
Homework 13 Solutions

30.1 Find the following limit if it exists. (a) limx→0
e2x−cosx

x .

Solution. Differentiating the numerator and denominator, we get

lim
x→0

2e2x − sinx

1
= 2e0 − sin 1 = 2.

Since
lim
x→0

(e2x − cosx) = e0 − cos 0 = 1− 1 = 0, lim
x→0

x = 0,

we can apply L’Hospital’s rule to conclude that

lim
x→0

e2x − cosx

x
= lim

x→0

2e2x − sinx

1
= 2.

30.2 Find the following limit if it exists. (c) limx→0(
1

sinx −
1
x).

Solution. We transform the limit in the form that L’Hospital’s rule can apply:

lim
x→0

x− sinx

x sinx
.

Since
lim
x→0

(x− sinx) = 0− sin 0 = 0 = 0 sin 0 = lim
x→0

x sinx,

by L’Hospital’s rule, limx→0
x−sinx
x sinx equals

lim
x→0

1− cosx

sinx + x cosx
,

if the latter limit exists. Since

lim
x→0

(1− cosx) = 1− cos 0 = 0 = sin 0 + 0 cos 0 = lim
x→0

sinx + x cosx,

by L’Hospital’s rule, limx→0
1−cosx

sinx+x cosx equals

lim
x→0

sinx

cosx + cosx− x sinx
,

if the latter limit exists. We can not (and do not need to) apply L’Hospital’s rule for one
more time because

lim
x→0

sinx = sin 0 = 0, lim
x→0

cosx + cosx− x sinx = cos 0 + cos 0− 0 sin 0 = 2 6= 0.

1



In fact, the above formulas imply that

lim
x→0

sinx

cosx + cosx− x sinx
=

0

2
= 0.

Thus,

lim
x→0

x− sinx

x sinx
= lim

x→0

sinx

cosx + cosx− x sinx
= lim

x→0

sinx

cosx + cosx− x sinx
= 2.

30.3 Find the following limit if it exists. (c) limx→0+
1+cosx
ex−1 .

Solution. We can not apply L’Hospital’s rule because

lim
x→0+

(ex − 1) = e0 − 1 = 0, lim
x→0+

(1 + cosx) = 1 + cos 0 = 2 6= 0.

Instead, we can calculate the limit directly. Since for x > 0, ex > e0 = 1, we have
ex − 1 > 0. For any sequence (xn) in (0,∞) with xn → 0, we have exn − 1 → 0 and
exn−1 > 0. Thus, 1

exn−1 → +∞. Since 1+cosxn → 2 > 0, we get 1+cosxn
exn−1 → +∞. Thus,

limx→0+
1+cosx
ex−1 = +∞.

30.5 Find the following limit if it exists. (a) limx→0(1 + 2x)1/x.

Solution. Since (1 + 2x)1/x = e
1
x
loge(1+2x), we evaluate

lim
x→0

loge(1 + 2x)

x
.

Since
lim
x→0

loge(1 + 2x) = loge(1) = 0 = lim
x→0

x,

by L’Hospital’s rule, limx→0
loge(1+2x)

x equals

lim
x→0

2
1+2x

1
,

if the latter limit exists. It is clear that

lim
x→0

2
1+2x

1
= lim

x→0

2

1 + 2x
=

2

1
= 2.

So limx→0
loge(1+2x)

x = 2, which implies that

lim
x→0

(1 + 2x)1/x = exp
(

lim
x→0

loge(1 + 2x)

x

)
= e2.
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26.3 (a) Use Exercise 26.2 to derive an explicit formula for
∑∞

n=1 n
2xn.

Solution. From Exercise 26.2 we know that

∞∑
n=1

nxn =
x

(1− x)2
, |x| < 1.

Differentiating both sides, we get

∞∑
n=1

n2xn−1 =
1

(1− x)2
+

2x

(1− x)3
=

1 + x

(1− x)3
, |x| < 1.

Multiplying both sides by x, we get

∞∑
n=1

n2xn =
x(1 + x)

(1− x)3
, |x| < 1.

26.4 (a) Observe that e−x
2

=
∑∞

n=0
(−1)n
n! x2n for x ∈ R, since we have ex =

∑∞
n=0

1
n!x

n for
x ∈ R.

(b) Express F (x) =
∫ x
0 e−t

2
dt as a power series.

Solution. (a) Since ex =
∑∞

n=0
1
n!x

n for x ∈ R, replacing x by −x2, we get

e−x
2

=

∞∑
n=0

1

n!
(−x2)n =

∞∑
n=0

(−1)n

n!
x2n, x ∈ R.

(b) By integrating the series term by term and observing the F (0) = 0, we get

F (x) =
∞∑
n=0

(−1)n

n!(2n + 1)
x2n+1, x ∈ R.

26.6 Let s(x) = x− x3

3! + x5

5! −
x7

7! + · · · and c(x) = 1− x2

2! + x4

4! −
x6

6! + · · · for x ∈ R.

(a) Prove s′ = c and c′ = −s.
(b) Prove (s2 + c2)′ = 0.

(c) Prove s2 + c2 = 1.

Actually s(x) = sinx and c(x) = cosx, but you do not need these facts.
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Proof. (a) For x ∈ R, we have

s′(x) = 1− 3x2

3!
+

5x4

5!
− 7x6

7
+ · · · = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · = c(x),

c′(x) = −2x

2!
+

4x3

4!
− 6x5

6!
+

8x7

8!
− · · · = −x +

x3

3!
− x5

5!
+

x7

7!
− · · · = −s(x).

(b) By (a) and product rule, we have (s2 + c2)′ = 2ss′+ 2cc′ = 2sc− 2cs = 0. (c) By (b),
s2 + c2 is constant. Since s(0) = 0 and c(0) = 1, the constant is 1. So s2 + c2 = 1.

31.1 Find the Taylor series for cosx about 0 and indicate why it converges to cosx for all
x ∈ R.

Solution. We know that cos′ x = − sinx and sin′ x = cosx. By repeatedly differentiating
cosx, we find that for all integer k ≥ 0,

cos(4k) x = cosx, cos(4k+1) x = − sinx, cos(4k+2) x = − cosx, cos(4k+3) x = − sinx.

Evaluating these derivatives at x = 0, we get

cos(4k) 0 = 1, cos(4k+1) 0 = 0, cos(4k+2) 0 = −1, cos(4k+3) 0 = 0.

This means cosn x = 0 when n is odd, and cosn x = (−1)n/2 when n is even. Thus, the
Taylor series for cosx about 0 is

∑
2|n,n≥0

(−1)n/2

n!
xn =

∞∑
k=0

(−1)k

(2k)!
x2k.

We observe the cos(n) is one of cosx, − cosx, sinx, − sinx, and so are all bounded in
absolute value by 1. Applying Corollary 31.4, we conclude that the Taylor series converges
to cosx for every x ∈ R.
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