Homework 10 (due on 11/8)

- Read Sections 25, 26, and 28 for the next week.
- 23.1 For each of the following power series, find the radius of convergence and determine the exact interval of convergence. (a) $\sum n^2 x^n$; (c) $\sum \left(\frac{2^n}{n^2}\right) x^n$; (e) $\sum \left(\frac{2^n}{n!}\right) x^n$; (g) $\sum \left(\frac{3^n}{n \cdot 4^n}\right) x^n$.

23.4 For $n = 0, 1, 2, 3, \dots$, let $a_n = \left[\frac{4+2(-1)^n}{5}\right]^n$.

- (a) Find $\limsup |a_n|^{1/n}$, $\liminf |a_n|^{1/n}$, $\limsup |\frac{a_{n+1}}{a_n}|$ and $\liminf |\frac{a_{n+1}}{a_n}|$.
- (b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Explain briefly.
- (c) Now consider the power series $\sum a_n x^n$ with the coefficients a_n as above. Find the radius of convergence and determine the exact interval of convergence for the series.
- 23.5 Consider a power series $\sum a_n x^n$ with radius of convergence R.
 - (a) Prove that if all the coefficients a_n are integers and if infinitely many of them are nonzero, then $R \leq 1$.
 - (b) Prove that if $\limsup |a_n| > 0$, then $R \le 1$. Hint: You may work out (b) first and use it to prove (a).
- 24.2 For $x \in [0, \infty)$, let $f_n(x) = \frac{x}{n}$.
 - (a) Find $f(x) = \lim f_n(x)$.
 - (b) Determine whether $f_n \to f$ uniformly on [0, 1].
 - (c) Determine whether $f_n \to f$ uniformly on $[0, \infty)$.
- 24.3 Repeat Exercise 24.2 for $f_n(x) = \frac{1}{1+x^n}$.
- 24.10 (a) Prove that if $f_n \to f$ uniformly on S and $g_n \to g$ uniformly on S, then $f_n + g_n \to f + g$ uniformly on S.
- 24.11 Let $f_n(x) = x$ and $g_n(x) = \frac{1}{n}$ for all $x \in \mathbb{R}$. Let f(x) = x and g(x) = 0 for all $x \in \mathbb{R}$.
 - (a) Observe $f_n \to f$ uniformly on R [obvious!] and $g_n \to g$ uniformly on R [almost obvious].
 - (b) Observe the sequence $(f_n g_n)$ does not converge uniformly to fg on \mathbb{R} . Compare Exercise 24.2.
- 24.12 Prove the assertion in Remark 24.4: A sequence (f_n) of functions on a set $S \subseteq \mathbb{R}$ converges uniformly to a function f on S if and only if

$$\lim_{n \to \infty} \sup\{|f(x) - f_n(x)| : x \in S\} = 0.$$