
Homework 12 (due on 11/25)

29.2 Prove | cosx− cos y| ≤ |x− y| for all x, y ∈ R.

Proof. We use the fact that | cos′ x| = | − sinx| ≤ 1 for all x ∈ R. Let x, y ∈ R. If x = y,
then | cosx−cos y| = 0 ≤ |x−y|. Now suppose x 6= y. Since | cosx−cos y| = | cos y−cosx|
and |x − y| = |y − x|, by symmetry we may assume y < x. By Mean Value Theorem,
there is z ∈ (y, x) such that cosx−cos y

x−y = cos′ z, which implies that | cosx − cos y| =

|x− y|| cos′ z| ≤ |x− y|.

29.3 Suppose f is differentiable on R and f(0) = 0, f(1) = 1 and f(2) = 1.

(a) Show f ′(x) = 1
2 for some x ∈ (0, 2).

(b) Show f ′(x) = 1
7 for some x ∈ (0, 2).

Proof. (a) Applying Mean Value Theorem to a = 0 and b = 2, we see that there is

x ∈ (0, 2) such that f ′(x) = f(2)−f(0)
2−0 = 1

2 .

(b) Applying Mean Value Theorem to a = 0 and b = 1, we see that there is x1 ∈ (0, 1)

such that f ′(x) = f(1)−f(0)
1−0 = 1. Applying Mean Value Theorem to a = 1 and b = 2, we

see that there is x2 ∈ (1, 2) such that f ′(x) = f(2)−f(1)
2−1 = 0. Applying Intermediate Value

Theorem to c = 1
7 , which lies between f ′(x1) = 1 and f ′(x2) = 0, we see that there is

x ∈ (x1, x2) ⊂ (0, 2) such that f ′(x) = c = 1
7 .

29.4 Let f and g be differentiable functions on an open interval I. Suppose a, b in I satisfy
a < b and f(a) = f(b) = 0. Show f ′(x) + f(x)g′(x) = 0 for some x ∈ (a, b). Hint:
Consider h(x) = f(x)eg(x).

Proof. Let h(x) = f(x)eg(x). By chain rule and product rule, h is differentiable and

h′(x) = f ′(x)eg(x) + f(x)
d

dx
eg(x) = f ′(x)eg(x) + f(x)eg(x)g′(x) = (f ′(x) + f ′(x)g(x))eg(x).

From f(a) = f(b) = 0 we know h(a) = h(b) = 0. By Mean Value Theorem, there is
x ∈ (a, b) such that h′(x) = 0. From the above formula and that eg(x) > 0 we know that
f ′(x) + f(x)g′(x) = 0.

29.7 (a) Suppose f is twice differentiable on an open interval I and f ′′(x) = 0 for all x ∈ I.
Show f has the form f(x) = ax + b for suitable constants a and b.

(b) Suppose f is three times differentiable on an open interval I and f ′′′ = 0 on I. What
form does f have? Prove your claim.
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Proof. (a) Since (f ′)′(x) = 0 for all x ∈ I, by Corollary 29.4, f ′ is a constant function on I.
Let a ∈ R denote this constant. Let g(x) = f(x)− ax, x ∈ I. Then g′(x) = f ′(x)− a = 0,
x ∈ I. By Corollary 29.4, g is a constant function on I. Let b ∈ R denote this constant.
From f(x) = ax + g(x) we get f(x) = ax + b, x ∈ I.

(b) We claim that f has the form f(x) = 1
2ax

2 + bx + c for suitable constants a, b, c.
Since f ′′′ = (f ′)′′, by (a) f ′ has the form ax + b for some constants a, b. Let h(x) =
f(x)− 1

2ax
2 − bx, x ∈ I. Then h′(x) = f ′(x)− ax− b = 0, x ∈ I. By Corollary 29.4, h is

a constant function on I. Let c ∈ R denote this constant. From f(x) = 1
2ax

2 + bx + h(x)
we get f(x) = 1

2ax
2 + bx + c, x ∈ I.

29.9 Show ex ≤ ex for all x ∈ R.

Proof. Let f(x) = ex − ex. Then f is differentiable with f ′(x) = ex − e = ex − e1. Since
ex is increasing, we have f ′(x) ≥ 0 for x ≥ 1 and f ′(x) ≤ 0 for x ≤ 1. So f is increasing
on [1,∞) and decreasing on (−∞, 1]. Since f(1) = e1 − e = 0, we see that f(x) ≥ 0 for
x ≥ 1 or x ≤ 1, which implies that ex ≥ ex for all x ∈ R.

29.13 Prove that if f and g are differentiable on R, if f(0) = g(0) and if f ′(x) ≤ g′(x) for all
x ∈ R, then f(x) ≤ g(x) for x ≥ 0.

Proof. Let h = g − f . Then h is differentiable with h′ = g′ − f ′ ≥ 0 on R. So h is
increasing on R. From h(0) = g(0) − f(0) = 0, we see that for x ≥ 0 h(x) ≥ 0, which
implies that g(x) ≥ f(x).

29.16 Use Theorem 29.9 to obtain the derivative of the inverse g = Tan−1 = arctan of f where
f(x) = tanx for x ∈ (−π

2 ,
π
2 ).

Solution. Let I = (−π
2 ,

π
2 ). We have cosx > 0 and f ′(x) = cos−2 x = 1 + tan2 x =

1 + f(x)2 > 0 on I. Thus, f is strictly increasing on I. So we may apply Theorem 29.9
to g = f−1 and conclude that

g′(x) =
1

f ′(g(x))
=

1

1 + f(g(x))2
=

1

1 + x2
.

29.18 Let f be differentiable on R with a = sup{|f ′(x)| : x ∈ R} < 1.

(a) Select s0 ∈ R and define sn = f(sn−1) for n ≥ 1. Thus s1 = f(s0), s2 = f(s1), etc.
Prove (sn) is a convergent sequence.
Hint: To show that (sn) is Cauchy, first show |sn+1 − sn| ≤ a|sn − sn−1| for n ≥ 1.

(b) Show f has a fixed point, i.e., f(s) = s for some s in R, and such point is unique.
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Proof. (a) We first prove that for any x, y ∈ R, |f(x) − f(y)| ≤ a|x − y|. If x = y, the
inequality holds trivially. Suppose x 6= y. By symmetry we may assume y ≤ x. By
Mean Value Theorem there is z ∈ (y, x) such that f(x)−f(y)

x−y = f ′(z), which implies that

|f(x)− f(y)| = |f ′(z)||x− y| ≤ a|x− y|.
For n ≥ 1, since sn+1 = f(sn) and sn = f(sn−1), applying the above inequality to x = sn
and y = sn−1, we get |sn+1−sn| ≤ a|sn−sn−1|. By induction, we get |sn+1−sn| ≤ an|s1−
s0| for all n ≥ 0. From |a| = a < 1, we know that

∑
n a

n converges, and so
∑

n a
n|s1− s0|

converges. By Comparison test,
∑∞

n=0(sn+1− sn) converges. We observe that the partial
sum sequence for the series

∑∞
n=0(sn+1− sn) is tm =

∑m
n=0(sn+1− sn) = sm+1− s0. The

convergence of
∑∞

n=0(sn+1 − sn) implies that (tm) converges. So (sm) also converges.

(b) Let s = limm sm. From the continuity of f , we have f(s) = limm f(sm) = limm sm+1 =
s. So s is a fixed point of f . Suppose s′ is another fixed point of f . Then from |s− s′| =
|f(s)− f(s′)| ≤ a|s− s′| and a < 1 we get |s− s′| = 0, i.e., s′ = s. So the fixed point of f
is unique.
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