Homework 13 Solutions

30.1 Find the following limit if it exists. (a) $\lim _{x \rightarrow 0} \frac{e^{2 x}-\cos x}{x}$.

Solution. Differentiating the numerator and denominator, we get

$$
\lim _{x \rightarrow 0} \frac{2 e^{2 x}-\sin x}{1}=2 e^{0}-\sin 1=2
$$

Since

$$
\lim _{x \rightarrow 0}\left(e^{2 x}-\cos x\right)=e^{0}-\cos 0=1-1=0, \quad \lim _{x \rightarrow 0} x=0
$$

we can apply L'Hospital's rule to conclude that

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-\cos x}{x}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}-\sin x}{1}=2
$$

30.2 Find the following limit if it exists. (c) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$.

Solution. We transform the limit in the form that L'Hospital's rule can apply:

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}
$$

Since

$$
\lim _{x \rightarrow 0}(x-\sin x)=0-\sin 0=0=0 \sin 0=\lim _{x \rightarrow 0} x \sin x
$$

by L'Hospital's rule, $\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}$ equals

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x+x \cos x}
$$

if the latter limit exists. Since

$$
\lim _{x \rightarrow 0}(1-\cos x)=1-\cos 0=0=\sin 0+0 \cos 0=\lim _{x \rightarrow 0} \sin x+x \cos x
$$

by L'Hospital's rule, $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x+x \cos x}$ equals

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\cos x+\cos x-x \sin x}
$$

if the latter limit exists. We can not (and do not need to) apply L'Hospital's rule for one more time because

$$
\lim _{x \rightarrow 0} \sin x=\sin 0=0, \quad \lim _{x \rightarrow 0} \cos x+\cos x-x \sin x=\cos 0+\cos 0-0 \sin 0=2 \neq 0
$$

In fact, the above formulas imply that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\cos x+\cos x-x \sin x}=\frac{0}{2}=0
$$

Thus,

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x+\cos x-x \sin x}=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x+\cos x-x \sin x}=2 .
$$

30.3 Find the following limit if it exists. (c) $\lim _{x \rightarrow 0^{+}} \frac{1+\cos x}{e^{x}-1}$.

Solution. We can not apply L'Hospital's rule because

$$
\lim _{x \rightarrow 0^{+}}\left(e^{x}-1\right)=e^{0}-1=0, \quad \lim _{x \rightarrow 0^{+}}(1+\cos x)=1+\cos 0=2 \neq 0 .
$$

Instead, we can calculate the limit directly. Since for $x>0, e^{x}>e^{0}=1$, we have $e^{x}-1>0$. For any sequence $\left(x_{n}\right)$ in $(0, \infty)$ with $x_{n} \rightarrow 0$, we have $e^{x_{n}}-1 \rightarrow 0$ and $e^{x_{n}}-1>0$. Thus, $\frac{1}{e^{x_{n}}-1} \rightarrow+\infty$. Since $1+\cos x_{n} \rightarrow 2>0$, we get $\frac{1+\cos x_{n}}{e^{x_{n}}-1} \rightarrow+\infty$. Thus, $\lim _{x \rightarrow 0^{+}} \frac{1+\cos x}{e^{x}-1}=+\infty$.
30.5 Find the following limit if it exists. (a) $\lim _{x \rightarrow 0}(1+2 x)^{1 / x}$.

Solution. Since $(1+2 x)^{1 / x}=e^{\frac{1}{x} \log _{e}(1+2 x)}$, we evaluate

$$
\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}
$$

Since

$$
\lim _{x \rightarrow 0} \log _{e}(1+2 x)=\log _{e}(1)=0=\lim _{x \rightarrow 0} x,
$$

by L'Hospital's rule, $\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}$ equals

$$
\lim _{x \rightarrow 0} \frac{\frac{2}{1+2 x}}{1}
$$

if the latter limit exists. It is clear that

$$
\lim _{x \rightarrow 0} \frac{\frac{2}{1+2 x}}{1}=\lim _{x \rightarrow 0} \frac{2}{1+2 x}=\frac{2}{1}=2 .
$$

So $\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}=2$, which implies that

$$
\lim _{x \rightarrow 0}(1+2 x)^{1 / x}=\exp \left(\lim _{x \rightarrow 0} \frac{\log _{e}(1+2 x)}{x}\right)=e^{2} .
$$

26.3 (a) Use Exercise 26.2 to derive an explicit formula for $\sum_{n=1}^{\infty} n^{2} x^{n}$.

Solution. From Exercise 26.2 we know that

$$
\sum_{n=1}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}}, \quad|x|<1
$$

Differentiating both sides, we get

$$
\sum_{n=1}^{\infty} n^{2} x^{n-1}=\frac{1}{(1-x)^{2}}+\frac{2 x}{(1-x)^{3}}=\frac{1+x}{(1-x)^{3}}, \quad|x|<1 .
$$

Multiplying both sides by x, we get

$$
\sum_{n=1}^{\infty} n^{2} x^{n}=\frac{x(1+x)}{(1-x)^{3}}, \quad|x|<1 .
$$

26.4 (a) Observe that $e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}$ for $x \in \mathbb{R}$, since we have $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for $x \in \mathbb{R}$.
(b) Express $F(x)=\int_{0}^{x} e^{-t^{2}} d t$ as a power series.

Solution. (a) Since $e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for $x \in \mathbb{R}$, replacing x by $-x^{2}$, we get

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n}, \quad x \in \mathbb{R} .
$$

(b) By integrating the series term by term and observing the $F(0)=0$, we get

$$
F(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} x^{2 n+1}, \quad x \in \mathbb{R}
$$

26.6 Let $s(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$ and $c(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$ for $x \in \mathbb{R}$.
(a) Prove $s^{\prime}=c$ and $c^{\prime}=-s$.
(b) Prove $\left(s^{2}+c^{2}\right)^{\prime}=0$.
(c) Prove $s^{2}+c^{2}=1$.

Actually $s(x)=\sin x$ and $c(x)=\cos x$, but you do not need these facts.

Proof. (a) For $x \in \mathbb{R}$, we have

$$
\begin{gathered}
s^{\prime}(x)=1-\frac{3 x^{2}}{3!}+\frac{5 x^{4}}{5!}-\frac{7 x^{6}}{7}+\cdots=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=c(x), \\
c^{\prime}(x)=-\frac{2 x}{2!}+\frac{4 x^{3}}{4!}-\frac{6 x^{5}}{6!}+\frac{8 x^{7}}{8!}-\cdots=-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\cdots=-s(x) .
\end{gathered}
$$

(b) By (a) and product rule, we have $\left(s^{2}+c^{2}\right)^{\prime}=2 s s^{\prime}+2 c c^{\prime}=2 s c-2 c s=0$. (c) By (b), $s^{2}+c^{2}$ is constant. Since $s(0)=0$ and $c(0)=1$, the constant is 1 . So $s^{2}+c^{2}=1$.
31.1 Find the Taylor series for $\cos x$ about 0 and indicate why it converges to $\cos x$ for all $x \in \mathbb{R}$.

Solution. We know that $\cos ^{\prime} x=-\sin x$ and $\sin ^{\prime} x=\cos x$. By repeatedly differentiating $\cos x$, we find that for all integer $k \geq 0$,

$$
\cos ^{(4 k)} x=\cos x, \quad \cos ^{(4 k+1)} x=-\sin x, \quad \cos ^{(4 k+2)} x=-\cos x, \quad \cos ^{(4 k+3)} x=-\sin x .
$$

Evaluating these derivatives at $x=0$, we get

$$
\cos ^{(4 k)} 0=1, \quad \cos ^{(4 k+1)} 0=0, \quad \cos ^{(4 k+2)} 0=-1, \quad \cos ^{(4 k+3)} 0=0 .
$$

This means $\cos ^{n} x=0$ when n is odd, and $\cos ^{n} x=(-1)^{n / 2}$ when n is even. Thus, the Taylor series for $\cos x$ about 0 is

$$
\sum_{2 \mid n, n \geq 0} \frac{(-1)^{n / 2}}{n!} x^{n}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
$$

We observe the $\cos ^{(n)}$ is one of $\cos x,-\cos x, \sin x,-\sin x$, and so are all bounded in absolute value by 1. Applying Corollary 31.4, we conclude that the Taylor series converges to $\cos x$ for every $x \in \mathbb{R}$.

