single SLEκ curve.

Definition 1.3. We call GD;a1,b1;a2,b2 in Theorem 1.1 the two-curve Green’s function for 2-SLEκ
in D with link pattern (a1, b1; a2, b2).

Remark 1.4. It is easy to derive the following properties of the two-curve Green’s function.

(i) Using Koebe’s 1/4 Theorem and the boundedness of F on [0, 1], we see that there is a
constant C > 0 depending only on κ such that

GD;a1,b1;a2,b2(z0) ≤ C dist(z0, ∂D)−α0 . (1.4)

(ii) For a1, b1, a2, b2 in the definition, there is another admissible link pattern, which is

(a1, b2; a2, b1). It is easy to see that
GD;a1,b2;a2,b1

(z0)

GD;a1,b1;a2,b2
(z0) does not depend on z0, but only

on the cross-ratio of a1, b1, a2, b2 in D.

The approach of the main theorems is somehow similar to that of the Green’s function for a
single chordal SLEκ, where one parametrizes the curve according to the conformal radius viewed
from the marked point and obtains an invariant measure on a process of harmonic measures.
Here is how it goes for the setting here. By conformal invariance, we may assume that D is
the unit disc D = {|z| < 1} and z0 is the center 0. We may further reduce it to the case that
b1 and b2 are opposite points on the circle, i.e., b1 + b2 = 0, by growing a part of η1 or η2

and mapping the remaining domain back to D. In this special case, we choose to grow η1 and
η2 simultaneously with random speeds so that at any time t, (i) the conformal radius of the
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remaining domain viewed from 0 is e−t; and (ii) the harmonic measure in the remaining domain
viewed from 0 of any boundary arc bounded by b1 and b2 is 1/2. The process is stopped when
either η1 or η2 finishes its journey, or the two curves together disconnect 0 from b1 or b2.

It turns out that the speeds of the curves are determined by the unparametrized curves.
By Koebe’s 1/4 theorem, the assumption on the conformal radius implies that at any time
t that happens before the process ends, the minimum of dist(0, η1[0, t]) and dist(0, η2[0, t]) is
comparable to e−t. By Beurling’s estimate and the harmonic measure assumption, we know that
dist(0, η1[0, t]) is comparable with dist(0, η2[0, t]). Thus, both dist(0, η1[0, t]) and dist(0, η2[0, t])
are comparable to e−t, if the time t happens before the lifetime of the process.

At any time t, conditionally on the event that the process does not end at time t, if we map
the remaining domain back to D and fix 0, then the images of b1 and b2, say b1(t) and b2(t) are
still opposite points on ∂D. The tips of η1 and η2 are then mapped to two other points on ∂D,
say a1(t), a2(t), that are separated by b1(t) and b2(t). The conditional joint law of the images
of the remaining parts of η1 and η2 is then a function of a1(t), a2(t), b1(t), b2(t) with rotation
invariance. This means that the conditional probability that the images of the remaining parts
of η1 and η2 both visit a small disc centered at 0 is a function of arg(aj(t)/bj(t)), j = 1, 2.

The above observation motivates us to study the growth of the two-dimensional Markov
process (Z1(t), Z2(t)) in (0, π)2, where Zj(t) = arg(aj(t)/bj(t)). Using a framework of two-
parameter martingales, we are able to show that (Z1, Z2) is a semi-martingale, and derive the
system of SDEs for them. Then we follow the approach of [30, Appendix B] and use orthog-
onal polynomials to derive the explicit transition density for this Markov process. Using the
transition density, we find that (Z1, Z2) has a quasi-invariant measure, say µ#

∗ on (0, π)2, which

means that if we start (Z1, Z2) from a random point with law µ#
∗ , then for any deterministic

t > 0, the probability that the process survives at time t is e−α0t, and the law of (Z1(t), Z2(t))

conditional on this event is still µ#
∗ . Furthermore, if we start (Z1, Z2) from any deterministic

point, then the conditional distribution of (Z1(t), Z2(t)) approaches exponentially to µ#
∗ . With

this quasi-invariant measure in hand, the remaining part of the proofs of the main theorems
are finished by using Koebe’s distortion theorem.

The rest of the paper is organized as follows. In Sections 2.1 and 2.2, we review Loewner
equations, SLE, 2-SLE, and hypergeometric SLE. In Section 2.3 we develop a framework on
stochastic processes that depend on two time parameters. In Section 3 we describe the inter-
action between two radial Loewner chains, whose chordal counterpart appeared earlier in the
works on the reversibility and duality of SLE ([33, 32]). The essential new stuff starts from
Section 4, in which we grow the two curves in a 2-SLE simultaneously as described above and
derive the SDEs for the process (Z1(t), Z2(t)). In Section 5 we derive the transition density and
quasi-invariant density of this process. In the last section, we finish the proofs.
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2 Preliminary

2.1 Loewner equations, SLE and 2-SLE

In this subsection, we recall the definitions of Loewner equations, SLE and 2-SLE. Let H denote
the upper half-plane {z ∈ C : Im z > 0}. Let D and T denote the unit disc {z ∈ C : |z| < 1}
and its boundary, respectively.

We will extensively use radial Loewner equation in the paper. For the definition, we start
with hulls in D. A set K ⊂ D is called a D-hull if D \ K is a simply connected domain that
contains 0. For a D-hull K, there is a unique conformal map gK from D \K onto D such that
gK(0) = 0 and g′K(0) > 0. By Schwarz Lemma, g′K(0) ≥ 1, and the equality holds only when
K = ∅. By Schwarz reflection principle, we may view gK as a conformal map from C \Kdoub

onto C \SK , where Kdoub is the union of the closure of K and the reflection of K about T, i.e.,
{1/z : z ∈ K}, and SK is a compact subset of T. Let dcap(K) := log(g′K(0)) ≥ 0 be called the
D-capacity of K. If K1 ⊂ K2 are two D-hulls, then we define K2/K1 := gK1(K2 \K1), which is
also a D-hull, and satisfies dcap(K2/K1) = dcap(K2)− dcap(K1).

Let ŵ ∈ C([0, T ),R) for some T ∈ (0,∞]. The radial Loewner equation driven by ŵ is

∂tgt(z) = gt(z) ·
eiŵ(t) + gt(z)

eiŵ(t) − gt(z)
, 0 ≤ t < T ; g0(z) = z.

For each t ∈ [0, T ), let Kt be the set of z ∈ D such that the solution g·(z) blows up before or at
t (so that gt is well defined on D \Kt). Then we call gt and Kt the radial Loewner maps and
hulls, respectively, driven by ŵ. It turns out that, for each t, Kt is a D-hull with dcap(Kt) = t,
and gKt = gt. If for every t ∈ [0, T ), g−1

t as a conformal map from D onto D \ Kt extends
continuously to D, and η(t) := g−1

t (eiŵ(t)), 0 ≤ t < T , is continuous in t, then we say that η is
a radial Loewner curve driven by ŵ. Such η may not exist in general; when it exists, the hulls
(Kt) are generated by η in the sense that for every t, D \ Kt is the connected component of
D \ η([0, t]) that contain 0.

Let ŵ be as above. Let u be a continuous and strictly increasing function defined on [0, T )
with u(0) = 0. Suppose that the two families gut and Ku

t , 0 ≤ t < T , satisfy that guu−1(t) and

Ku
u−1(t), 0 ≤ t < u(T ), are radial Loewner maps and hulls, respectively, driven by ŵ◦u−1. Then

we say that gut and Ku
t , 0 ≤ t < T , are radial Loewner maps and hulls, respectively, driven by

ŵ with speed du. If u is absolutely continuous, then we say that the speed is u′.
The following lemma is well known, and has appeared in the literature in different forms.

Lemma 2.1. Suppose Kt, 0 ≤ t < T , are radial Loewner hulls driven by some ŵ ∈ C([0, T ),R).
Let L be a D-hull such that L ∩ Kt = ∅ for all t ∈ [0, T ). Then for any t ∈ [0, T ), gKt(L)
is a D-hull that has positive distance from eiŵ(t), so that ggKt (L) is analytic at eiŵ(t); and
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gL(Kt), 0 ≤ t < T , are radial Loewner hulls driven by some ŵL ∈ C([0, T ),R) with speed

|g′gKt (L)(e
iŵ(t))|2, where ŵL satisfies eiŵ

L(t) = ggKt (L)(e
iŵ(t)), 0 ≤ t < T .

It will be useful to work on the covering radial Loewner equation. Let ei denote the covering
map z 7→ eiz from H onto D \ {0}. Let cot2 denote the function cot(·/2). The covering radial
Loewner equation driven by ŵ ∈ C([0, T ),R) is

∂tg̃t(z) = cot2(g̃t(z)− ŵ(t)), g0(z) = z.

For each t ∈ [0, T ), let K̃t denote the set of of z ∈ H such that the solution g̃·(z) blows up before
or at t. We call g̃t and K̃t, 0 ≤ t < T , the covering radial Loewner maps and hulls, respectively,
driven by ŵ. It turns out that K̃t has period 2π, g̃t maps H \ Kt conformally onto H with
g̃t(z + 2π) = g̃t(z) + 2π; and if (gt) and (Kt) are the radial Loewner maps and hulls driven
by ŵ, then K̃t = (ei)−1(Kt) and ei ◦ g̃t = gt ◦ ei. If u is a continuous and strictly increasing
function on [0, T ), we may similarly define covering radial Loewner maps g̃ut and hulls K̃u

t with
speed du driven by ŵ.

If ŵ(t) =
√
κB(t), 0 ≤ t < ∞, where κ > 0 and B(t) is a standard Brownian motion, then

the radial Lowner curve η driven by ŵ is known to exist, and is called a radial SLEκ curve in D
from 1 to 0. What will be used in this paper is a generalization of radial SLEκ: radial SLE(κ; ρ),
whose growth is affected by one or more force points lying on the boundary or the interior. For
the generality needed here, we assume that all force points lie on the boundary and are distinct
from the initial point of the curve. We start with the definition of radial SLE(κ; ρ) in D. Let
ρ1, . . . , ρn ∈ R. Let eiw, eiv1 , . . . , eivn be distinct points on T. Let B(t) be a standard Brownian
motion. Suppose that ŵ(t) and v̂j(t), 1 ≤ j ≤ n, 0 ≤ t < T , solve the following system of SDEs
with the maximal solution interval:

dŵ(t) =
√
κdB(t) +

n∑
j=1

ρj
2

cot2(ŵ(t)− v̂j(t))dt, ŵ(0) = w;

dv̂j(t) = cot2(v̂j(t)− ŵ(t)), v̂j(0) = vj , 1 ≤ j ≤ n.

Then we call the radial Loewner curve driven by ŵ the SLE(κ; ρ1, . . . , ρn) curve in D started
from eiw aimed at 0 with force points eiv1 , . . . , eivn . The covering radial Loewner maps implicitly
appear in the definition: if g̃t are covering radial Loewner maps, then v̂j(t) = g̃t(vj).

Although we say that η is aimed at 0, it often happens that η does not end at 0. A radial
SLE(κ; ρ) curve in a general simply connected domain D started from a boundary point aimed
at an interior point with force points on the boundary is defined by a conformal map from
D onto D. The targeted interior point actually acts as another force point with force value
κ− 6−

∑n
j=1 ρj (cf. [25]).

At the end of this subsection, we briefly recall chordal Loewner equation, chordal SLEκ,
and 2-SLEκ. Let ŵ ∈ C([0, T ),R) for some T ∈ (0,∞]. The chordal Loewner equation driven
by ŵ is

∂tgt(z) =
2

gt(z)− ŵ(t)
, 0 ≤ t < T ; g0(z) = z.
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For each t ∈ [0, T ), let Kt be the set of z ∈ H such that the solution g·(z) blows up before
or at t (so that gt is well defined on H \ Kt). Then we call gt and Kt the chordal Loewner
maps and hulls, respectively, driven by ŵ. It turns out that, for each t, Kt is a bounded and
relatively closed subset of H, and gt maps H \Kt conformally onto H. If for every t ∈ [0, T ),
g−1
t as a conformal map from H onto H \Kt extends continuously to H, and η(t) := g−1

t (ŵ(t)),
0 ≤ t < T , is continuous in t, then we say that η is a chordal Loewner curve driven by ŵ.

If ŵ(t) =
√
κB(t), 0 ≤ t < ∞, where κ > 0 and B(t) is a standard Brownian motion, then

the chordal Lowner curve η driven by ŵ is known to exist, and is called a chordal SLEκ curve
in H from 0 to ∞. In fact, we have η(0) = ŵ(0) = 0 and limt→∞ η(t) = ∞ ([21]). If D is a
simply connected domain with two distinct marked boundary points (prime ends) a and b, the
chordal SLEκ curve in D from a to b is defined to be the conformal image of a chordal SLEκ
curve in H from 0 to ∞ under a conformal map from (H; 0,∞) onto (D; a, b).

For any κ > 0, both radial SLEκ and chordal SLEκ satisfy conformal invariance and Domain
Markov Property (DMP). The DMP means that if η is a radial (resp. chordal) SLEκ curve in
D from a to b, and T is a stopping time, then conditionally on the part of η before T and the
event that η does not reach b at time T , the part of η after T is a radial (resp. chordal) SLEκ
curve from η(T ) to b in one connected component of D \ η([0, T ]). If κ ∈ (0, 8), chordal SLEκ
satisfies reversibility: the time-reversal of a chordal SLEκ curve in D from a to b is a chordal
SLEκ curve in D from b to a, up to a time-change ([33, 13]).

Let D be a simply connected domain with distinct boundary points a1, b1, a2, b2 such that
a1 and a2 together separate b1 from b2 on ∂D (and vice versa). Let κ ∈ (0, 8). A 2-SLEκ in D
with link pattern (a1, b1; a2, b2) is a pair of random curves (η1, η2) in D such that for j = 1, 2,
ηj connects aj with bj , and conditionally on η3−j , ηj is a chordal SLEκ curve in the connected
component of D \ η3−j whose boundary contains aj and bj . Because of reversibility, we do not
need to specify the orientation of η1 and η2. If we want to emphasize the orientation, then we
use an arrow like a1 → b1 in the link pattern. The existence of 2-SLEκ was proved in [4] for
κ ∈ (0, 4] using Brownian loop measure and in [15, 13] for κ ∈ (4, 8) using flow line theory. The
uniqueness of 2-SLEκ (for a fixed domain and link pattern) was proved in [14] (for κ ∈ (0, 4])
and [16] (for κ ∈ (4, 8)) using an ergodicity argument.

Using the DMP for chordal SLEκ, it is easy to derive the following DMP for 2-SLEκ: If
(η1, η2) is a 2-SLEκ in D with link pattern (a1 → b1; a2, b2), and if T is a stopping time for
η1, then conditionally on the part of η1 before T and the event that η1 neither reaches b1 or
disconnects b1 from a2, b2 at time T , the rest part of η1 and the complete η2 form a 2-SLEκ with
link pattern (η1(T )→ b1; a2, b2) in the connected component of D \ η1([0, T ]) whose boundary
contains b1, a2, b2. We will have a stronger DMP later in Lemma 6.1.

2.2 Hypergeometric SLE

We now review the hypergeometric SLE defined earlier in [31] (called intermediate SLEκ(ρ)
there) and [23]. Let κ ∈ (0, 8). Let F be the hypergeometric function 2F1( 4

κ , 1 −
4
κ ; 8

κ , ·) in
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Theorem 1.1. Such F is the solution of

x(1− x)F ′′(x) +
[8

κ
− 2x

]
F ′(x)− 4

κ

(
1− 4

κ

)
F (x) = 0. (2.1)

Since 8
κ > (1− 4

κ) + 4
κ , F extends continuously to 1 with F (1) =

Γ( 8
κ

)Γ( 8
κ
−1)

Γ( 4
κ

)Γ( 12
κ
−1)

> 0. Using (2.1)

one can prove that F is positive on [0, 1]. Then we let G(x) = κxF
′(x)
F (x) , F̃ (x) = x

2
κF (x), and

G̃(x) = κx F̃
′(x)

F̃ (x)
= G(x) + 2.

Definition 2.2. Let 0, v1, v2 ∈ R be such that 0 < v1 < v2 or 0 > v1 > v2. Let B(t) and B′(t)
be two independent standard real Brownian motion. Suppose ŵ, v̂1, v̂2 ∈ C([0,∞),R) satisfy
the following properties. There is T ∈ (0,∞] such that ŵ(t) and v̂j(t), 0 ≤ t < T , j = 1, 2, are
continuous random process such that they together solve the following SDE with the maximal
solution interval and respective initial values 0 and vj , j = 1, 2:

dŵ(t) =
√
κdB(t) +

( 1

ŵ(t)− v̂1(t)
− 1

ŵ(t)− v̂2(t)

)
G̃
( ŵ(t)− v̂1(t)

ŵ(t)− v̂2(t)

)
dt;

dv̂j(t) =
2dt

v̂j(t)− ŵ(t)
, j = 1, 2.

Moreover, if T <∞, then ŵ(T + t) = ŵ(T ) +
√
κB′(t), 0 ≤ t <∞. Then the chordal Loewner

curve driven by ŵ is called a full hSLEκ curve in H from 0 to ∞ with force points v1, v2.
If f maps H conformally onto a simply connected domain D, then the f -image of a full

hSLEκ curve in H from 0 to ∞ with force points v1, v2 is called a full hSLEκ curve in D from
f(0) to f(∞) with force points f(v1), f(v2).

Remark 2.3. In the definition of full hSLEκ in H, if κ ∈ (0, 4], then a.s. T = ∞, and we do
not need the B′ in the definition. If κ ∈ (4, 8), then a.s. T <∞; and η(t) tends to some point
on R between ∞ and v2. The assumption that ŵ(T + t) = ŵ(T ) +

√
κB′(t), 0 ≤ t <∞, means

that given the part of η up to T , the rest of η is a chordal SLEκ curve from η(T ) to ∞ in the
remaining domain. In both cases, a full hSLEκ curve always ends at its target.

We now describe hSLE using radial Loewner equation. Let w0, v1, v2, w∞ ∈ R be such that
w0 > v1 > v2 > w∞ > w0 − 2π or w0 < v1 < v2 < w∞ < w0 + 2π. Let B(t) be a standard
Brownian motion. Let ŵ0(t), ŵ∞(t), and v̂j(t), j = 1, 2, 0 ≤ t < T , be the solution of the SDEs:

dŵ0(t) =
√
κdB(t) +

κ− 6

2
cot2(ŵ0(t)− ŵ∞(t))dt+

+
1

2
(cot2(ŵ0(t)− v̂1(t))− cot2(ŵ0(t)− v̂2(t)))G̃(R(t))dt,

R(t) =
sin2(ŵ0(t)− v̂1(t)) sin2(v̂2(t)− ŵ∞(t))

sin2(ŵ0(t)− v̂2(t)) sin2(v̂1(t)− ŵ∞(t))

dŵ∞(t) = cot2(ŵ∞(t)− ŵ0(t))dt,

dv̂j(t) = cot2(v̂j(t)− ŵ0(t))dt, j = 1, 2,
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with initial values w0, w∞, and vj , j = 1, 2, respectively, such that [0, T ) is the maximal solution
interval. Then we call the radial Loewner curve driven by ŵ0 a radial hSLEκ curve in D from
eiw0 to eiw∞ with force points eiv1 , eiv2 , viewed from 0.

Proposition 2.4. Let w0, w∞, v1, v2 be as above. Suppose η(t), 0 ≤ t < T ′, is a full hSLEκ
curve in D from eiw0 to eiw∞ with force points eiv1 , eiv2. Let T be the first time that η separates
0 from any of eiw0 , eiv1 , eiv2. If such time does not exist, then we set T = T ′. Then up to a
time-change, η(t), 0 ≤ t < T , is a radial hSLEκ curve in D from eiw0 to eiw∞ with force points
eiv1 , eiv2, viewed from 0.

Proof. This follows from the standard argument as in [25].

One important property of hSLE is its connection with 2-SLE. If (η1, η2) is a 2-SLEκ in D
with link pattern (a1 → b1; a2 → b2), then for j = 1, 2, ηj is a full hSLEκ curve in D from aj to
bj with force points b3−j and a3−j (see e.g., [26, Proposition 6.10]). The two curves η1 and η2

commute with each other in the following sense: if we run one curve, say η3−j up to a stopping
time T before reaching b3−j or separating b3−j from bj or aj , and condition on this part of η3−j ,
then the whole ηj is a full hSLEκ curve from aj to bj in the remaining domain with force points
η3−j(T ) and b3−j . This easily follows from the DMP of 2-SLE.

2.3 Two-parameter Stochastic Processes

We work on a measurable space (Ω,F). Let Q denote the first quadrant [0,∞)2 with partial
order ≤ such that t = (t1, t2) ≤ (s1, s2) = s iff t1 ≤ s1 and t2 ≤ s2. It has a minimal element
0 = (0, 0). We write t < s if t1 < s1 and t2 < s2. Moreover, we define t ∧ s = (t1 ∧ s1, t2 ∧ s2).
Given t, s ∈ Q, we define [t, s] = {r ∈ Q : t ≤ r ≤ s}. For example, [0, t ∧ s] = [0, t] ∩ [0, s].

For n ∈ N, we define tbnc = b2nt1c
2n and tdne = d2nt1e

2n for t ∈ [0,∞), and tbnc = (t
bnc
1 , t

bnc
2 ) and

tdne = (t
dne
1 , t

dne
2 ) for t = (t1, t2) ∈ Q. Note that tbnc, tdne ∈ Q and tbnc ≤ t ≤ tdne.

Definition 2.5. A family of sub-σ-fields (Ft)t∈Q of F is called a Q-indexed filtration if Ft ⊂ Fs
whenever t ≤ s. A family of random variables (X(t))t∈Q defined on (Ω,F) is called an (Ft)t∈Q-
adapted process if for any t ∈ Q, X(t) is Ft-measurable. It is called continuous if t 7→ X(t) is
sample-wise continuous.

Definition 2.6. A random map T : Ω → Q is called an (Ft)t∈Q-stopping time if for any
deterministic t ∈ Q, {T ≤ t} ∈ Ft. Here we do not allow that T takes value infinity. For such
T , we define a new σ-field FT by

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft, ∀t ∈ Q}.

The stopping time T is called bounded if there is a deterministic t ∈ Q such that T ≤ t.

Note that any deterministic number t ∈ Q is an (Ft)t∈Q-stopping time, and the Ft defined
by considering t as a stopping time agrees with the Ft as in the filtration.
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Lemma 2.7. Let T and S be two (Ft)t∈Q-stopping times. Then (i) {T ≤ S} ∈ FS; (ii) if S is
a deterministic time s ∈ Q, then {T ≤ S} ∈ FT ; and (iii) if f is an FT -measurable function,
then 1{T≤S}f is FS-measurable. In particular, if T ≤ S, then FT ⊂ FS.

Proof. (i) Let t = (t1, t2) ∈ Q. We have

{T ≤ S} ∩ {S ≤ t} = {T ≤ t} ∩ {S ≤ t} ∩ {T 6≤ S}c

= {S ≤ t} ∩ {T ≤ t} ∩ [({S1 < T1 ≤ t1} ∩ {T2 ∨ S2 ≤ t2}) ∪ ({T1 ∨ S1 ≤ t1} ∩ {S2 < T2 ≤ t2})].

Since T and S are stopping times, {S ≤ t} ∩ {T ≤ t} ∈ Ft. Since we may write

{S1 < T1 ≤ t1} ∩ {T2 ∨ S2 ≤ t2} =
⋃

t′1∈Q∩(0,t1)

{S1 ≤ t′1 < T1 ≤ t1} ∩ {T2 ∨ S2 ≤ t2}

=
⋃

t′1∈Q∩(0,t1)

{T ≤ t} ∩ {S ≤ (t′1, t2)} ∩ {T ≤ (t′1, t2)}c,

we get {S1 < T1 ≤ t1} ∩ {T2 ∨ S2 ≤ t2} ∈ Ft. Similarly, {T1 ∨ S1 ≤ t1} ∩ {S2 < T2 ≤ t2} ∈ Ft.
Combining, we get {T ≤ S} ∩ {S ≤ t} ∈ Ft. Thus, {T ≤ S} ∈ FS .

(ii) If S = s for some s ∈ Q, then {T ≤ S} ∈ FT because for any t ∈ Q,

{T ≤ S} ∩ {T ≤ t} = {T ≤ s ∧ t} ∈ Fs∧t ⊂ Ft.

(iii) By monotone convergence, it suffices to consider the case that f = 1A, where A ∈ FT .
Then for any t ∈ Q,

A ∩ {T ≤ S} ∩ {S ≤ t} = (A ∩ {T ≤ t}) ∩ ({T ≤ S} ∩ {S ≤ t}) ∈ Ft.

So A ∩ {T ≤ S} ∈ FS , which implies that 1{T≤S}f = 1A∩{T≤S} is FS-measurable.

Remark 2.8. In general, we do not have {T ≤ S} ∈ FT unless S is deterministic or separable
(see Definition 2.12 and Lemma 2.13).

Lemma 2.9. Let (Xt)t∈Q be a continuous (Ft)t∈Q-adapted process. Let T be an (Ft)t∈Q-
stopping time. Then XT is FT -measurable.

Proof. Since T bnc ↑ T , as n→∞, by the continuity ofX, it suffices to show that for every n ∈ N,
XT bnc is FT -measurable. For a fixed n ∈ N, since T bnc takes values in the countable set ( Z

2n )2;

and for every t ∈ ( Z
2n )2, by Lemma 2.7 (i,ii), {T bnc = t} = {t ≤ T}∩{T < t+( 1

2n ,
1

2n )} ∈ FT , it

suffices to show that XT bnc restricted to {T bnc = t} is FT -measurable. To see this, we may write
1{T bnc=t}XT bnc = 1{T bnc=t}1{t≤T}Xt. Since Xt is Ft-measurable, by Lemma 2.7, 1{t≤T}Xt is
FT -measurable. So 1{T bnc=t}XT bnc is FT -measurable, as desired.

From now on, we fix a a probability measure P on (Ω,F), and let E denote the corresponding
expectation.
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Definition 2.10. An (Ft)t∈Q-adapted process (Xt)t∈Q is called an (Ft)t∈Q-martingale (w.r.t.
P) if every Xt is integrable, and for any s ≤ t ∈ Q, E[Xt|Fs] = Xs. If there is X ∈ L1(Ω,F ,P)
such that Xt = E[X|Ft] for every t ∈ Q, then it is clear that (Xt) is an (Ft)-martingale. We
call such (Xt) an X-Doob martingale or simply a Doob martingale.

Lemma 2.11 (Optional Stopping Theorem). Let (Xt)t∈Q be a continuous (Ft)t∈Q-martingale.
The following are true. (i) If (Xt) is an X-Doob martingale for some X ∈ L1, then for any
(Ft)t∈Q-stopping time T , XT = E[X|FT ]. (ii) If T ≤ S are two bounded (Ft)t∈Q-stopping
times, then E[XS |FT ] = XT .

Proof. (i) Assume that (Xt) is an X-Doob martingale. First, we assume that T takes values
in ( Z

2n )2 for some n ∈ N. Since XT is FT -measurable by Lemma 2.9, it suffices to show that,
for any A ∈ FT , E[1AXT ] = E[1AX]. We now fix A ∈ FT . For any t ∈ Q ∩ ( Z

2n )2, since
A ∩ {T = t} ∈ Ft, using E[X|Ft] = Xt, we get E[1A∩{T=t}Xt] = E[1A∩{T=t}X]. Summing up

over t ∈ Q ∩ ( Z
2n )2, we get E[1AXT ] = E[1AX] in this special case.

Now we consider the general case. Note that for every n ∈ N, T dne takes values in ( Z
2n )2, and

is a stopping time because for any t ∈ Q, {T dne ≤ t} = {T ≤ tbnc} ∈ Ftbnc ⊂ Ft. Applying the

special case to T dne, we get E[X|FT dne ] = XT dne . Since T dne ↓ T as n→∞. By the continuity
of X, we have XT dne → XT . Since FT ⊂ FT dne by Lemma 2.7, a standard argument involving

uniform integrability shows that E[X|FT ] = XT .

(ii) First assume that S is a constant s ∈ N2. Then S ≥ T dne for all n ∈ N. Using the same
argument as in (i) with XS in place of X, we get E[XS |FT ] = XT .

Finally, we consider the general case. Since S is bounded, there is r ∈ Q ∩ N2 such that
T ≤ S ≤ r. Let A ∈ FT ⊂ FS . From the special case of (ii), we get E[1AXS ] = E[1AXr] =
E[1AXT ], which implies that E[XS |FT ] = XT .

Definition 2.12. Suppose that there are two filtrations (F1
t1) and (F2

t2) such that F(t1,t2) =
F1
t1 ∨ F

2
t2 , (t1, t2) ∈ Q. Then we say that (Ft)t∈Q is a separable filtration generated by (F1

t1)

and (F2
t2). For such a separable filtration, if Tj is a finite (F jt )-stopping time, j = 1, 2, then

(T1, T2) is called a separable (Ft)t∈Q-stopping time (w.r.t. (F1
t1) and (F2

t2)).

Lemma 2.13. Let T and S be two stopping times w.r.t. a separable filtration (Ft)t∈Q. If S is
separable, then {T ≤ S} ∈ FT .

Proof. We have {T ≤ S} ∈ FT because for any t ∈ Q,

{T ≤ S} ∩ {T ≤ t} = {T ≤ S ∧ t} ∈ FS∧t ⊂ Ft.

Here we use Lemma 2.7 (i,ii) and the fact that S ∧ t is an (Ft)t∈Q-stopping time (and so FS∧t
is well defined), which follows from the assumption that S is separable.

Definition 2.14. A relatively open subset R of Q is called a history complete region, or simply
an HC region, if for any t ∈ R, we have [0, t] ⊂ R. Given an HC region R, we may define two
functions TR1 , T

R
2 : [0,∞)→ [0,∞] such that

[0, TR1 (t2)) = {s1 ≥ 0 : (s1, t2) ∈ R}, [0, TR2 (t1)) = {s2 ≥ 0 : (t1, s2) ∈ R}, t1, t2 ≥ 0.
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A map D from Ω into the space of HC regions is called an (Ft)t∈Q-stopping region if for any
t ∈ Q, {ω ∈ Ω : t ∈ D(ω)} ∈ Ft. A random function X(t) with a random domain D is called
an (Ft)t∈Q-adapted HC process if D is an (Ft)t∈Q-stopping region, and for every t ∈ Q, Xt

restricted to {t ∈ D} is Ft-measurable.

3 Ensemble of Two Radial Loewner Chains

3.1 Deterministic ensemble

Let w1, w2, v1, v2 ∈ R be such that w1 > v1 > w2 > v2 > w2 − 2π. For j = 1, 2, let ŵj ∈
C([0, Sj),R) be a radial Loewner driving function with ŵj(0) = wj . Suppose ŵj generates radial

Loewner hulls Kj(t), radial Loewner maps gj(t, ·), covering Loewner hulls K̃j(t) and covering
radial Loewner maps g̃j(t, ·), 0 ≤ t < Sj . Let D denote the set of (t1, t2) ∈ [0, S1)× [0, S2) such

that K1(t1)∩K2(t2) = ∅ and eiv1 , eiv2 6∈ K1(t1)∪K2(t2). Then D is an HC region as in Definition
2.14, and we may define functions TD1 and TD2 . For (t1, t2) ∈ D, let K(t1, t2) = K1(t1)∪K2(t2).
Then K(t1, t2) is also an D-hull. Let g((t1, t2), ·) = gK(t1,t2), and m(t1, t2) = dcap(K(t1, t2)).
For (t1, t2) ∈ D and j 6= k ∈ {1, 2}, let Kj,tk(tj) = gk(tk,Kj(tj)), and gj,tk(tj , ·) = gKj,tk (tj).
Then we have

g1,t2(t1, ·) ◦ g2(t2, ·) = g((t1, t2), ·) = g2,t1(t2, ·) ◦ g1(t1, ·). (3.1)

Let K̃(t1, t2), K̃j,tk(tj) ⊂ H be the pre-images of K(t1, t2),Kj,tk(tj), respectively, under the map
ei. Let g̃((t1, t2), ·), (t1, t2) ∈ D, be the unique family of maps, such that g̃((t1, t2), z) is joint

continuous in t1, t2, z; g̃((0, 0), ·) = id; and for each (t1, t2) ∈ D, g̃((t1, t2), ·) : H\K̃(t1, t2)
Conf
� H,

and ei ◦ g̃((t1, t2), ·) = g((t1, t2), ·) ◦ ei. Define g̃1,t2(t1, ·) and g̃2,t1(t2, ·), (t1, t2) ∈ D, similarly.
Using (3.1) we get

g̃1,t2(t1, ·) ◦ g̃2(t2, ·) = g̃((t1, t2), ·) = g̃2,t1(t2, ·) ◦ g̃1(t1, ·). (3.2)

Note also that g̃((t1, 0), ·) = g̃1(t1, ·) and g̃((0, t2), ·) = g̃2(t2, ·). So g̃1,t2(0, ·) (resp. g̃2,t1(0, ·)) is
an identity if (0, t2) ∈ D (resp. (t1, 0) ∈ D). Let (t1, t2) ∈ D. From the assumption on eiv1 , eiv2 ,
g((t1, t2), ·) extends conformally to neighborhoods of eiv1 and eiv2 . Thus, g̃((t1, t2), ·) extends
conformally to neighborhoods of v1 and v2. Then we define real valued functions

Vj(t1, t2) = g̃((t1, t2), vj), Vj,1(t1, t2) = g̃′((t1, t2), vj), (t1, t2) ∈ D. (3.3)

Here and below the prime means the partial derivative w.r.t. the last variable. Fix j 6= k ∈
{1, 2}. From Lemma 2.1 we know that gk,tj (tk, ·) extends conformally to a neighborhood of

eiŵj(tj). Thus, g̃k,tj (tk, ·) extends conformally to a neighborhood of ŵj(tj). Now we define

Wj(t1, t2) = g̃k,tj (tk, ŵj(tj)), Wj,h(t1, t2) = g̃
(h)
k,tj

(tk, ŵj(tj)), (t1, t2) ∈ D. (3.4)

Here and below the superscript (h) means the h-th partial derivative w.r.t. the last variable.
We then have W1 > V1 > W2 > V2 > W1 − 2π. For a function X defined on D, k ∈ {1, 2}, and
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tk ≥ 0, we let X(k,tk) be the function defined on [0, TDj (tk)) obtained from X by fixing the k-th
variable to be tk. Since g̃k,tj (0, ·) are identity maps, we get

W
(k,0)
j,1 ≡ 1, W

(k,0)
j,2 = W

(k,0)
j,3 ≡ 0, j 6= k ∈ {1, 2}. (3.5)

Using Lemma 2.1 we know that, for any tk ≥ 0, Kj,tk(tj) and g̃j,tk(tj , ·), 0 ≤ tj < TDj (tk),

are radial Loewner hulls and covering radial Loewner maps, respectively, driven by W
(k,tk)
j with

speed |W (k,tk)
j,1 |2. This means that

∂j m = ∂j(dcap(Kk(tk)) + dcap(Kj,tk(tj))) = W 2
j,1∂tj ; (3.6)

∂j g̃j,tk(tj , z) = Wj,1(t1, t2)2 cot2(g̃j,tk(tj , z)−Wj(t1, t2))∂tj . (3.7)

Plugging z = ŵk(tk) and z = g̃k(tk, vs), respectively, into (3.7), we get

∂jWk = W 2
j,1 cot2(Wk −Wj)∂tj , ∂jVs = W 2

j,1 cot2(Vs −Wj)∂tj , s = 1, 2. (3.8)

Differentiating (3.7) w.r.t. z, we get

∂j g̃
′
j,tk

(tj , z)

g̃′j,tk(tj , z)
= Wj,1(t1, t2)2 cot′2(g̃j,tk(tj , z)−Wj(t1, t2))∂tj . (3.9)

Plugging z = ŵk(tk) and z = g̃k(tk, vs), respectively, into (3.9), we get

∂jWk,1

Wk,1
= W 2

j,1 cot′2(Wk −Wj)∂tj ,
∂jVs,1
Vs,1

= W 2
j,1 cot′2(Vs −Wj)∂tj , s = 1, 2. (3.10)

Since cot′2(Wk −Wj) < 0, we see that Wk,1 is decreasing in tj and stays positive. From (3.5)
we see that Wk,1 ∈ (0, 1]. Since m(t1, 0) = t1 and m(0, t2) = t2, from (3.6), we get

t1 ∨ t2 ≤ m(t1, t2) ≤ t1 + t2, (t1, t2) ∈ D. (3.11)

Let Sg := (g
′′

g′ )
′ − 1

2(g
′′

g′ )
2 denote the Schwarzian derivative of g, and let

Wk,S = Sg̃j,tk(tj , ŵk(tk)) =
Wk,3

Wk,1
− 3

2

(Wk,2

Wk,1

)2
. (3.12)

Differentiating (3.9) w.r.t. z, we get

∂j

( g̃′′j,tk(tj , z)

g̃′j,tk(tj , z)

)
= Wj,1(t1, t2)2 cot′′2(g̃j,tk(tj , z)−Wj(t1, t2))g̃′j,tk(tj , z)∂tj .

Further differentiating this equation w.r.t. z and plugging z = ŵk(tk), we get

∂jWK,S = W 2
j,1W

2
k,1 cot′′′2 (Wk −Wj)∂tj . (3.13)
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Differentiating (3.2) w.r.t. tj and using (3.7), we get

∂tj g̃k,tj (tk, g̃j(tj , z)) + g̃′k,tj (tk, g̃j(tj , z)) cot2(g̃j(tj , z)− ŵj(tj))

= Wj,1(t1, t2)2 cot2(g̃j,tk(tj , g̃k(tk, z))−Wj(t1, t2)).

Let ẑ = g̃j(tj , z). Using (3.2) we get

∂tj g̃k,tj (tk, ẑ) = g̃′k,tj (tk, ŵj(tj))
2 cot2(g̃k,tj (tk, ẑ)− g̃k,tj (tk, ŵj(tj)))− g̃

′
k,tj

(tk, ẑ) cot2(ẑ− ŵj(tj)).
(3.14)

Sending ẑ → ŵj(tj), we get

∂tj g̃k,tj (tk, ẑ)|ẑ=ŵj(tj) = −3g̃′′k,tj (tk, ŵj(tj)) = −3Wj,2; (3.15)

Differentiating (3.14) w.r.t. ẑ and then sending ẑ → ŵj(tj), we get

∂tj g̃
′
k,tj

(tk, ẑ)|ẑ=ŵj(tj)
g̃′k,tj (tk, ẑ)|ẑ=ŵj(tj)

=
1

2

(Wj,2

Wj,1

)2
− 4

3

Wj,3

Wj,1
− 1

6
(W 2

j,1 − 1). (3.16)

Finally, suppose that ŵ1 and ŵ2 generate radial Loewner curves η1 and η2, respectively,
and for any j 6= k ∈ (1, 2), and any tk ∈ [0, Sk), the radial Loewner process driven by

W
(k,tk)
j with speed |W (k,tk)

j,1 |2 generates a radial Loewner curve ηj,tk . Then we have ηj(tj) =

gk(tk, ·)−1(ηj,tk(tj)), 0 ≤ tj < TDj (tk), where gk(tk, ·)−1 is understood as the continuous exten-

sion of the original gk(tk, ·)−1 from D to D.

3.2 Two-variable local martingales

We use the setup in the previous subsection. We view (ŵ1(t))0≤t<S1 and (ŵ2(t))0≤t<S2 as
elements in Σ :=

⋃
0<T≤∞C([0, T ),R). The space Σ and a filtration (Ft)t≥0 were defined in

[29, Section 2]. Here is a brief review. For f ∈ Σ, let Tf be such that [0, Tf ) is the domain of
f . For 0 ≤ t <∞, the Ft is the σ-algebra on Σ generated by the values of the function at the
times before t. More precisely, Ft is the σ-algebra generated by

{f ∈ Σ : s < Tf , f(s) ∈ U}, 0 ≤ s ≤ t, U ∈ B(R).

Now we introduce randomness. Fix κ ∈ (0, 8) throughout. The boundary scaling exponent
b and central charge c are defined by

b =
6− κ

2κ
, c =

(3κ− 8)(6− κ)

2κ
. (3.17)

We use cot2, tan2, sin2, cos2 to denote the functions cot(·/2), tan(·/2), sin(·/2), cos(·/2), respec-
tively. For j = 1, 2, we let PjB denote the law of wj +

√
κB(t), 0 ≤ t < ∞, where B(t) is

a standard Brownian motion, which is a probability measure on (Σ,F∞). For j = 1, 2, let
Pj4 denote the law of the radial Loewner driving function with initial value wj for the radial
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SLEκ(2, 2, 2) curve in D started from eiwj aimed at 0 with force points eiv1 , eiv2 , eiw3−j . For
j = 1, 2, let Pjh denote the law of the radial Loewner driving function with initial value wj for
the radial hSLEκ curve in D from eiwj to eivj with force points eiv3−j , eiw3−j , viewed from 0.

From now on, when there is no ambiguity, we will not try to distinguish the law of a driving
function and the law of the radial Loewner curve that it generates. We will mainly work on the
product measurable space, and use the notation in Section 2.3. We naturally have the following
product measures: PiB := P1

B × P2
B, Pi4 := P1

4 × P2
4, and Pih := P1

h × P2
h. We use EiB,Ei4,Eih

to denote the corresponding expectations, respectively.
Now suppose (η̂1, η̂2) is a 2-SLEκ in D with link pattern (eiw1 → eiv1 ; eiw2 → eiv2). Then η̂j

is a full hSLEκ curve in D from eiwj to eivj with force points eiv3−j and eiw3−j . For j = 1, 2,
let ηj be the part of η̂j from wj up to its lifetime or the time that it separates 0 from any of
eivj , eiw3−j , eiv3−j , if the later time exists. Then we may parametrize ηj using radial capacity,
and get a radial Loewner curve. By Proposition 2.4, ηj is a radial hSLEκ curve in D from eiwj

to eivj with force points eiv3−j , eiw3−j , viewed from 0. We use P2 to denote the joint law of
the radial driving functions for η1 and η2. Such measure P2 is a coupling of P1

h and P2
h, but

is different from the product measure Pih. Instead, η1 and η2 that jointly follow the law P2

commute with each other in the following sense: for any j ∈ {1, 2}, conditionally on the part
of η3−j up to a stopping time τ before its lifetime, if g maps the remaining domain conformally
onto D with g(0) = 0 and g′(0) > 0, then the g-image of ηj up to the time that ηj hits
η3−j [0, τ ] is a radial hSLEκ curve in D from g(eiwj ) to g(eivj ) with force points g(eiv3−j ) and
g(η3−j(τ)), viewed from 0. The measure P2 depends on the points w1, v1, w2, v2. When we want
to emphasize the dependence, we use the symbol Pw1,v1;w2,v2

2 .

For j = 1, 2, let (F jt ) be the filtration generated by the j-th function as described at the
beginning of this subsection. Let (Ft) be the separable Q-indexed filtration generated by (F1

t )
and (F2

t ). Then D is an (Ft)t∈Q-stopping region, and for j 6= k ∈ {1, 2} and h = 1, 2, 3, g̃j(tj , ·),
wj(tj), g̃((t1, t2), ·), g̃j,tk(tj , ·), Wj(t1, t2), Wj,h(t1, t2), Wj,S(t1, t2), Vj(t1, t2), Vj,1(t1, t2), defined
for (t1, t2) ∈ D, are all continuous (Ft)t∈Q-adapted HC processes.

Let B1(t) and B2(t) be two independent standard Brownian motions. Suppose ŵj(t) =

wj +
√
κBj(t), 0 ≤ t <∞. Fix j 6= k ∈ {1, 2}. Let F (k,∞)

tj
denote the σ-algebra F jtj ∨F

k
∞. Then

we get a filtration (F (k,∞)
tj

)tj≥0. Since (ŵj) is independent of (Fk∞), it is a rescaled (F (k,∞)
tj

)tj≥0-

Brownian motion started from wj . Fix an (Fk∞)-measurable finite time τk. From now on, we
will repeatedly use Itô’s formula, where the variable tk is fixed to be τk, the variable tj ranges in

[0, TDj (τk)), and all SDE are (F (k,∞)
tj

)tj≥0-adapted. Recall that X(k,τk) is the function obtained
from a two-variable function X by fixing the k-th variable to be τk. Using (3.4,3.15), we get

dW
(k,τk)
j (tj) = W

(k,τk)
j,1 (tj)dŵj(tj) +

(κ
2
− 3
)
W

(k,τk)
j,2 dtj .

To make the symbols less heavy, we will omit the superscripts (k, τk) and the variables (tj),
and use the symbols ∂j , ∂ŵj and ∂tj to emphasize the role of tj . The above SDE then becomes

∂jWj = Wj,1∂ŵj +
(κ

2
− 3
)
Wj,2∂tj .
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Combining this with (3.8), we get (for s = 1, 2)

∂j(Wj −Wk) = Wj,1∂ŵj +
(κ

2
− 3
)
Wj,2∂tj +W 2

j,1 cot2(Wj −Wk)∂tj ;

∂j(Wj − Vs) = Wj,1∂ŵj +
(κ

2
− 3
)
Wj,2∂tj +W 2

j,1 cot2(Wj − Vs)∂tj ;

∂j(Wk − Vs) = −W 2
j,1 cot2(Wj −Wk)∂tj +W 2

j,1 cot2(Wj − Vs)∂tj ;
∂j(Vj − Vk) = −W 2

j,1 cot2(Wj − Vj)∂tj +W 2
j,1 cot2(Wj − Vk)∂tj .

Then we have

∂j sin2(Wj −Wk)

sin2(Wj −Wk)
=

1

2
cot2(Wj −Wk)Wj,1∂ŵj +

1

2
W 2
j,1 cot2

2(Wj −Wk)∂tj

+
1

2
cot2(Wj −Wk)

(κ
2
− 3
)
Wj,2∂tj −

κ

8
W 2
j,1∂tj ; (3.18)

∂j sin2(Wj − Vs)
sin2(Wj − Vs)

=
1

2
cot2(Wj − Vs)Wj,1∂ŵj +

1

2
W 2
j,1 cot2

2(Wj − Vs)∂tj

+
1

2
cot2(Wj − Vs)

(κ
2
− 3
)
Wj,2∂tj −

κ

8
W 2
j,1∂tj ; (3.19)

∂j sin2(Wk − Vs)
sin2(Wk − Vs)

=− 1

2
W 2
j,1[1 + cot2(Wj −Wk) cot2(Wj − Vs)]∂tj ; (3.20)

∂j sin2(Vj − Vk)
sin2(Vj − Vk)

=− 1

2
W 2
j,1[1 + cot2(Wj − Vj) cot2(Wj − Vk)]∂tj . (3.21)

Using (3.16), we get

∂jWj,1

Wj,1
=
Wj,2

Wj,1
∂ŵj +

1

2

(Wj,2

Wj,1

)2
∂tj +

(κ
2
− 4

3

)Wj,3

Wj,1
∂tj −

1

6
(W 2

j,1 − 1)∂tj .

Recall the Wj,S defined by (3.12) and the b, c defined by (3.17). The above SDE implies that

∂jW
b
j,1

W b
j,1

= b
Wj,2

Wj,1
∂ŵj +

c

6
Wj,S∂tj −

b

6
(W 2

j,1 − 1)∂tj . (3.22)

Define a positive continuous function MiB→c4 on D by

MiB→c4 := e
60
8κ

m +b
6

(m−t1−t2)[W1,1W2,1V1,1V2,1]b
[ 2∏
j=1

sin2(Wj − Vj)
∏

X,Y ∈{W,V }

sin2(X1− Y2)
] 2
κ×

× exp
(
− c

6

∫ t1

0

∫ t2

0
W 2

1,1W
2
2,1 cot′′′2 (W1 −W2)ds1ds2

)
. (3.23)

Combing (3.6,3.10,3.13,3.18-3.22), we get

∂jMiB→c4
MiB→c4

= b
Wj,2

Wj,1
∂ŵj +

1

κ

∑
X∈{Wk,V1,V2}

cot2(Wj −X)Wj,1∂ŵj . (3.24)
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This means that M
(k,τk)
iB→c4 is an (F jtj ∨ F

k
∞)tj≥0-local martingale up to TDj (τk).

Let F (x) be the hypergeometric function 2F1

(
4
κ , 1−

4
κ ; 8

κ ;x
)

as before. Recall that G(x) =

κxF
′(x)
F (x) , F̃ (x) = x

2
κF (x), and G̃(x) = κx F̃

′(x)

F̃ (x)
= G(x) + 2. From (2.1) we get

κ

8
x2 F̃

′′(x)

F̃ (x)
=
[(1

4
− 1

κ

) x

1− x
− 1

2κ

]
G̃(x) +

1

4

(6

κ
− 1
)

= 0.

Recall that W1, V1,W2, V2 are real valued functions defined on D that satisfy W1 > V1 > W2 >
V2 > W1 − 2π. Define the functions R and Φj on D by

R =
sin2(W1 − V2) sin2(V1 −W2)

sin2(W1 −W2) sin2(V1 − V2)
= −sin2(Wj − Vk) sin2(Wk − Vj)

sin2(Wj −Wk) sin2(Vj − Vk)
∈ (0, 1).

Φj = cot2(Wj − Vk)− cot2(Wj −Wk) =
− sin2(Wk − Vk)

sin2(Wj − Vk) sin2(Wj −Wk)
.

Note that R equals the cross-ratio [eiW1 , eiV1 ; eiV2 , eiW2 ]. Using an identity of cross-ratio, we get

1−R =
sin2(Wj − Vj) sin2(Wk − Vk)
sin2(Wj −Wk) sin2(Vj − Vk)

.

Thus,

RΦj

1−R
=

sin2(Wk − Vj)
sin2(Wj − Vj) sin2(Wj −Wk)

= cot2(Wj −Wk)− cot2(Wj − Vj).

Using (3.18-3.21), we get

∂jR

R
=

1

2
Wj,1Φj∂ŵj +

1

2
[cot2(Wj −Wk) + cot2(Wj − Vk)]W 2

j,1Φj∂tj +
1

2

(κ
2
− 3
)
Wj,2Φj∂tj

+
1

2
cot2(Wj − Vj)W 2

j,1Φj∂tj −
κ

4
cot2(Wj −Wk)W

2
j,1Φj∂tj . (3.25)

Combining the above formulas in this paragraph and using a tedious but straightforward com-
putation, we get

∂jF̃ (R)

F̃ (R)
=

1

2κ
G̃(R)Wj,1Φj∂ŵj +

1

2κ

(κ
2
− 3
)
G̃(R)Wj,2Φj∂tj

+
1

4

(6

κ
− 1
)

cot2(Wj − Vj)G̃(R)W 2
j,1Φj∂tj +

1

4

(6

κ
− 1
)
W 2
j,1Φ2

j∂tj . (3.26)

Define another positive continuous function MiB→ch on D by

MiB→ch := e
(κ−6)(κ−2)

8κ
m +b

6
(m−t1−t2)F̃ (R)[W1,1W2,1V1,1V2,1]b[

2∏
j=1

sin2(Wj − Vj)]−2 b×
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× exp
(
− c

6

∫ t1

0

∫ t2

0
W 2

1,1W
2
2,1 cot′′′2 (W1 −W2)ds1ds2

)
. (3.27)

Combining (3.6,3.10,3.13,3.19,3.20,3.22,3.26), we get

∂jMiB→ch
MiB→ch

= b
Wj,2

Wj,1
∂ŵj +

1

2κ
G̃(R)Wj,1Φj∂ŵj − b cot2(Wj − Vj)Wj,1∂ŵj . (3.28)

This means that M
(k,τk)
iB→ch is an (F jtj ∨ F

k
∞)tj≥0-local martingale up to TDj (τk).

3.3 Localization and Radon-Nikodym derivatives

For j = 1, 2, let Ξj denote the space of simple crosscuts of D that separate wj from v1, v2,

w3−j , and 0. For j = 1, 2 and ξj ∈ Ξj , let τ jξj be the first time that ηj hits the closure of ξj . If

such time does not exist, then τ jξj is defined to be the lifetime of ηj . We see that τ jξj is bounded
above by the D-capacity of the D-hull generated by ξj , and so is finite.

Let Ξ = {(ξ1, ξ2) ∈ Ξ1 × Ξ2, dist(ξ1, ξ2) > 0}. For ξ = (ξ1, ξ2) ∈ Ξ, let τξ = (τ1
ξ1
, τ2
ξ2

). We
may choose a countable set Ξ∗ ⊂ Ξ such that for every ξ = (ξ1, ξ2) ∈ Ξ there is (ξ∗1 , ξ

∗
2) ∈ Ξ∗

such that ξj is enclosed by ξ∗j , j = 1, 2.

Lemma 3.1. For any ξ ∈ Ξ, | log(MiB→c4)| and | log(MiB→ch)| are uniformly bounded on [0, τξ]
by constants depending only on κ, ξ.

Proof. Fix ξ = (ξ1, ξ2) ∈ Ξ. Throughout this proof, a constant depends only on κ, ξ; by saying
that a function is uniformly bounded on [0, τξ], we mean that it is bounded by a constant on
[0, τξ]. It suffices to show that m, | log(Wj,1)|, | log(Vj,1)|, | log sin2(X1 − Y2)|, X,Y ∈ {W,V },
| log sin2(W1−V1)|, | log sin2(W2−V2)|, | log(F̃ (R))|, and |

∫ t1
0

∫ t2
0 W 2

1,1W
2
2,1 cot′′′2 (W1−W2)ds1ds2|

are all uniformly bounded on [0, τξ].
Let Kξ be the D-hull generated by ξ1 ∪ ξ2. Then 0 ≤ t1, t2 ≤ m are uniformly bounded by

the constant dcap(Kξ) on [0, τξ]. Note that T \Kξ is a disjoint union of two arcs, each of which

contains one of eivs , s = 1, 2. Denote the arcs I1 and I2 such that eivs ∈ Is, j = 1, 2. Each
Is is divided by eivs into two open subarcs, which are denoted by Is,1 and Is,2 such that Is,j
shares one endpoint with ξj , j = 1, 2. Let the positive constant cs,j be the harmonic measure
in D \ Kξ viewed from 0 of the arc Is,j . For any t = (t1, t2) ∈ [0, τξ], the harmonic measure

in D \ K(t1,t2) viewed from 0 of the counterclockwise oriented arc from eiv1 to the clockwise
most point of η1([0, t]) ∩ T is bounded from below by c1,1. Thus, W1 − V1 ≥ c1,1 ∗ 2π on [0, τξ].
Similarly, V1 −W2 ≥ c1,2 ∗ 2π, W2 − V2 ≥ c2,2 ∗ 2π, and V2 + 2π −W1 ≥ c2,1 ∗ 2π on [0, τξ]. Let
S = {W1−V1,W2−V2,W1−V2,W1−W2, V1−W2, V1−V2}. Then we see that sin2(Z), Z ∈ S,
are all bounded below by positive constants on [0, τξ]. So we get the uniform boundedness of
| log sin2(Z)|, | cot2(Z)|, | cot′2(Z)|, and | cot′′′2 (Z)| on [0, τξ]. Since 0 < Wj,1 ≤ 1 and t1, t2 are

uniformly bounded, we get the uniform boundedness of |
∫ t1

0

∫ t2
0 W 2

1,1W
2
2,1 cot′′′2 (W1−W2)ds1ds2|

on [0, τξ]. From (3.10) and that Wk,1|tj=0 ≡ 1 and Vj,1(0, 0) = 1 we conclude that log(Wj,1)
and log(Vj,1), j = 1, 2, are uniformly bounded on [0, τξ]. From the definition of R we know
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that log(R) is uniformly bounded on [0, τξ]. Since F̃ (R) = R2/κF (R), and F is positive and

continuous on [0, 1], we see that log(F̃ (R)) is also uniformly bounded on [0, τξ].

Corollary 3.2. For any s ∈ {4, h} and ξ ∈ Ξ, (MiB→cs(t∧τξ))t∈Q is an (Ft)-MiB→cs(τξ)-Doob
martingale w.r.t. PiB.

Proof. Let s ∈ {4, h} and ξ = (ξ1, ξ2) ∈ Ξ. We need to show that, for any t = (t1, t2) ∈ Q,

EiB[MiB→cs(τξ)|Ft] = MiB→cs(t ∧ τξ). (3.29)

From (3.24,3.28) we know that MiB→cs(τ
1
ξ1
, t2), 0 ≤ t2 < TD2 (τ1

ξ1
), is an (F (1,∞)

t2
)t2≥0-local

martingale. By the previous lemma, MiB→cs(τ
1
ξ1
, ·) is uniformly bounded on [0, τ2

ξ2
]. From the

assumption on (ξ1, ξ2), we see that τ2
ξ2
< TD2 (τ1

ξ1
). So MiB→cs(τ

1
ξ1
, · ∧ τ2

ξ2
) is an (F (1,∞)

t2
)t2≥0-

MiB→cs(τ
1
ξ1
, τ2
ξ2

)-Doob-martingale. This means that

EiB[MiB→cs(τ
1
ξ1 , τ

2
ξ2)|F1

∞ ∨ F2
t2 ] = MiB→cs(τ

1
ξ1 , t2 ∧ τ

2
ξ2). (3.30)

A similar argument using MiB→cs(·, t2 ∧ τ2
ξ2

) in place of MiB→cs(τ
1
ξ1
, ·) implies that

EiB[MiB→cs(τ
1
ξ1 , t2 ∧ τ

2
ξ2)|F1

t1 ∨ F
2
∞] = MiB→cs(t1 ∧ τ1

ξ1 , t2 ∧ τ
2
ξ2). (3.31)

Since

MiB→cs(t1 ∧ τ1
ξ1 , t2 ∧ τ

2
ξ2) ∈ F(t1∧τ1ξ1 ,t2∧τ

2
ξ2

) ⊂ F(t1,t2) = F1
t1 ∨ F

2
t2 ⊂ F

1
t1 ∨ F

2
∞,

(3.31) implies that

EiB[MiB→cs(τ
1
ξ1 , t2 ∧ τ

2
ξ2)|F1

t1 ∨ F
2
t2 ] = MiB→cs(t1 ∧ τ1

ξ1 , t2 ∧ τ
2
ξ2). (3.32)

Combining (3.30,3.32) and using F1
t1 ∨ F

2
t2 ⊂ F

1
∞ ∨ F2

t2 , we get (3.29).

The above corollary implies in particular that for any s ∈ {4, h} and ξ ∈ Ξ, we may define

a probability measure Pξcs by dP
ξ
cs

dPiB =
MiB→cs(τξ)

MiB→cs(0) . Suppose (ŵ1, ŵ2) follows the law Pξcs. We now

describe the behavior of the radial Loewner curves η1 and η2 driven by ŵ1 and ŵ2, respectively.
Fix j 6= k ∈ {1, 2}. Let τk be an (Fktk)-stopping time such that τk ≤ τkξk . From Lemma 2.11
and Corollary 3.2, for any tj ≥ 0,

dPξcs|F jtj ∨ F
k
τk

dPiB|F jtj ∨ Fkτk
=
M

(k,τk)
iB→cs(tj ∧ τ

j
ξj

)

M
(k,τk)
iB→cs(0)

.
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From Girsanov Theorem and (3.24,3.28), we see that, under Pξc4 and Pξch, ŵj respectively satisfies

the following two SDEs up to τ jξj :

∂ŵj =
√
κ∂B4

j,τk
+ κb

W
(k,τk)
j,2

W
(k,τk)
j,1

∂tj +
∑

X∈{Wk,V1,V2}

cot2(W
(k,τk)
j −X(k,τk))W

(k,τk)
j,1 ∂tj ,

∂ŵj =
√
κ∂Bh

j,τk
+ κb

W
(k,τk)
j,2

W
(k,τk)
j,1

∂tj +
1

2
G̃(R(k,τk))W

(k,τk)
j,1 Φ

(k,τk)
j ∂tj

− κb cot2(W
(k,τk)
j − V (k,τk)

j )W
(k,τk)
j,1 ∂tj ,

where Bs
j,τk

(tj) is a standard (F jtj ∨ F
k
τk

)tj≥0-Brownian motion under Pξcs, s ∈ {4, h}. Using

(3.4,3.15) we get the SDE satisfied by W
(k,τk)
j under Pξc4 and Pξch, respectively, up to τ jξj :

∂W
(k,τk)
j =

√
κW

(k,τk)
j,1 ∂B4

j,τk
+

∑
X∈{Wk,V1,V2}

cot2(W
(k,τk)
j −X(k,τk))(W

(k,τk)
j,1 )2∂tj ,

∂W
(k,τk)
j =

√
κW

(k,τk)
j,1 ∂Bh

j,τk
+

1

2
G̃(R(k,τk))Φ

(k,τk)
j (W

(k,τk)
j,1 )2∂tj

− κb cot2(W
(k,τk)
j − V (k,τk)

j )(W
(k,τk)
j,1 )2∂tj .

Recall the ODE (3.8) satisfied by Wk and Vs, s = 1, 2. This implies that, under Pξc4, condition-

ally on Fkτk , ηj,τk(tj) = gk(τk, ηj(tj)) is a radial SLEκ(2, 2, 2) curve with speed (W
(k,τk)
j,1 )2 started

from ei(W
(k,τk)
j (0)) = gk(τk, e

iŵj(0)) with force points ei(W
(k,τk)
k (0)) = eiŵk(0) = gk(τk, ηk(τk)),

ei(V
(k,τk)
j (0)) = gk(τk, e

ivj ) and ei(V
(k,τk)
k (0)) = gk(τk, e

ivk), up to τ jξj ; and under Pξch, condi-

tionally on Fkτk , gk(τk, ηj(tj)) is a radial hSLEκ curve in D from gk(τk, e
iŵj(0)) to gk(τk, e

ivj )

with force points gk(τk, e
ivk) and gk(τk, ηk(τk)), up to τ jξj , viewed from 0. In particular, taking

τk = 0, we see that the j-th marginal measure of Pξcs restricted to F j
τ jξj

agrees with Pjs restricted

to F j
τ jξj

. This means that the radial Loewner curves driven by ŵ1 and ŵ2, which jointly follow

the law Pξc4 (resp. Pξch), respectively stopped at τ1
ξ1

and τ2
ξ2

, are two radial SLEκ(2, 2, 2) (resp.
radial hSLEκ) curves that locally commute with each other in the sense of [2]. Recall that P2

is the joint law of the radial Loewner driving functions for a 2-SLEκ in D with link pattern
(eiw1 → eiv1 ; eiw2 → eiv2) up to certain separation times. Because of the commutation relation

between the two curves in a 2-SLEκ, we find that Pξch|Fξ = P2|Fξ.
Using the stochastic coupling technique developed and used in [33, 32] we may construct a

probability measure Pc4 on Σ × Σ such that for any ξ ∈ Ξ, Pc4|Fτξ = Pξc4|Fτξ . Here is a brief

review of the stochastic coupling technique for the setup here. From (3.24,3.28) and Girsanov
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Theorem we know that M
(k,0)
iB→c4(τ jξj )/MiB→c4(0, 0) is the Radon-Nikodym derivative of Pj4|F

j

τ jξj

against PjB|F
j

τ jξj

. Define Mi4→c4 on D by

Mi4→c4(t1, t2) =
MiB→c4(t1, t2)MiB→c4(0, 0)

MiB→c4(t1, 0)MiB→c4(0, t2)
.

Then Mi4→c4(t1, t2) = 1 if t1 · t2 = 0; and under the probability measure Pi4 = P1
4× P2

4, for any

finite (Fktk)-stopping time τk, M
(k,τk)
i4→c4(tj) is a local martingale. From Lemma 3.1 we know that,

for any ξ ∈ Ξ, | logMi4→c4| is bounded on [0, τξ]. Let (ξk)k∈N be an enumeration of Ξ∗. From
[33, Theorem 6.1] we know that, for any n ∈ N, there is a uniformly bounded (Ft)t∈Q-Doob-

martingale M
(n)
i4→c4 defined on [0,∞] × [0,∞] such that M

(n)
i4→c4(t1, t2) = 1 if t1 · t2 = 0, and

for any 1 ≤ k ≤ n, M
(n)
i4→c4 agrees with Mi4→c4 on [0, τξk ]. We may then define a sequence of

probability measures P(n)
c4 , n ∈ N, by dP(n)

c4 = M
(n)
i4→c4(∞,∞)dPi4. Then every P(n)

c4 is a coupling

of P1
4 and P2

4, and for 1 ≤ k ≤ n,
dP(n)
c4 |Fτξk

dPiB |Fτ
ξk

=
MiB→c4(τ

ξk
)

MiB→c4(0) . By a tightness argument, (P(n)
c4 )

contains a weakly convergent subsequence. Let Pc4 denote any subsequential limit. Then for

any ξ ∈ Ξ∗,
dPc4|Fτξ
dPiB |Fτξ

=
MiB→c4(τξ)

MiB→c4(0) . Since for every ξ ∈ Ξ, there is ξ∗ ∈ Ξ∗ such that τξ ≤ τξ∗ ,

by the martingale property of MiB→c4(· ∧ τξ∗), we get Pc4|Fτξ = Pξc4|Fτξ , as desired.

We may use the same idea to construct Pch. It satisfies Pch|Fτξ = Pξch|Fτξ = P2|Fτξ for any
ξ ∈ Ξ. At this moment we do not have a proof showing that Pch = P2, and we do not need this
result. We now have the following lemma.

Lemma 3.3. For any (Ft)t∈Q-stopping time T ,

dPc4|FT ∩ {T ∈ D}
dPiB|FT ∩ {T ∈ D}

=
MiB→c4(T )

MiB→c4(0)
,

dP2|FT ∩ {T ∈ D}
dPiB|FT ∩ {T ∈ D}

=
MiB→ch(T )

MiB→ch(0)
.

Proof. We first work on Pc4. We have {T ∈ D} =
⋃
ξ∈Ξ∗{T ≤ τξ}. Since by Lemma 2.13,

{T ≤ τξ} ∈ FT , it suffices to show that, for any ξ ∈ Ξ∗,

dPc4|FT ∩ {T ≤ τξ}
dPiB|FT ∩ {T ≤ τξ}

=
MiB→c4(T )

MiB→c4(0)
. (3.33)

By Lemma 2.11 and Corollary 3.2, we see that EiB[MiB→c4(τξ)|FT ] = MiB→c4(T ∧ τξ). Let
A ∈ FT with A ⊂ {T ≤ τξ}. Then we have EiB[1AMiB→c4(τξ)] = EiB[1AMiB→c4(T )]. Since
dPc4|Fτξ
dPiB |Fτξ

=
MiB→c4(τξ)

MiB→c4(0) , and A ⊂ Fτξ by Lemma 2.7, we get

MiB→c4(0)Pc4[A] = EiB[1AMiB→c4(τξ)] = EiB[1AMiB→c4(T )].
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Since this holds for any A ∈ FT with A ⊂ {T ≤ τξ}, we get (3.33) as desired.
A similar argument shows that (3.33) holds with c4 replaced by ch. Since FT∩{T ≤ τξ} ⊂ Fξ

and Pch agrees with P2 on Fξ, we find that (3.33) holds with MiB→c4 replaced by MiB→ch and
Pc4 replaced by P2. So we obtain the second equality.

We need the following lemma about the lifetime of a radial SLEκ(ρ) curve.

Lemma 3.4. Let κ > 0, n ∈ N. Suppose ρ = (ρ1, . . . , ρn) ∈ Rn satisfies ρ1, ρn ≥ κ
2 − 2 and

ρk ≥ 0, 1 ≤ k ≤ n. Let eiw, eiv1 , . . . , eivn be distinct points on T such that w > v1 > · · · > vn >
w − 2π. Let η(t), 0 ≤ t < T , be a radial SLEκ(ρ) curve in D started from eiw aimed at 0 with
force points eiv1 , . . . , eivn. Then a.s. T =∞, 0 is a subsequential limit of η(t) as t→∞, and η
does not hit the arc J := {eiθ : v1 ≥ θ ≥ vn}.

Proof. Let ŵ(t) and v̂j(t), 1 ≤ j ≤ n, 0 ≤ t < T , be the solutions of the system of SDE used to
define this radial SLEκ(ρ) curve. For any t ∈ [0, T ), we have ŵ(t) > v̂1(t) > · · · v̂n(t) > ŵ(t)−2π.
If T <∞, then one of the following events E0

n′ , E
2π
n′ , 1 ≤ n′ ≤ n, must happen:

E0
n′ = { lim

t→T−
ŵ(t)− v̂j(t) = 0, 1 ≤ j ≤ n′} ∩ { lim

t→T−
ŵ(t)− v̂j(t) ∈ (0, 2π), n′ + 1 ≤ j ≤ n},

E2π
k = { lim

t→T−
ŵ(t)− v̂j(t) = 2π, n′ ≤ j ≤ n} ∩ { lim

t→T−
ŵ(t)− v̂j(t) ∈ (0, 2π), 1 ≤ j ≤ n′ − 1}.

To prove that P[T < ∞] = 0, it suffices to show that P[E0
n′ ] = P[E2π

n′ ] = 0 for 1 ≤ n′ ≤ n. By
symmetry, we only need to consider E0

n′ , 1 ≤ n′ ≤ n. If P[E0
n′ ] > 0, using Girsanov Theorem, we

see that for a radial SLEκ(ρ1, . . . , ρn′) process in D from eiw to 0 with force points eiv1 , . . . , eivn′ ,
there is a positive probability that the lifetime T is finite and limt→T− ŵ(t) − v̂j(t) = 0, 1 ≤
j ≤ n′. For this new process, Xn′(t) := ŵ(t)− v̂n′(t) satisfies the SDE:

dXn′(t) =
√
κdB(t) +

n′∑
j=1

ρj
2

cot2(ŵ1(t)− v̂j(t))dt+ cot2(Xk(t))dt.

Since cot2(ŵ1(t)−v̂j(t)) > cot2(X(t)) and ρj ≥ 0 for 1 ≤ j ≤ k−1, the processXn′ stochastically
dominates the process Y , which satisfies the SDE: dY (t) =

√
κdB(t) + (1 + σ

2 ) cot2(Y (t))dt,

where σ =
∑n′

j=1 ρj ≥ ρ1 ≥ κ
2 − 2. It is easy to see that 1

2Yk(
4
κ t) is a radial Bessel process

of dimension δ = 1 + 2
κ(2 + σ) ≥ 2, which a.s. does not tend to 0 at any finite time (cf. [6,

Appendix A],[30, Appendix B]). So the probability that the Xn′(t) for the new process tends to
0 at a finite time is also 0, which implies that the probability of the E0

n′ for the original process
is 0. Thus, a.s. T = ∞. By Koebe’s 1/4 Theorem, we see that 0 is a subsequential limit of η
as t→∞. If η hits the arc J , then when it happens, η separates 0 from either eiv1 or eivn , and
the process stops at this time. Since a.s. T =∞, such hitting a.s. can not happen.

Now we consider two radial Loewner curves η1 and η, whose driving functions jointly follow
Pc4. From Lemma 3.4 (applied to κ ∈ (0, 8) and ρ1 = ρ2 = ρ3 = 2) we know that the the
lifetimes of η1 and η2 are both a.s. ∞. Fix τ2 < ∞. Conditional on F2

τ2 , g2(τ2, η1(t1)), t1 ≥ 0,
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is a radial SLEκ(2, 2, 2) curve in D started from g2(τ2, e
iw1) with force points g2(τ2, η2(τ2)),

g2(τ2, e
iv1) and g2(τ2, e

iv2), up to the lifetime of η1 or the first time that η1 hits η2[0, τ2]. If
η1 hits η2[0, τ2], then it means that g2(τ2, η1(t1)) hits the boundary arc of D with end points
g2(τ2, e

iv1) and g2(τ2, e
iv2) that contains g2(τ2, η2(τ2)), which is impossible by Lemma 3.4. Thus,

the whole η1 does not intersect η2[0, τ2]. From Lemma 3.4 we also know that η1 a.s does not
intersect the boundary arc of D with end points eiv1 and eiv2 that contains the initial point
of η2: eiw2 . From the definition of D, we have Pc4-a.s. TD1 (τ2) = ∞. Since this holds for any
deterministic τ2 <∞, and the lifetime of η2 is a.s. ∞, we get the following lemma.

Lemma 3.5. Pc4-a.s. D = Q = [0,∞)2.

Let M2→c4 = MiB→c4
MiB→ch

and Mc4→2 = M−1
2→c4. From Lemma 3.3 we see that, for any (Ft)t∈Q-

stopping time T ,
dP2|FT ∩ {T ∈ D}
dPc4|FT ∩ {T ∈ D}

=
Mc4→2(T )

Mc4→2(0)
. (3.34)

Let G(w1, v1;w2, v2) be defined by

G(w1, v1;w2, v2) = | sin2(w1 − v1) sin2(w2 − v2)|
8
κ
−1| sin2(w1 − w2) sin2(v1 − v2)|

4
κ×

× F
(∣∣∣sin2(w1 − v2) sin2(v1 − w2)

sin2(w1 − w2) sin2(v1 − v2)

∣∣∣)−1
. (3.35)

Then with α0 defined by (1.1), we have

M2→c4 = eα0·mG(W1, V1;W2, V2). (3.36)

From Lemma 3.5 and (3.34) we see that for any (Ft)t∈Q-stopping time T ,

E2[1{T∈D}e
α0·mG(W1, V1;W2, V2)|t=T ] = G(w1, v1;w2, v2). (3.37)

4 A Time Curve in the Time Region

In the last section we have derived many random processes with two time parameters defined
on the time region D. We will now define a curve in D so that we can obtain one-parameter
random processes from those two-parameter random processes.

Throughout this section, we suppose v1 − v2 = π. Let θ = V1 − V2 ∈ (0, 2π). Then
θ(0, 0) = π. We are going to get a continuous and strictly increasing curve u : [0, T u)→ D with
u(0) = 0 such that θ(u(t)) = π and m(u(t)) = t for any t ∈ [0, T u), and the curve can not be
further extended with this property. Note that

∂jθ = W 2
j,1(cot2(V1 −Wj)− cot2(V2 −Wj))∂tj =

−W 2
j,1 sin2(θ)

sin2(Wj − V1) sin2(Wj − V2)
∂tj . (4.1)

So ∂1θ < 0 and ∂2θ > 0. Thus, θ(t, 0) < π for t > 0; and θ(0, t) > π for t > 0. Let

S1 = {t1 ≥ 0 : ∃t2 > 0 such that (t1, t2) ∈ D and θ(t1, t2) > π}.
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Suppose t1 ∈ S1, and t2 > 0 is such that (t1, t2) ∈ D and θ(t1, t2) > π. Then for any t′1 ∈ [0, t1),
(t′1, t2) ∈ D and θ(t′1, t2) > θ(t1, t2) > π, which implies that t′1 ∈ S1. On the other hand, since
D is relatively open in R2

+, by the continuity of θ, we can find t′′1 > t1 such that (t′′1, t2) ∈ D
and θ(t′′1, t2) > π, which implies that t′′1 ∈ S1. So S1 = [0, T u1 ) for some T u1 ∈ (0,∞]. For every
t1 ≥ T u1 and any t2 ≥ 0 such that (t1, t2) ∈ D, we must have θ(t1, t2) < π. For t1 ∈ [0, T u1 ),
applying the intermediate value theorem to θ(t1, ·) and using the strict monotonicity of θ in t2,
we conclude that there is a unique t2 ≥ 0 such that (t1, t2) ∈ D and θ(t1, t2) = π. Let u1→2

denote the map [0, T u1 ) 3 t1 7→ t2. Since θ is strictly decreasing in t1 and strictly increasing
in t2, u1→2 is strictly increasing. A symmetric argument shows that there exists T u2 ∈ (0,∞]
such that for any t2 ≥ T u2 and any t1 ≥ 0 such that (t1, t2) ∈ D, we have θ(t1, t2) > π; for
any t2 ∈ [0, T u2 ), there is a unique t1 ≥ 0 such that (t1, t2) ∈ D and θ(t1, t2) = π; and the map
u2→1 : [0, T u2 ) 3 t2 7→ t1 is strictly increasing. Thus, u1→2 maps [0, T u1 ) onto [0, T u2 ), and u2→1

is its inverse. Moreover, both u1→2 and u2→1 are continuous. Since m is continuous and strictly
increasing in both t1 and t2, we see that the map [0, T u1 ) 3 t1 7→ m(t1, u1→2(t1)) is continuous
and strictly increasing. Since u1→2(0) = 0 and m(0, 0) = 0, the range of m(t1, u1→2(t1)) is [0, T u)
for some T u ∈ (0,∞]. Let u1 denote the inverse of this map, and let u2 = u1→2 ◦ u1. Then
for j = 1, 2, uj is a continuous and strictly increasing function that maps [0, T u) onto [0, T uj );
and u := (u1, u2) : [0, T u) → D is a strictly increasing curve that satisfies θ(u1(t), u2(t)) = π
and m(u1(t), u2(t)) = t for any 0 ≤ t < T u, and limt→T− u(t) = (T u1 , T

u
2 ). We see that (T u1 , T

u
2 )

does not belong to D because if it does then θ(T u1 , T
u
2 ) = π, which contradicts the statement

that for every t1 ≥ T u1 and any t2 ≥ 0 such that (t1, t2) ∈ D, we have θ(t1, t2) < π. Since m is
increasing in t1 and t2, we get u1(t) = m(u1(t), 0) ≤ m(u1(t), u2(t)) = t. Similarly, u2(t) ≤ t.

For any function X defined on D, we define Xu(t) = X(u(t)), 0 ≤ t < T u. For example, if
X = ŵj , j = 1, 2, then ŵuj (t) = ŵj(uj(t)). Let Zj = Wj − Vj > 0, j = 1, 2. Then Zu2 ∈ (0, π)
because Zu2 < V u

1 − V u
2 = π, and Zu1 ∈ (0, π) because Zu1 < V u

2 + 2π − V u
1 = π. From (4.1) and

that θu ≡ π, we get

0 =
−2(W u

1,1)2

sin(Zu1 (t))
u′1(t) +

2(W u
2,1)2

sin(Zu2 (t))
u′2(t).

From m(u1(t), u2(t)) = t and (3.6) we get

1 = (W u
1,1(t))2u′1(t) + (W u

2,1(t))2u′2(t).

Combining, we get

(W u
j,1)2u′j =

sin(Zuj )

sin(Zu1 ) + sin(Zu2 )
, j = 1, 2. (4.2)

So far u1 and u2 are defined on [0, T u). If T u <∞, we extend u1 and u2 to [0,∞) such that
for t ≥ T u, uj(t) = T uj , j = 1, 2. From uj(t) ≤ t we get T uj ≤ T u < ∞, j = 1, 2. Thus, the
extended u1 and u2 are finite and continuous. Below is a lemma on the extended u.

Lemma 4.1. For any t ∈ [0,∞), u(t) = (u1(t), u2(t)) is an (Ft)t∈Q-stopping time.
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Proof. Fix t ≥ 0 and s = (s1, s2) ∈ Q. We need to show that {u(t) ≤ s} ∈ Fs. For this purpose,
we consider three events. Let A1 denote the event that the curve u∩D intersects {s1}× [0, s2);
and let A2 denote the event that the curve u ∩ D intersects [0, s1)× {s2}. Then A1 ∩A2 = ∅,

A1 =
⋃

t2∈[0,s2)∩Q

{(s1, t2) ∈ D, θ(s1, t2) > π} ∈ Fs,

and similarly A2 ∈ Fs. Here we used the fact that D is an (Ft)t∈Q-stopping region and θ is
(Ft)t∈Q-adapted. Let A0 = (A1 ∪A2)c ∈ Fs. We have

{u(t) ≤ s} ∩A0 = A0 ∩ ({s 6∈ D} ∪ {s ∈ D, θ(s) = π,m(s) ≥ t});

{u(t) ≤ s} ∩A1 =
⋂
n∈N

⋃
r2<t2∈[0,s2)∩Q

{(s1, t2) ∈ D, θ(s1, t2) > π > θ(s1, r2),m(s1, r2) > t− 1

n
};

{u(t) ≤ s} ∩A2 =
⋂
n∈N

⋃
r1<t1∈[0,s1)∩Q

{(t1, s2) ∈ D, θ(t1, s2) < π < θ(r1, s2),m(r1, s2) > t− 1

n
}.

Since the events on the righthand side are all Fs-measurable, so is {u(t) ≤ s}, as desired.

We now get a new filtration (Fut := Fu(t))t≥0 by Lemma 2.7 since u is non-decreasing. For
ξ = (ξ1, ξ2) ∈ Ξ, let τuξ denote the first t ≥ 0 such that u1(t) = τ1

ξ1
or u2(t) = τ2

ξ2
, whichever

comes first. Note that such time exists and is finite because [0, τξ] ⊂ D.

Lemma 4.2. For ξ ∈ Ξ, u(τuξ ) is an (Ft)t∈Q-stopping time, τuξ is an (Fut )t≥0-stopping time,

and for any t ≥ 0, u(t ∧ τuξ ) is an (Ft)t∈Q-stopping time.

Proof. Let ξ ∈ Ξ. Note that for any t = (t1, t2) ∈ Q, by Lemmas 2.7 and 2.9,

{u(τuξ ) ≤ t} ∩ {u1(τuξ ) = τ1
ξ1} = {τ1

ξ1 ≤ t1} ∩ {θ(τ
1
ξ1 , τ

2
ξ2 ∧ t2) ≥ π} ∈ Ft.

Similarly, {u(τuξ ) ≤ t} ∩ {u2(τuξ ) = τ2
ξ1
} ∈ Ft. Since either u1(τuξ ) = τ1

ξ1
or u2(τuξ ) = τ2

ξ2
, we get

{u(τuξ ) ≤ t} ∈ Ft. Thus, u(τuξ ) is an (Ft)-stopping time.

To prove that τuξ is an (Fut )t≥0-stopping time, it suffices to show that, for any t ≥ 0 and

s ∈ Q, {τuξ ≤ t} ∩ {u(t) ≤ s} ∈ Fs. We may choose a sequence ξn = (ξn1 , ξ
n
2 )n∈N in Ξ, which

approximates ξ such that {τuξ ≤ t} =
⋂∞
n=1{τuξn < t}. Then it suffices to show that, for any

n ∈ N, {τuξn < t} ∩ {u(t) ≤ s} ∈ Fs. Since u is strictly increasing on [0, τuξn + ε),

{τuξn < t} ∩ {u(t) ≤ s} = {u(τuξn) < u(t) ≤ s} =
⋃

r∈Q2∩[0,s]

(
{u(τuξn) ≤ r} ∩ {r < u(t) ≤ s}

)
.

Since u(τuξ ) and u(t) are (Ft)-stopping times, the events in the union all belong to Fs. So

{τuξn < t} ∩ {u(t) ≤ s} ∈ Fs, as desired.
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Let t ≥ 0 and s ∈ Q. Note that

{u(t ∧ τuξ ) ≤ s} = ({t < τuξ } ∩ {u(t) ≤ s}) ∪ ({τuξ ≤ t} ∩ {u(τuξ ) ≤ s}).

The first event {t < τuξ } ∩ {u(t) ≤ s} belongs to Fs because from that τuξ is an (Fut )-stopping

time we know {t < τuξ } ∈ Fut = Fu(t). The other event {τuξ ≤ t} ∩ {u(τuξ ) ≤ s} equals⋂
n∈N

({τuξn < t} ∩ {u(τuξn) < s}) =
⋂
n∈N

⋃
r∈Q2∩[0,s)

({r ∈ D,m(r) < t} ∩ {u(τuξn) ≤ r}),

where we used that τuξn = m(u(τuξn)). The event on the RHS of the above displayed formula

belongs to Fs because m is (Ft)-adapted and u(τuξn) is an (Ft)-stopping time. Thus, the event

{τuξ ≤ t} ∩ {u(τuξ ) ≤ s} also belongs to Fs. Then we get {u(t ∧ τuξ ) ≤ s} ∈ Fs, as desired.

Since under PiB, for j = 1, 2, ŵj(tj) = wj+
√
κBj(tj), tj ≥ 0, where (B1(t1)) and (B2(t2)) are

independent standard Brownian motions, we get five (Ft)t∈Q-martingales under PiB: ŵj(tj),
ŵj(tj)

2 − κtj , j = 1, 2, and ŵ1(t1)ŵ2(t2). Using Lemmas 2.11 and 4.1 and the facts that
u1(t), u2(t) ≤ t, we conclude that ŵuj (t), ŵuj (t)2 − κuj(t), j = 1, 2, and ŵu1 (t)ŵu2 (t) are all
(Fut )-martingales under PiB. So we get quadratic variations and co-variation for ŵuj , j = 1, 2:

〈ŵuj 〉t = κuj(t), j = 1, 2; 〈ŵu1 , ŵu2 〉t ≡ 0. (4.3)

Fix ξ = (ξ1, ξ2) ∈ Ξ. From Lemmas 3.2 and 2.11 we know thatMiB→cs(u1(t)∧τ1
ξ1
, u2(t)∧τ2

ξ2
),

t ≥ 0, s ∈ {4, h}, is an (Fut )t≥0-martingale. Since τuξ is an (Fut )t≥0-stopping time, we see that

MiB→cs(u1(t∧τuξ )∧τ1
ξ1 , u2(t∧τuξ )∧τ2

ξ2) = MiB→cs(u1(t∧τuξ ), u2(t∧τuξ )) = Mu
iB→cs(t∧τuξ ), t ≥ 0,

is an (Fut )t≥0-martingale. Since [0, T u) =
⋃
ξ∈Ξ∗ [0, τ

u
ξ ] and Ξ∗ is countable, we conclude that

Mu
iB→cs(t), 0 ≤ t < T u, is an (Fut )t≥0-local martingale.

We now compute the SDE for Mu
iB→c4(t), 0 ≤ t < T u, in terms of ŵu1 and ŵu2 . Using (3.23)

we may express Mu
iB→c4 as a product of several factors. Among these factors, (W u

1,1)b, (W u
2,1)b,

sin2(W u
1 −W u

2 )
2
κ , and sin2(W u

j −V u
s )

2
κ , j, s ∈ {1, 2}, contribute the martingale part of Mu

iB→c4;
and other factors are differentiable in t. For j 6= k ∈ {1, 2}, using (3.8,3.15,3.16) we get the
(Fut )-adapted SDEs:

dW u
j = W u

j,1dŵ
u
j +

(κ
2
− 3
)
Wj,2u

′
jdt+ cot2(W u

j −W u
k )(W u

k,1)2u′kdt, (4.4)

dW u
j,1

W u
j,1

=
W u
j,2

W u
j,1

dŵuj + drift terms,

which imply that, for s = 1, 2,

d sin2(W u
j − V u

s )
2
κ

sin2(W u
j − V u

s )
2
κ

=
1

κ
cot2(W u

j − V u
s )W u

j,1dŵ
u
j + drift terms,
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d sin2(W u
1 −W u

2 )
2
κ

sin2(W u
1 −W u

2 )
2
κ

=
1

κ
cot2(W u

1 −W u
2 )[W u

1,1 dŵ
u
1 −W u

2,1 dŵ
u
2 ] + drift terms,

d(W u
j,1)b

(W u
j,1)b

= b
W u
j,2

W u
j,1

dŵuj + drift terms.

Since we already know that ŵu1 (t), ŵu2 (t), Mu
iB→c4(t), 0 ≤ t < T u, are (Fut )t≥0-local martingales,

we get

dMu
iB→c4

Mu
iB→c4

=

2∑
j=1

[
b
W u
j,2

W u
j,1

+
∑

X∈{W3−j ,V1,V2}

1

κ
cot2(W u

j −Xu)W u
j,1

]
dŵuj . (4.5)

One may also compute (4.5) directly, and conclude that Mu
iB→c4(t) is an (Fut )-local martingale.

From Lemmas 3.3 and 4.2 we know that, for any ξ ∈ Ξ and t ≥ 0,

dPc4|Fu(t∧τuξ )

dPiB|Fu(t∧τuξ )
=
Mu
iB→c4(t ∧ τuξ )

Mu
iB→c4(0)

. (4.6)

We will use a Girsanov argument to derive the SDEs for ŵuj , j = 1, 2, under Pc4.

Lemma 4.3. Under Pc4, there are two independent standard Brownian motions Bu
j (t), j = 1, 2,

such that ŵuj satisfies the SDE

dŵuj =
√
κu′jdB

u
j +

[
κb

W u
j,2

W u
j,1

+
∑

X∈{W3−j ,V1,V2}

cot2(W u
j −Xu)W u

j,1

]
u′jdt, 0 ≤ t <∞.

Proof. For j = 1, 2, define a process w̃uj , which has initial value wj , and satisfies the SDE

dw̃uj = dŵuj −
[
κb

W u
j,2

W u
j,1

+
∑

X∈{W3−j ,V1,V2}

cot2(W u
j −Xu)W u

j,1

]
u′jdt. (4.7)

From (4.5) we know that w̃uj (t)Mu
iB→c4(t), 0 ≤ t < T u, is an (Fut )-local martingale under PiB.

We claim that, for any j ∈ {1, 2} and ξ ∈ Ξ, |w̃uj | is bounded on [0, τuξ ] by a constant

depending only on κ, ξ, w1, v1, w2, v2. The proof is similar to that of Lemma 3.1. We may write
w̃uj (t) = ŵuj (t) + Aj(t) using (4.7). From that proof of Lemma 3.1 we know that | log(W u

j,1)|,
|W u

j,2|, cot2(W u
j − W u

3−j), W
u
j − V u

s , s = 1, 2, are all uniformly bounded on [0, τuξ ]. Since

τuξ = m(u(τuξ )) and K(u(τuξ )) is contained in the D-hull generated by ξ1∪ξ2, τuξ is also uniformly

bounded. From (4.2) we know that u′j is uniformly bounded on [0, τuξ ]. The above argument

shows that |Aj | is uniformly bounded on [0, τuξ ]. In order to prove the uniform boundedness of

|ŵuj | on [0, τuξ ], it suffices to show that |ŵj | is uniformly bounded on [0, τ jξj ]. For ŵ2(t), we have

g̃2(t2, v1) > ŵ2(t2) > g̃2(t2, v2), 0 ≤ t2 ≤ τ2
ξ2 . (4.8)
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Since ∂t2 g̃2(t2, vs) = cot2(g̃2(t2, vs)− ŵ2(t2)), by the uniform boundedness of | cot2(g̃2(t2, vs)−
ŵ2(t2))| = | cot2(Vs(0, t2) −W2(0, t2))| and t2 on [0, τ2

ξ2
], we see that |g̃2(t2, vs)| is uniformly

bounded on [0, τ2
ξ2

] for s = 1, 2. Using (4.8) we get the uniform boundedness of ŵ2(t2) on [0, τ jξj ].

The argument for ŵ1(t1) is similar except that we use g̃1(t1, v2 + 2π) > ŵ1(t) > g̃1(t1, v1). So
the claim is proved.

From Lemma 3.1 and the above claim, we see that, for any j ∈ {1, 2} and ξ ∈ Ξ, w̃uj (t ∧
τuξ )Mu

iB→c4(t ∧ τuξ ), t ≥ 0, is an (Fut )-martingale under PiB. Since this process is (Fu(t∧τuξ ))-

adapted, and Fu(t∧τuξ ) ⊂ Fu(t) = Fut , we see that it is an (Fu(t∧τuξ ))-martingale. From (4.6) we

see that w̃uj (t∧τuξ ), t ≥ 0, is an (Fu(t∧τuξ ))-martingale under Pc4. We now show that (w̃uj (t∧τuξ ))

is an (Fut )-martingale under Pc4. To check this, we need to show that for any t ≥ s ≥ 0 and
A ∈ Fus ,

Ec4[1Aw̃
u
j (t ∧ τuξ )] = Ec4[1Aw̃

u
j (s ∧ τuξ )]. (4.9)

Write A = A1 ∪A2, where A1 = A∩ {τuξ < s} and A2 = A∩ {τuξ ≥ s}. Since t∧ τuξ = s∧ τuξ on

A1, (4.9) holds with A1 in place of A. From Lemma 2.7, A2 = A∩{u(s) ≤ u(s∧τuξ )} ∈ Fu(s∧τuξ ).

So (4.9) also holds with A2 in place of A. Combining, we get (4.9), as desired. Thus, w̃uj (t∧τuξ ),

t ≥ 0, is an (Fut )-martingale under Pc4. From Lemma 3.5 we know that Pc4-a.s. T u =∞. Since
T u = supξ∈Ξ∗ τ

u
ξ , we see that w̃uj (t), 0 ≤ t <∞, is an (Fut )-local martingale under Pc4.

From (4.3) we know that, under PiB,

〈w̃uj (· ∧ τuξ )〉t = κuj(t ∧ τuξ ), j = 1, 2; 〈w̃u1 (· ∧ τuξ ), w̃u2 (· ∧ τuξ )〉t ≡ 0 (4.10)

Since Pc4 � PiB on Fu(t∧τuξ ) for any t ≥ 0, we also have (4.10) under Pc4. Since T u = supξ∈Ξ∗ τ
u
ξ ,

we conclude that, under Pc4,

〈w̃uj 〉t = κuj(t), j = 1, 2; 〈w̃u1 , w̃u2 〉t ≡ 0, 0 ≤ t < T u =∞. (4.11)

Since (w̃uj ), j = 1, 2, are (Fut )-local martingales under Pc4, we see that there are two independent

standard Brownian motions Bu
j (t), j = 1, 2, under Pc4, such that dw̃uj (t) =

√
κu′j(t)dB

u
j (t),

0 ≤ t <∞. Using (4.7) we then complete the proof.

Recall that Zj = Wj − Vj , j = 1, 2. Since W1 > V1 > W2 > V2 > W1 − 2π, and θu =
V u

1 − V u
2 = π, we have Zuj ∈ (0, π), j = 1, 2. Let k = 3− j. Using (3.8) we get

dV u
j = − cot2(W u

j − V u
j )(W u

j,1)2u′jdt− cot2(W u
k − V u

j )(W u
k,1)2u′kdt.

Combining this formula with (4.2,4.4), and that V u
j − V u

k = ±π, we get

dZuj =

√
κ sin(Zuj )

sin(Zu1 ) + sin(Zu2 )
dBu

j +
4 cos(Zuj )

sin(Zu1 ) + sin(Zu2 )
dt, 0 ≤ t <∞, j = 1, 2. (4.12)
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5 Transition Density

In this section, we are going to find out the transition density of the process (Zu1 , Z
u
2 ) that

satisfies (4.12). Define Bu
+(t) and Bu

−(t) such that

Bu
±(t) =

∫ t

0

√
sin(Zu1 (s))

sin(Zu1 (s)) + sin(Zu2 (s))
dBu

1 (s)±
∫ t

0

√
sin(Zu2 (s))

sin(Zu1 (s)) + sin(Zu2 (s))
dBu

2 (s).

Then both Bu
+(t) and Bu

−(t) are standard (Fut )-Brownian motions, and their quadratic covari-
ation satisfies

d〈Bu
+, B

u
−〉t = cot2(Zu1 + Zu2 ) tan2(Zu1 − Zu2 )dt. (5.1)

Let Zu± = (Zu1 ± Zu2 )/2. Then Zu+ ∈ (0, π), Zu− ∈ (−π
2 ,

π
2 ), and they satisfy the SDEs

dZu+ =

√
κ

2
dBu

+ + 2 cot(Zu+)dt, 0 ≤ t <∞.

dZu− =

√
κ

2
dBu
− − 2 tan(Zu−)dt, 0 ≤ t <∞.

We are going to follow the argument in [30, Appendix B] to derive the transition density of
(Zu+, Z

u
−). Let X = cos(Zu+) and Y = sin(Zu−). Then X,Y ∈ (−1, 1), and satisfy the SDEs

dX = −
√
κ

2

√
1−X2dBu

+ −
(

2 +
κ

8

)
Xdt. (5.2)

dY = +

√
κ

2

√
1− Y 2dBu

− −
(

2 +
κ

8

)
Y dt. (5.3)

From (5.1) we have

d〈X,Y 〉t = −κ
4
XY dt. (5.4)

Since X(t)2 + Y (t)2 = 1− sin(Zu1 (t)) sin(Zu2 (t)) < 1, we see that (X(t), Y (t)) ∈ D for all t ≥ 0.
We will find out the transition density pt((x, y), (x∗, y∗)) for the joint process (X,Y ).

First, we assume that the transition density pt((x, y), (x∗, y∗)) for (X,Y ) exists, and make

some observations. For any fixed (x∗, y∗) ∈ D and t0 > 0, the process M
(x∗,y∗)
t := p(t0 −

t, (X(t), Y (t)), (x∗, y∗)), 0 ≤ t < t0, is a martingale. Assuming further that p is smooth in
(t, x, y), then we get a PDE:

− ∂tp+ Lp = 0, (5.5)

where L is the second order differential operator:

L :=
κ

8
(1− x2)∂2

x +
κ

8
(1− y2)∂2

y −
κ

4
xy∂x∂y − (2 +

κ

8
)x∂x − (2 +

κ

8
)y∂y.

We will derive the eigenvectors and eigenvalues of L. Note that for integers n,m ≥ 0,

L(xnym) = −κ
8

(n+m)(n+m+
16

κ
)xnym +

κ

8
n(n− 1)xn−2ym +

κ

8
m(m− 1)xnym−2.
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Define

λn = −κ
8
n(n+

16

κ
), n ∈ N ∪ {0}. (5.6)

Then L(xnym) equals to λn+mx
nym plus a polynomial in x, y of degree less than n+m. Hence,

for each n,m ∈ N∪{0}, there is a polynomial P(n,m)(x, y) of degree n+m, which can be written
as xnym plus a polynomial of degree less than n+m, such that

LP(n,m) = λn+mP(n,m).

Let Ψ(x, y) = (1− x2 − y2)
8
κ
−1, and define the inner product

〈f, g〉Ψ :=

∫ ∫
D
f(x, y)g(x, y)Ψ(x, y)dxdy.

Since Ψ ≡ 0 on T, direct calculation shows that for smooth functions f and g on D,

〈Lf, g〉Ψ = 〈f,Lg〉Ψ.

So P(n,m) is orthogonal to P(n′,m′) w.r.t. 〈·〉Ψ if n + m 6= n′ + m′. Thus, we may construct a
sequence of polynomials v(n,s), n = 0, 1, 2, . . . , s = 0, 1, . . . , n, such that v(n,s) is a polynomial
in x, y of degree n, Lv(n,s) = λnv(n,s), and {v(n,s)} form an orthonormal basis w.r.t. 〈·〉Ψ. Here
every v(n,s) is a linear combination of P(j,k) over j, k ∈ N∪{0} such that j+k = n. On the other
hand, if a sequence of polynomials v(n,s), n = 0, 1, 2, . . . , s = 0, 1, . . . , n, form an orthonormal
basis w.r.t. 〈·〉Ψ, and each v(n,s) has degree n, then Lv(n,s) = λnv(n,s). This is because v(n,s) is
orthogonal to all polynomials of degree less than n, and so it must be a linear combination of
P(j,k) over j, k ∈ N ∪ {0} such that j + k = n. From [27, Section 1.2.2], we may choose v(n,s)

such that for each n ≥ 0, v(n,0), v(n,1), . . . , v(n,n) are given by

vn,j,1 = hn,j,1P
( 8
κ
−1,n−2j)

j (2r2 − 1)rn−2j cos((n− 2j)θ), 0 ≤ 2j ≤ n,

vn,j,2 = hn,j,2P
( 8
κ
−1,n−2j)

j (2r2 − 1)rn−2j sin((n− 2j)θ), 0 ≤ 2j ≤ n− 1,

where P
( 8
κ
−1,n−2j)

j are Jacobi polynomials of index ( 8
κ − 1, n− 2j), (r, θ) is the polar coordinate

of (x, y): x = r cos θ and y = r sin θ, and hn,j,i > 0 are normalization constants. Using the polar
integration and Formula ([20, Table 18.3.1])∫ 1

−1
P

(α,β)
j (x)2(1− x)α(1 + x)βdx =

2α+β+1Γ(j + α+ 1)Γ(j + β + 1)

j!(2j + α+ β + 1)Γ(j + α+ β + 1)
(5.7)

with α = 8
κ − 1 and β = n− 2j, we compute

hn,j := hn,j,1 = hn,j,2 =

√
1 + 1n6=2j

π
·
j!(n+ 8

κ)Γ(n− j + 8
κ)

Γ(j + 8
κ)Γ(n− j + 1)

. (5.8)
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Using the super norm of P
(α,β)
j ([20, 18.14.1,18.14.2]):

‖P (α,β)
j ‖∞ =

Γ(max{α, β}+ j + 1)

j!Γ(max{α, β}+ 1)
, if max{α, β} ≥ −1/2, min{α, β} > −1, (5.9)

we get

‖vn,j,1‖∞ = ‖vn,j,2‖∞ = hn,j max
{Γ( 8

κ + j)

j!Γ( 8
κ)

,
Γ(n− j + 1)

j!Γ(n− 2j + 1)

}
. (5.10)

For t > 0, (x, y), (x∗, y∗) ∈ D, we define

pt((x, y), (x∗, y∗)) =

∞∑
n=0

n∑
s=0

Ψ(x∗, y∗)v(n,s)(x, y)v(n,s)(x
∗, y∗)eλnt. (5.11)

Let p∞(x∗, y∗) be the term for n = s = 0. Since λ0 = 0 and Pα,β0 ≡ 1, we have

p∞(x∗, y∗) =
8

πκ
Ψ(x∗, y∗) =

8

πκ
(1− (x∗)2 − (y∗)2)

8
κ
−1. (5.12)

Lemma 5.1. For any t0 > 0, the series in (5.11) converges uniformly on [t0,∞)×D×D, and
there is Ct0 ∈ (0,∞) depending only on κ and t0 such that

|pt((x, y), (x∗, y∗))− p∞(x∗, y∗)| ≤ Ct0e−(2+κ
8

)tp∞(x∗, y∗), t ≥ t0, (x, y), (x∗, y∗) ∈ D.

Moreover, for any t > 0 and (x∗, y∗) ∈ D,

p∞(x∗, y∗) =

∫ ∫
D
p∞(x, y)pt((x, y), (x∗, y∗))dxdy. (5.13)

Proof. The uniform convergence of the series in (5.11) and the first formula follows from Stir-
ling’s formula, (5.8,5.10), and the facts that λ1 = −(2 + κ

8 ) > λn for any n > 1 and λn � −κ
8n

2

for big n. Formula (5.13) follows from the orthogonality of vn,s w.r.t. 〈·, ·〉Ψ and the uniform
convergence of the series in (5.11).

Lemma 5.2. Under Pc4, pt((x, y), (x∗, y∗)) is the transition density for (X(t), Y (t)) that sat-
isfies (5.2,5.3,5.4), and p∞ is the invariant density.

Proof. Fix (x, y) ∈ D. Let (X(t), Y (t)), t ≥ 0, be the process that satisfies (5.2,5.3,5.4) with
initial value (x, y). Fix t0 > 0. For the first statement, it suffices to show that, for any
f ∈ C(D,R),

Ec4[f(Xt0 , Yt0)] =

∫ ∫
D
pt0((x, y), (x∗, y∗))f(x∗, y∗)dx∗dy∗. (5.14)
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Since Lv(n,s) = λnv(n,s), every function v(n,s)(x, y)eλnt solves (5.5). Let f be a polynomial
in x, y. Let a(n,s) = 〈f, v(n,s)〉Ψ. Then f(x, y) =

∑∞
n=0

∑n
s=0 a(n,s)v(n,s)(x, y), where all but

finitely many a(n,s) are not zero. Define

f(t, (x, y)) =
∞∑
n=0

n∑
s=0

a(n,s)v(n,s)(x, y)eλnt =

∫ ∫
D
pt0((x, y), (x∗, y∗))f(x∗, y∗)dx∗dy∗.

Then f(t, (x, y)) solves (5.5) since it is a linear combination of v(n,s)(x, y)eλnt. Let (X(t), Y (t))
be a stochastic process in D, which solves (5.2,5.3,5.4) with initial value (x, y). Fix t0 > 0
and define Mt = f(t0 − t, (X(t), Y (t))), 0 ≤ t ≤ t0. By Itô’s formula, (Mt) is a bounded
martingale w.r.t. P4, which implies that Ec4[f(X(t0), Y (t0))] = Ec4[Mt0 ] = M0 = f(t0, (x, y)).
So we get (5.14) for a polynomial f . Formula (5.14) for a general f ∈ C(D,R) follows from
Stone-Weierstrass theorem. The statement on p∞ follows immediately from (5.13).

Corollary 5.3. Under Pc4, the transition density for (Zu1 , Z
u
2 ) that satisfies (4.12) is

pZt ((z1, z2), (z∗1 , z
∗
2)) = pt((cos2(z1+z2), sin2(z1−z2)), (cos2(z∗1+z∗2), sin2(z∗1−z∗2)))

sin z∗1 + sin z∗2
4

,

and the invariant density is

pZ∞(z∗1 , z
∗
2) = p∞(cos2(z∗1 + z∗2), sin2(z∗1 − z∗2))

sin z∗1 + sin z∗2
4

.

Proof. This follows from the above lemma and the fact that X(t) := cos2(Zu1 (t) + Zu2 (t)) and
Y (t) := sin2(Zu1 (t)− Zu2 (t)) satisfy (5.2,5.3,5.4).

Next, we will derive the transition density p̃Zt ((z1, z2), (z∗1 , z
∗
2)) under P2 for (Zu1 , Z

u
2 ). Now

Bu
1 and Bu

2 are not standard Brownian motions under P2, and we no longer have P2-a.s. T u =∞.
In fact, we will see that P2-a.s. T u < ∞. By saying that p̃Zt ((z1, z2), (z∗1 , z

∗
2)) is the transition

density for (Zu1 , Z
u
2 ) under P2, we mean that, for any t > 0 and (z1, z2) ∈ (0, π)2, if (Zu1 , Z

u
2 )

starts from (z1, z2), then for any bounded measurable function f on (0, π)2, we have

E2[1{Tu>t}f(Zu1 (t), Zu2 (t))] =

∫ π

0

∫ π

0
p̃Zt ((z1, z2), (z∗1 , z

∗
2))f(z∗1 , z

∗
2)dz∗2dz

∗
1 .

In particular, we have P2[T u > t] =
∫ π

0

∫ π
0 p̃Zt ((z1, z2), (z∗1 , z

∗
2))dz∗2dz

∗
1 .

From (3.34) we know that, for any t ≥ 0,

dP2|Fut ∩ {T u > t}
dPc4|Fut ∩ {T u > t}

=
Mu
c4→2(t)

Mu
c4→2(0)

.

Let Gu(z1, z2) be a function defined for z1, z2 ∈ (0, π) such that

Gu(z1, z2) = [sin2 z1 sin2 z2]
8
κ
−1 cos2(z1 − z2)

4
κF
(cos2 z1 cos2 z2

cos2(z1 − z2)

)−1
.
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From (3.35,3.36) we get G(W u
1 , V

u
1 ;W u

2 , V
u

2 ) = Gu(Zu1 , Z
u
2 ) and

Mu
c4→2(t) = e−α0tGu(Zu1 (t), Zu2 (t))−1.

Recall that Pc4-a.s. T u =∞. So we obtain the following lemma.

Lemma 5.4. Under P2, (Zu1 (t), Zu2 (t)), 0 ≤ t < T u, is a Markov process with transition density

p̃Zt ((z1, z2), (z∗1 , z
∗
2)) := e−α0tpZt ((z1, z2), (z∗1 , z

∗
2))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)
.

Note that for some explicit constant C ∈ (0,∞) depending on κ,

pZ∞(z1, z2)

Gu(z1, z2)
= C[cos2 z1 cos2 z2]

8
κ
−1 sin2(z1 + z2)cos2(z1 − z2)1− 4

κF
(cos2 z1 cos2 z2

cos2(z1 − z2)

)
.

So pZ∞(z1,z2)
Gu(z1,z2) extends to a continuous function on [0, π]2, which vanishes at the corners. We may

normalize it to get a probability density, i.e., we define

Z =

∫ π

0

∫ π

0

pZ∞(z1, z2)

Gu(z1, z2)
dz1dz2 ∈ (0,∞), (5.15)

p̃Z∞(z1, z2) =
1

Z
pZ∞(z1, z2)

Gu(z1, z2)
, z1, z2 ∈ [0, π]. (5.16)

From now on, if a quantity Q depends on t ∈ (0,∞) and other variables x, and f is a positive
function on (0,∞), we write Q as O(f(t)), if for any t0 > 0 there is Ct0 ∈ (0,∞) depending
only on κ and t0 such that for any t ≥ t0 and any x, |Q(t, x)| ≤ Cf(t).

Lemma 5.5. (i) For any t > 0 and z∗1 , z
∗
2 ∈ [0, π],∫ π

0

∫ π

0
p̃Z∞(z1, z2)p̃Zt ((z1, z2), (z∗1 , z

∗
2))dz1dz2 = p̃Z∞(z∗1 , z

∗
2)e−α0t. (5.17)

This means, under the law P2, if the process (Zu1 , Z
u
2 ) starts from a random point (z1, z2) ∈

(0, π)2 with density p̃Z∞, then for any deterministic t ≥ 0, the density of (Zu1 (t), Zu2 (t)) at
time t is e−α0tp̃Z∞.

(ii) For any (z1, z2) ∈ (0, π)2 and a process (Zu1 , Z
u
2 ) started from (z1, z2), we have

P2[T u > t] = ZGu(z1, z2)e−α0t(1 +O(e−(2+κ
8

)t)); (5.18)

p̃Zt ((z1, z2), (z∗1 , z
∗
2)) = P2[T u > t]p̃Z∞(z∗1 , z

∗
2)(1 +O(e−(2+κ

8
)t)). (5.19)

Here we emphasize that the implicit constants in the O symbols do not depend on (z1, z2).
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Proof. Part (i) follows easily from (5.13). For part (ii), suppose (Zu1 , Z
u
2 ) starts from (z1, z2).

Using Lemmas 5.1, 5.4 and formulas ( 5.15,5.16), we get

P2[T u > t] =

∫ π

0

∫ π

0
p̃Zt ((z1, z2), (z∗1 , z

∗
2))dz∗1dz

∗
2

=

∫ π

0

∫ π

0
e−α0tpZt ((z1, z2), (z∗1 , z

∗
2))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)
dz∗1dz

∗
2

=

∫ π

0

∫ π

0
e−α0tpZ∞(z∗1 , z

∗
2)(1 +O(e−(2+κ

8
)t))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)
dz∗1dz

∗
2

= ZGu(z1, z2)e−α0t(1 +O(e−(2+κ
8

)t)),

which is (5.18); and

p̃Zt ((z1, z2), (z∗1 , z
∗
2)) = e−α0tpZt ((z1, z2), (z∗1 , z

∗
2))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)

= e−α0tpZ∞(z∗1 , z
∗
2)(1 +O(e−(2+κ

8
)t))

Gu(z1, z2)

Gu(z∗1 , z
∗
2)

= e−α0tZ p̃Z∞(z∗1 , z
∗
2)(1 +O(e−(2+κ

8
)t))Gu(z1, z2),

which together with (5.18) implies (5.19).

6 Proofs of Main Theorems

We will prove the main theorems of the paper in this section. We will need the Domain Markov
Property for 2-SLE in the following form.

Lemma 6.1. Let (η1, η2) be a 2-SLEκ in a simply connected domain D with link pattern (a1 →
b1; a2 → b2). Suppose, for j = 1, 2, ηj is parametrized by the chordal capacity viewed from bj
(determined by a conformal map from D onto H that takes bj to ∞). Note that the lifetime of

the parametrized η1 and η2 are both ∞. Let (F jt )t≥0 be the filtration generated by ηj, j = 1, 2,
which together generate a separable Q-indexed filtration (Ft)t∈Q. Let T = (T1, T2) be an (Ft)-
stopping time. Let Dj

T denote the connected component of D \ (η1([0, T1]) ∪ η2([0, T2])) whose
boundary contains bj, j = 1, 2 Then

(i) Conditioning on FT and the event that D1
T = D2

T =: DT and η1(T1) 6= η2(T2), η1|[T1,∞]

and η2|[T2,∞]) form a 2-SLEκ in DT with link pattern (η1(T1)→ b1; η2(T2)→ b2).

(ii) Conditioning on FT and the event that D1
T 6= D2

T , ηj |[Tj ,∞] is a chordal SLEκ curve in

Dj
T from ηj(Tj) to bj, j = 1, 2, and η1|[T1,∞] and η2|[T2,∞] are independent.
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Proof. By the property of 2-SLEκ, conditioning on F2
∞, η1 is a chordal SLEκ curve from a1

to b1 in a connected component of D \ η2. Let F (2,∞)
t1

= F1
t1 ∨ F

2
∞. Then we get a filtration

(F (2,∞)
t1

)t1≥0. Since for any t1 ≥ 0, {T1 ≤ t1} =
⋃
n∈N{T ≤ (t1, n)}, we see that T1 is an

(F (2,∞)
t1

)-stopping time. If A ∈ FT , then from A∩ {T1 ≤ t1} =
⋃
n∈NA∩ {T ≤ (t1, n)} , t1 ≥ 0,

we see that A ∈ F (2,∞)
T1

. Thus, FT ∨ F2
∞ ⊂ F

(2,∞)
T1

.

By the DMP of chordal SLEκ, conditioning on F (2,∞)
T1

, η1|[T1,∞] has the law of a chordal
SLEκ curve from η1(T1) to b1 in a connected component of D \ (η1([0, T1]) ∪ η2), which is
denoted by DT1,∞. Note that the triple (DT1,∞; η1(T1), b1) is measurable w.r.t. FT ∨F2

∞. Since

FT ∨ F2
∞ ⊂ F

(2,∞)
T1

, we conclude that, conditioning on FT ∨ F2
∞, η1|[T1,∞] also has the law of a

chordal SLEκ in DT1,∞ from η1(T1) to b1. Since FT ∨ F2
∞ agrees with the σ-algebra generated

by FT and η2|[T2,∞], we can say that, conditioning first on FT and then on η2|[T2,∞], η1|[T1,∞]

has the law of a chordal SLEκ in DT1,∞ from η1(T1) to b1. Similarly, conditioning first on
FT and then on η1|[T1,∞], η2|[T2,∞] has the law of a chordal SLEκ in D∞,T2 . On the event that
D1
T 6= D2

T , D∞,Tj does not depend on η3−j([T3−j ,∞]), so η1|[T1,∞] and η2|[T2,∞] are conditionally

independent given FT on this event. This is (ii). On the event that D1
T = D2

T =: DT and
η1(T1) 6= η2(T2), the conditional joint law of η1|[T1,∞] and η2|[T2,∞] given FT agrees with that
of the 2-SLEκ in DT with link pattern (η1(T1)→ b1; η2(T2)→ b2). So we get (i).

Proof of Theorem 1.1. We first work on (1.2). By Koebe’s distortion theorem, it suffices to
prove the theorem for D = D and z0 = 0. By symmetry, we may assume that aj = eiwj and
bj = eivj , j = 1, 2, and w1 > v1 > w2 > v2 > w1 − 2π. We use p(w1, v1, w2, v2; r) to denote the
probability that both η̂1 and η̂2 have distance less than r from 0. Since GD;eiw1 ,eiv1 ;eiw2 ,eiv2 (0)
agrees with the G(w1, v1;w2, v2) defined by (3.35), it suffices to show that, for some constant
C0 ∈ (0,∞),

p(w1, v1, w2, v2; r) = C0G(w1, v1;w2, v2)rα0(1 +O(rβ0)), as r → 0+. (6.1)

For j = 1, 2, suppose η̂j is oriented from aj to bj , and let ηj be the part of η̂j from aj up
to bj or the first time that η̂j separates 0 from any of bj , a3−j , b3−j if such time exists. Then
we may parametrize η1 and η2 by the radial capacity viewed from 0 such that they are radial
Loewner curves with lefetime T̃1 and T̃2 driven by some functions ŵ1 and ŵ2 with initial values
w1 and w2, respectively. Then the law of (ŵ1, ŵ2) is Pw1,v1;w2,v2

2 as defined in Section 3.2.
We use the symbols in Section 3. Now we write Kt and gt for K(t1, t2) and g((t1, t2), ·), and

let Dt = D \Kt. Recall that gt maps Dt conformally onto D, fixes 0, and has derivative em(t)

at 0. Moreover, gt(ηj(tj)) = eiWj(t) and gt(e
ivj ) = eiVj(t), j = 1, 2. Suppose T = (T1, T2) is

an (Ft)t∈Q-stopping time such that Tj < T̃j , j = 1, 2. Then T corresponds to a stopping time
w.r.t. the Q-indexed filtration generated by η̂1, η̂2, which are parametrized by chordal capacities
viewed from b1, b2, respectively. By Lemma 6.1, conditionally on FT and the event that T ∈ D,
the gT -images of the parts of η̂j from ηj(uj(t0)) to eivj , j = 1, 2, together form a 2-SLEκ in D
with link pattern (eiW1(T ) → eiV1(T ); eiW2(T ) → eiV2(T )).

Suppose that v1− v2 = π so that the time curve u in Section 4 can be defined, and we may
use the results and symbols there. Fix r ∈ (0, 1/4). Suppose that it happens that dist(0, η̂j) < r,
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j = 1, 2. Then the parts of η̂1 and η̂2 up to their respective hitting times at {|z| = r} do not
intersect. Because if they did intersect, then they together could disconnect eiv1 and eiv2 in D,
and the rest parts of η̂1 and η̂2 would grow in different domains, and could not both visit the disc
{|z| < r}, which is a contradiction. Thus, for j = 1, 2, the above part of η̂j does not disconnect
0 from any of eivj , eiw3−j , eiv3−j , and so belongs to ηj . Let τj be the first hitting time of ηj at
{|z| = r}, j = 1, 2. Then (τ1, τ2) ∈ D. By Koebe’s 1/4 theorem, we get τj ≥ − log(4r), j = 1, 2.
Recall that θ(τ1, 0) < π < θ(0, τ2). So there is s = (s1, s2) ∈ {(τ1, t2) : 0 ≤ t2 ≤ τ2} ∪ {(t1, τ2) :
0 ≤ t1 ≤ τ1} such that θ(s) = π. This implies that m(s1, s2) < T u and sj = uj(m(s1, s2)),
j = 1, 2. Using (3.11) we get T u > s1 ∨ s2 ≥ − log(4r).

Now fix t0 ∈ [0,− log(4r)]. Then {dist(0, η̂j) < r, j = 1, 2} ⊂ {T u > t0}. When T u > t0
happens, since uj(t0) ≤ t0, by Koebe’s 1/4 theorem, dist(0, ηj [0, uj(t0)]) ≥ r, j = 1, 2. Thus,
dist(0, η̂j) < r, j = 1, 2, if and only if T u > t0 and the parts of η̂j after ηj(uj(t0)), j = 1, 2,
both visit the disc {|z| < r}. Suppose T u > t0 does happen. Let R1 < R2 ∈ (0, 1) be such that
e−t0R1
(1−R1)2

= e−t0R2
(1+R2)2

= r. Since (gut0)′(0) = em(u(t0)) = et0 and r ≤ 1
4e
−t0 , by Koebe’s distortion

theorem, {|z| < r} ⊂ Du(t0), and

{|z| < R1} ⊂ gut0({|z| < r}) ⊂ {|z| < R2}. (6.2)

By rotation symmetry, there is a function p(z1, z2; r) such that p(w1, v1, w2, v2; r) = p(w1 −
v1, w2 − v2; r) if v1 − v2 = π. From the conditional joint law of the gu(t0)-images of the parts of
η̂j after ηj(uj(t0)), j = 1, 2, given Fut0 , and the facts that V u

1 (t0)−V u
2 (t0) = π and Zuj = W u

j −V u
j ,

j = 1, 2, we get

p(Zu1 (t0), Zu2 (t0);R1) ≤ P[dist(0, η̂j) < r, j = 1, 2|Fut0 , T
u > t0] ≤ p(Zu1 (t0), Zu2 (t0);R2). (6.3)

We will first find the asymptotic of p(r) :=
∫ π

0

∫ π
0 p(z1, z2; r)p̃Z∞(z1, z2)dz1dz2 as r → 0+.

Such p(r) is the probability that the two curves η̂1 and η̂2 in a 2-SLEκ in D with link pattern
(eiz1 → 1;−eiz2 → −1) both get within distance r from 0, where z1, z2 are random numbers in
(0, π) with joint density p̃Z∞. From (5.18) we know that, P[T u > t0] = e−α0t0 , and conditioning
on T u > t0, (Zu1 (t0), Zu2 (t0)) also has joint density p̃Z∞.

Suppose 0 < t < T u. Let dj = dist(0, ηj([0, uj(t)])). Since m(u1(t), u2(t)) = t, by
Schwarz Lemma, we have d1 ∧ d2 ≤ e−t. By symmetry we may assume that d1 ≤ d2. Since
θ(u1(t), u2(t)) = π, we know that the harmonic measure of the union of η2([0, u2(t)]) and the
subarc of T between eiv1 and eiv1 that contains eiw2 in D \ K(u1(t), u2(t)) viewed from 0 is
exactly 1/2. Using Beurling estimate, we get 1/2 ≤ 2(d1/d2)1/2, which implies that d2 ≤ 16d1.
Since d1 ≤ e−t, we get d1, d2 ≤ 16e−t, and so dist(0, ηj) ≤ dj ≤ 16e−t, j = 1, 2. This means
that p(r) ≥ P[T u > t] = e−α0t > 0 if r > 16e−t. So p is positive. By (6.3) we get

e−α0t0p(R1) ≤ p(r) ≤ e−α0t0p(R2), if
e−t0R1

(1−R1)2
=

e−t0R2

(1 +R2)2
= r.

Let q(r) = r−α0p(r). Suppose r,R ∈ (0, 1) satisfy that r < R
(1+R)2

. By choosing t0 > 0 such that

et0 = R/r
(1+R)2

, we conclude from the above formula that p(r) ≤ e−α0t0p(R) = ( R/r
(1+R)2

)−α0p(R).
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Thus, q(r) ≤ (1 + R)2α0q(R). Similarly, by choosing t0 > 0 such that et0 = R/r
(1−R)2

, we get

q(r) ≥ (1−R)2α0q(R). So we have

(1−R)2α0q(R) ≤ q(r) ≤ (1 +R)2α0q(R), if r <
R

(1 +R)2
. (6.4)

Thus, limr→0+ log(q(r)) converges to a finite number, which implies that limr→0+ q(r) converges
to a finite positive number. Let L denote the limit. Fixing R ∈ (0, 1) and sending r → 0+ in
(6.4), we get L(1 + R)−2α0 ≤ q(R) ≤ L(1 − R)−2α0 . So p(r) = Lrα0(1 + O(r)) as r → 0 for
some L ∈ (0,∞).

Next, we find the asymptotic of p(z1, z2; r) as r → 0+ for any z1, z2 ∈ (0, π). From Lemma 5.5
we know that, for any t0 > 0, P[T u > t0] = ZGu(z1, z2)e−α0t0(1 + O(eλ1t0)), and conditionally
on Fut0 and T u > t0, the joint density of (Zu1 (t0), Zu2 (t0)) is p̃Z∞(z∗1 , z

∗
2)(1 + O(eλ1t0)), where

λ1 = −2 − κ
8 . Fix r ∈ (0, 1/4) and choose t0 > 0 such that t0 < − log(4r). We now still have

(6.2). Note that Rj = et0r(1 +O(et0r)), j = 1, 2, if et0r is small. From (6.3) we get

p(z1, z2; r) = ZGu(z1, z2)e−α0t0(1 +O(eλ1t0))p(et0r(1 +O(et0r)))

= ZLGu(z1, z2)e−α0t0 [et0r(1 +O(et0r))]α0(1 +O(eλ1t0))(1 +O(et0r))

= ZLGu(z1, z2)rα0(1 +O(eλ1t0) +O(et0r)).

Since β0 = −λ1
1−λ1 , letting C0 = ZL and choosing et0 such that et0 = r

−1
1−λ1 , we get

p(z1, z2; r) = C0G
u(z1, z2)rα0(1 +O(rβ0)).

This means that we obtain (6.1) in the case that v1 − v2 = π.
Finally, we consider the case that θ(0, 0) = v1 − v2 6= π. First, suppose that θ(0, 0) < π.

Recall that θ(t1, t2) is increasing in t2. Let τ2 be the first t2 such that (0, t2) ∈ D and θ(0, t2) = π,
if such time exists; otherwise, let τ2 be the lifetime T̃2 of η2. Then τ2 is an (F2

t )-stopping time.
From (4.1) we know that ∂2θ(0, t2) ≥ 2 cot(θ(0, t2)/4), which implies that cos(θ(0, t2)/4) ≤
e−t/2 cos(θ(0, 0)/4) < e−t/2. If log(2) < T̃2, then cos(θ(0, log(2))/4) < 1/

√
2, which implies that

θ(0, log(2)) > π, and so τ2 < log(2). If log(2) ≥ T̃2, we then have τ2 ≤ T̃2 ≤ log(2). Thus, in
both cases, τ2 is bounded above by log(2), and we get an (Ft)-stopping time (0, τ2).

Moreover, if (0, τ2) 6∈ D, then τ2 = T̃2, which means that the conformal radius of D \ η̂2

viewed from 0 is e−T̃2 ≥ 1/2, and from Koebe’s 1/4 theorem, we get dist(0, η̂2) ≥ 1/8. Thus,
if dist(0, η̂2) < 1/8, then (0, τ2) ∈ D, and we get V1(0, τ2) − V2(0, τ2) = π. Conditional on
F(0,τ2) and the event that (0, τ2) ∈ D, the g(0,τ2)-image of η̂1 and the part of η̂2 after η2(τ2)

form a 2-SLEκ in D with link pattern (eiW1(0,τ2) → eiV1(0,τ2); eiW2(0,τ2) → eiV2(0,τ2)). Since
V1(0, τ2) − V2(0, τ2) = π, by Koebe distortion theorem and the result in the case v1 − v2 = π,
we get that, if r < 1/8,

p(w1, v1, w2, v2; r) = E[1{(0,τ2)∈D}p(Z1(0, τ2), Z2(0, τ2); eτ2r(1 +O(r)))]
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= C0E[1{(0,τ2)∈D}e
α0 m(0,τ2)G(W1, V1;W2, V2)|(0,τ2)]r

α0(1 +O(rβ0))

= C0G(w1, v1;w2, v2)rα0(1 +O(rβ0)),

where the last step follows from (3.37). The proof of the case that θ(0, 0) > π is similar. So we
have proved (6.1) in all cases, which implies (1.2).

Finally, from (1.2) we know that there are constants ρ ∈ (0, 1) and C1 > 0 such that if
r
R < ρ, then P[dist(z0, η̂j) < r, j = 1, 2] ≤ C1GD;a1,b1;a2,b2(z0)rα0 . Using (1.4) we then get (1.3)
in the case r

R < ρ. Since P[dist(z0, η̂j) < r, j = 1, 2] ≤ 1, we get (1.3) for all r > 0.

Proof of Theorem 1.2. The proof is almost the same as that of the previous theorem except that
we need a new way to prove that P[dist(z0, η̂1∩η̂2) < r] > 0 for all r ∈ (0, R). To prove this, first
note that from the previous theorem, the probability of the event Er that both η̂1 and η̂2 visit
the disc {|z − z0| < r} is positive, and when this event happens, the connected component of
D\ η̂1 whose boundary contains a2, b2, denoted by D2, contains a part of the circle {|z−z0| = r}
but not the whole circle. Thus, ∂D2 ∩ {|z − z0| < r} is not empty. Since conditionally on η̂1,
η̂2 is a chordal SLEκ curve in D2, and κ ∈ (4, 8), the conditional probability that η̂2 intersects
∂D2 ∩ {|z − z0| < r} given η̂1 and Er is positive, and when η̂2 intersects ∂D2 ∩ {|z − z0| < r},
we have dist(z0, η̂1 ∩ η̂2) < r. So we get the desired positiveness.
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