
Homework 3 (due on 9/20)

We will frequently use the following facts about supS and inf S. They hold true no matter
whether or not S is bounded above or bounded below. They have been proved in class. So you
can use them directly in homework or exams. For your convenience, we now include a proof of
each statement.

Let S be a nonempty subset of R. Then we have the following statements.

(U1) For any s ∈ S, s ≤ supS. Proof: If S is bounded above, this holds because supS is
an upper bound of S. If S is not bounded above, this holds because supS = +∞, and
+∞ > x for any x ∈ R.

(U2) Let a ∈ R∪ {+∞,−∞}. If for any s ∈ S, s ≤ a, then supS ≤ a. Proof: If a = +∞, then
supS ≤ a always holds because supS is either +∞ or a real number. If a ∈ R, then the
condition means that a is an upper bound of S. So S is bounded above, and supS is the
smallest upper bound of S. So we have supS ≤ a. Finally, a could not be −∞ because
−∞ < x for any x ∈ R. Remark: The converse is also true. If supS ≤ a, then for any
s ∈ S, by (U1) s ≤ supS ≤ a.

(L1) For any s ∈ S, s ≥ inf S. Proof: If S is bounded below, this holds because inf S is a lower
bound of S. If S is not bounded below, this holds because inf S = −∞, and −∞ < x for
any x ∈ R.

(L2) Let a ∈ R ∪ {+∞,−∞}. If for any s ∈ S, s ≥ a, then inf S ≥ a. Proof: If a = −∞,
then inf S ≥ a always holds because inf S is either −∞ or a real number. If a ∈ R, then
the condition means that a is a lower bound of S. So S is bounded below, and inf S is
the biggest lower bound of S. So we have inf S ≥ a. Finally, a could not be +∞ because
+∞ > x for any x ∈ R. Remark: The converse is also true. If inf S ≥ a, then for any
s ∈ S, by (L1) s ≥ inf S ≥ a.

4.7 & 5.6 Let S and T be nonempty subsets of R.

(a) Prove if S ⊆ T , then inf T ≤ inf S ≤ supS ≤ supT .

(b) Prove sup(S ∪ T ) = max{supS, supT}.

Note: S and T may or may not be bounded above or below. In part (b), do not assume
S ⊆ T .

Solution. (a) For every s ∈ S, we have s ∈ T , and so by (U1), s ≤ supT . Since this
inequality holds for every s ∈ S, by (U2) we have supS ≤ supT . For every s ∈ S, we
have s ∈ T , and so by (L1), s ≥ inf T . Since this inequality holds for every s ∈ S, by
(L2) we have inf S ≥ inf T . Since S is nonempty, we may pick s0 ∈ S. By (U1) and (L1),
inf S ≤ s0 and s0 ≤ supS. So inf S ≤ supS.
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(b) Since S and T are subsets of S ∪ T , we get supS, supT ≤ sup(S ∪ T ) by (a). So
max{supS, supT} ≤ sup(S ∪ T ). For any s ∈ S, s ≤ supS ≤ max{supS, supT};
and for any t ∈ T , t ≤ supT ≤ max{supS, supT}. Thus, for any x ∈ S ∪ T , x ≤
max{supS, supT}. By (U2) we get sup(S ∪ T ) ≤ max{supS, supT}. So we have
sup(S ∪ T ) = max{supS, supT}.

4.18 Let S and T be nonempty subsets of R with the following property: s ≤ t for all s ∈ S
and t ∈ T .

(a) Observe S is bounded above and T is bounded below.

(b) Prove supS ≤ inf T .

(c) Give an example of such sets S and T where S ∩ T is nonempty.

(d) Give an example of sets S and T where supS = inf T and S ∩ T is the empty set.

Solution. (a) By assumption, any t ∈ T is an upper bound of S, and any s ∈ S is a lower
bound of T . Since S and T are not empty, we conclude that S is bounded above and T
is bounded below.

(b) Fix t ∈ T . Since s ≤ t for every s ∈ S, by (U2) we get supS ≤ t. Now supS ≤ t for
every t ∈ T . By (L2) we get supS ≤ inf T .

(c) S = (−∞, 0) and T = (0,∞).

(c) S = (−∞, 0] and T = [0,∞). Note that supS = 0 = inf T .

4.12 The elements of R \ Q are called irrational numbers. Prove if a < b, then there exists
x ∈ R \Q such that a < x < b. Hint: First show {r +

√
2 : r ∈ Q} ⊆ R \Q.

Solution. We already know that
√

2 is an irrational number. We then conclude that for
any r ∈ Q, r +

√
2 is an irrational number. In fact, if r +

√
2 = r′ ∈ Q, then since Q is a

field, we get
√

2 = r′ − r ∈ Q, a contradiction. By the denseness of Q, there exists r ∈ Q
such that a −

√
2 < r < b −

√
2, which implies a < r +

√
2 < b. Then x := r +

√
2 is an

irrational number that we need.

4.15 Let a, b ∈ R. Show if a ≤ b + 1
n for all n ∈ N, then a ≤ b. Compare Exercise 3.8.

Solution. Suppose a ≤ b does not hold. Then a > b, and so a − b > 0. By Archimedean
Property, there is n0 ∈ N such that n0(a − b) > 1, which implies that a − b > 1

n0
and

a > b + 1
n0

. This contradicts that a ≤ b + 1
n for all n ∈ N. So a ≤ b. The assumption of

this problem is weaker than that of Exercise 3.8. Instead of requiring that a < b1 for any
b1 > b, we now only requiring that a < b1 for any b1 with the form b1 = b + 1

n , n ∈ N.
But we reach the same conclusion: a ≤ b.
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4.16 Show sup{r ∈ Q : r < a} = a for each a ∈ R.

Solution. Let S = {r ∈ Q : r < a}. Then for any r ∈ S, r < a. So by (U2), supS ≤ a. If
supS 6= a, then supS < a. By the denseness of Q, there is r ∈ Q such that supS < r < a.
Since r < a, we get r ∈ S. By (U1) we have r ≤ supS, which contradicts that supS < r.
So supS = a.

8.1 (a) Prove lim (−1)n
n = 0.

Solution. We have two ways to prove the equality. One way is to use the definition. Let
ε > 0. By Archimedean Property, there is N ∈ N such that 1

N < ε. Then for any n > N ,

| (−1)
n

n − 0| = | (−1)
n

n | = 1
n < 1

N < ε. So we get lim (−1)n
n = 0.

Another way is to use the limit theorem, which says that sn → 0 if and only if |sn| → 0.

Since | (−1)
n

n | = 1
n , and we proved 1

n → 0 in class, we get (−1)n
n → 0.

8.2 (e) Determine the limits of the sequence sn = 1
n sinn, and then prove your claim.

Solution. The limit is 0. We have two ways to prove this claim. One way is to use the
definition. Let ε > 0. By Archimedean Property, there is N ∈ N such that 1

N < ε.

Then for any n > N , | 1n sinn − 0| = | 1n sinn| = | sinn|
n ≤ 1

n < 1
N < ε. Here we use that

| sinx| ≤ 1. So we get lim 1
n sinn = 0.

Another way is to use the squeeze lemma. Since | sinn| ≤ 1, we get − 1
n ≤ sn ≤ 1

n . We
have 1

n → 0. By a limit theorem, − 1
n → −0 = 0. By squeeze lemma, we then get sn → 0

as well.

8.3 Let (sn) be a sequence of nonnegative real numbers, and suppose lim sn = 0. Prove
lim
√
sn = 0. This will complete the proof for Example 5.

Discussion. For a fixed ε > 0, we need a threshold N such that for n > N , |√sn− 0| < ε.
Since sn and

√
sn are nonnegative, this is equivalent to that |sn| < ε2, which is possible

for big enough n since lim sn = 0.

Solution. Fix ε > 0. Since lim sn = 0, by definition there is N ∈ N such that for n > N ,
|sn − 0| < ε2, which then implies that |√sn − 0| < ε. So lim

√
sn = 0.

9.1 (c) Using the limit Theorems 9.2 - 9.7, prove the following. Justify all steps.

lim
17n5 + 73n4 − 18n2 + 3

23n5 + 13n3
=

17

23
.
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Solution. By multiplying n−5 to both the enumerator and the denominator, we rewrite
17n5+73n4−18n2+3

23n5+13n3 as

17 + 73n−1 − 18n−3 + 3n−5

23 + 13n−2
.

Since limn−1 = 0, we get n−2, n−3, n−5 → 0. So the enumerator converges to 17 + 73 ·
0 − 18 · 0 + 3 · 0 = 17, and the denominator converges to 23 + 13 · 0 = 23. Since both
the enumerator and the denominator converge, and the latter limit is not zero, the fractal
converges to 17

23 .

9.5 Let t1 = 1 and tn+1 = t2n+2
2tn

for n ≥ 1. Assume (tn) converges and find the limit.

Solution. The proof is based on the assumption that (tn) converges. We do not try to
prove the assumption here. We will also use the fact that, when lim tn exists, the limit of
the sequence (tn+1) also exists and agrees with lim tn.

Let L = lim tn. Since tn+1 = t2n+2
2tn

, by limit theorems, lim tn+1 = L2+2
2L . Since (tn+1)

has the same limit as (tn), we get the equality L = L2+2
2L . Solving the equation, we get

2L2 = L2 + 2 and L2 = 2. There are two solutions L =
√

2 and L = −
√

2. The −
√

2 can
not be the limit of (tn) because every term of (tn) is positive (which can be proved easily
by induction), and so lim tn ≥ 0 (Exercise 8.9 (a)). Thus, lim tn =

√
2.
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