Homework 12 (due on 11/25)

29.2 Prove $|\cos x - \cos y| \le |x - y|$ for all $x, y \in \mathbb{R}$.

Proof. We use the fact that $|\cos' x| = |-\sin x| \le 1$ for all $x \in \mathbb{R}$. Let $x, y \in \mathbb{R}$. If x = y, then $|\cos x - \cos y| = 0 \le |x - y|$. Now suppose $x \ne y$. Since $|\cos x - \cos y| = |\cos y - \cos x|$ and |x - y| = |y - x|, by symmetry we may assume y < x. By Mean Value Theorem, there is $z \in (y, x)$ such that $\frac{\cos x - \cos y}{x - y} = \cos' z$, which implies that $|\cos x - \cos y| = |x - y||\cos' z| \le |x - y|$.

29.3 Suppose f is differentiable on \mathbb{R} and f(0) = 0, f(1) = 1 and f(2) = 1.

(a) Show f'(x) = ¹/₂ for some x ∈ (0, 2).
(b) Show f'(x) = ¹/₇ for some x ∈ (0, 2).

Proof. (a) Applying Mean Value Theorem to a = 0 and b = 2, we see that there is $x \in (0,2)$ such that $f'(x) = \frac{f(2)-f(0)}{2-0} = \frac{1}{2}$.

(b) Applying Mean Value Theorem to a = 0 and b = 1, we see that there is $x_1 \in (0, 1)$ such that $f'(x) = \frac{f(1)-f(0)}{1-0} = 1$. Applying Mean Value Theorem to a = 1 and b = 2, we see that there is $x_2 \in (1, 2)$ such that $f'(x) = \frac{f(2)-f(1)}{2-1} = 0$. Applying Intermediate Value Theorem to $c = \frac{1}{7}$, which lies between $f'(x_1) = 1$ and $f'(x_2) = 0$, we see that there is $x \in (x_1, x_2) \subset (0, 2)$ such that $f'(x) = c = \frac{1}{7}$.

29.4 Let f and g be differentiable functions on an open interval I. Suppose a, b in I satisfy a < b and f(a) = f(b) = 0. Show f'(x) + f(x)g'(x) = 0 for some $x \in (a, b)$. Hint: Consider $h(x) = f(x)e^{g(x)}$.

Proof. Let $h(x) = f(x)e^{g(x)}$. By chain rule and product rule, h is differentiable and

$$h'(x) = f'(x)e^{g(x)} + f(x)\frac{d}{dx}e^{g(x)} = f'(x)e^{g(x)} + f(x)e^{g(x)}g'(x) = (f'(x) + f'(x)g(x))e^{g(x)}.$$

From f(a) = f(b) = 0 we know h(a) = h(b) = 0. By Mean Value Theorem, there is $x \in (a, b)$ such that h'(x) = 0. From the above formula and that $e^{g(x)} > 0$ we know that f'(x) + f(x)g'(x) = 0.

- 29.7 (a) Suppose f is twice differentiable on an open interval I and f''(x) = 0 for all $x \in I$. Show f has the form f(x) = ax + b for suitable constants a and b.
 - (b) Suppose f is three times differentiable on an open interval I and f''' = 0 on I. What form does f have? Prove your claim.

Proof. (a) Since (f')'(x) = 0 for all $x \in I$, by Corollary 29.4, f' is a constant function on I. Let $a \in \mathbb{R}$ denote this constant. Let g(x) = f(x) - ax, $x \in I$. Then g'(x) = f'(x) - a = 0, $x \in I$. By Corollary 29.4, g is a constant function on I. Let $b \in \mathbb{R}$ denote this constant. From f(x) = ax + g(x) we get f(x) = ax + b, $x \in I$.

(b) We claim that f has the form $f(x) = \frac{1}{2}ax^2 + bx + c$ for suitable constants a, b, c. Since f''' = (f')'', by (a) f' has the form ax + b for some constants a, b. Let $h(x) = f(x) - \frac{1}{2}ax^2 - bx$, $x \in I$. Then h'(x) = f'(x) - ax - b = 0, $x \in I$. By Corollary 29.4, h is a constant function on I. Let $c \in \mathbb{R}$ denote this constant. From $f(x) = \frac{1}{2}ax^2 + bx + h(x)$ we get $f(x) = \frac{1}{2}ax^2 + bx + c$, $x \in I$.

29.9 Show $ex \leq e^x$ for all $x \in R$.

Proof. Let $f(x) = e^x - ex$. Then f is differentiable with $f'(x) = e^x - e = e^x - e^1$. Since e^x is increasing, we have $f'(x) \ge 0$ for $x \ge 1$ and $f'(x) \le 0$ for $x \le 1$. So f is increasing on $[1, \infty)$ and decreasing on $(-\infty, 1]$. Since $f(1) = e^1 - e = 0$, we see that $f(x) \ge 0$ for $x \ge 1$ or $x \le 1$, which implies that $e^x \ge ex$ for all $x \in \mathbb{R}$.

29.13 Prove that if f and g are differentiable on \mathbb{R} , if f(0) = g(0) and if $f'(x) \leq g'(x)$ for all $x \in \mathbb{R}$, then $f(x) \leq g(x)$ for $x \geq 0$.

Proof. Let h = g - f. Then h is differentiable with $h' = g' - f' \ge 0$ on \mathbb{R} . So h is increasing on \mathbb{R} . From h(0) = g(0) - f(0) = 0, we see that for $x \ge 0$ $h(x) \ge 0$, which implies that $g(x) \ge f(x)$.

29.16 Use Theorem 29.9 to obtain the derivative of the inverse $g = \text{Tan}^{-1} = \arctan f f$ where $f(x) = \tan x$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

Solution. Let $I = (-\frac{\pi}{2}, \frac{\pi}{2})$. We have $\cos x > 0$ and $f'(x) = \cos^{-2} x = 1 + \tan^2 x = 1 + f(x)^2 > 0$ on I. Thus, f is strictly increasing on I. So we may apply Theorem 29.9 to $g = f^{-1}$ and conclude that

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{1 + f(g(x))^2} = \frac{1}{1 + x^2}.$$

29.18 Let f be differentiable on \mathbb{R} with $a = \sup\{|f'(x)| : x \in \mathbb{R}\} < 1$.

- (a) Select $s_0 \in \mathbb{R}$ and define $s_n = f(s_{n-1})$ for $n \ge 1$. Thus $s_1 = f(s_0)$, $s_2 = f(s_1)$, etc. Prove (s_n) is a convergent sequence. Hint: To show that (s_n) is Cauchy, first show $|s_{n+1} - s_n| \le a|s_n - s_{n-1}|$ for $n \ge 1$.
- (b) Show f has a fixed point, i.e., f(s) = s for some s in \mathbb{R} , and such point is unique.

Proof. (a) We first prove that for any $x, y \in \mathbb{R}$, $|f(x) - f(y)| \leq a|x - y|$. If x = y, the inequality holds trivially. Suppose $x \neq y$. By symmetry we may assume $y \leq x$. By Mean Value Theorem there is $z \in (y, x)$ such that $\frac{f(x) - f(y)}{x - y} = f'(z)$, which implies that $|f(x) - f(y)| = |f'(z)||x - y| \leq a|x - y|$.

For $n \ge 1$, since $s_{n+1} = f(s_n)$ and $s_n = f(s_{n-1})$, applying the above inequality to $x = s_n$ and $y = s_{n-1}$, we get $|s_{n+1} - s_n| \le a |s_n - s_{n-1}|$. By induction, we get $|s_{n+1} - s_n| \le a^n |s_1 - s_0|$ for all $n \ge 0$. From |a| = a < 1, we know that $\sum_n a^n$ converges, and so $\sum_n a^n |s_1 - s_0|$ converges. By Comparison test, $\sum_{n=0}^{\infty} (s_{n+1} - s_n)$ converges. We observe that the partial sum sequence for the series $\sum_{n=0}^{\infty} (s_{n+1} - s_n)$ is $t_m = \sum_{n=0}^m (s_{n+1} - s_n) = s_{m+1} - s_0$. The convergence of $\sum_{n=0}^{\infty} (s_{n+1} - s_n)$ implies that (t_m) converges. So (s_m) also converges.

(b) Let $s = \lim_m s_m$. From the continuity of f, we have $f(s) = \lim_m f(s_m) = \lim_m s_{m+1} = s$. So s is a fixed point of f. Suppose s' is another fixed point of f. Then from $|s - s'| = |f(s) - f(s')| \le a|s - s'|$ and a < 1 we get |s - s'| = 0, i.e., s' = s. So the fixed point of f is unique.