Homework 3 (due on 9/20)

We will frequently use the following facts about sup S and inf S. They hold true no matter
whether or not S is bounded above or bounded below. They have been proved in class. So you
can use them directly in homework or exams. For your convenience, we now include a proof of
each statement.

Let S be a nonempty subset of R. Then we have the following statements.

(U1)

(U2)

4.7 & 5.6

For any s € S, s < supS. Proof: If S is bounded above, this holds because sup .S is
an upper bound of S. If S is not bounded above, this holds because sup S = 400, and
400 > x for any x € R.

Let a € RU {400, —oco}. If for any s € S, s < a, then sup S < a. Proof: If a = +o0, then
sup S < a always holds because sup S is either 400 or a real number. If ¢ € R, then the
condition means that a is an upper bound of S. So S is bounded above, and sup S is the
smallest upper bound of S. So we have sup S < a. Finally, a could not be —oo because
—o0 < x for any x € R. Remark: The converse is also true. If sup.S < a, then for any
se€ S, by (Ul) s <supS <a.

For any s € S, s > inf S. Proof: If S is bounded below, this holds because inf S is a lower
bound of S. If S is not bounded below, this holds because inf S = —o0, and —oo < x for
any x € R.

Let a € RU {+00,—oc0}. If for any s € S, s > a, then infS > a. Proof: If a = —o0,
then inf S > a always holds because inf S is either —co or a real number. If a € R, then
the condition means that a is a lower bound of S. So S is bounded below, and inf S is
the biggest lower bound of S. So we have inf S > a. Finally, a could not be 400 because
400 > x for any € R. Remark: The converse is also true. If inf S > a, then for any
s€ S, by (L1) s > inf S > a.

Let S and T be nonempty subsets of R.

(a) Prove if S C T , then inf T <infS <supS <supT.
(b) Prove sup(SUT) = max{sup S,supT'}.

Note: S and T may or may not be bounded above or below. In part (b), do not assume
SCT.

Solution. (a) For every s € S, we have s € T, and so by (Ul), s < supT. Since this
inequality holds for every s € S, by (U2) we have supS < supT. For every s € S, we
have s € T, and so by (L1), s > inf 7. Since this inequality holds for every s € S, by
(L2) we have inf S > inf T". Since S is nonempty, we may pick sp € S. By (Ul) and (L1),
inf S < sg and sy < supS. Soinf S <supS.



4.18

4.12

4.15

(b) Since S and T are subsets of S UT, we get sup S,supT < sup(SUT) by (a). So
max{sup S,supT'} < sup(SUT). For any s € S, s < supS < max{sup S,supT'};
and for any ¢ € T, t < supT < max{sup S,sup7'}. Thus, for any v € SUT, = <
max{sup S,supT’}. By (U2) we get sup(S UT) < max{supS,supT’}. So we have
sup(S UT) = max{sup S,supT'}. O

Let S and T be nonempty subsets of R with the following property: s <t for all s € S
andteT.

Solution. (a) By assumption, any t € T is an upper bound of S, and any s € S is a lower
bound of T'. Since S and T are not empty, we conclude that S is bounded above and T
is bounded below.

(b) Fix t € T. Since s < t for every s € S, by (U2) we get sup.S < t. Now sup S <t for
every t € T. By (L2) we get sup S <infT.

(¢) S =(—00,0) and T = (0, c0).
(¢) S =(—00,0] and T' = [0,00). Note that supS =0 =infT. O

The elements of R\ Q are called irrational numbers. Prove if a < b, then there exists
r € R\ Q such that a < x < b. Hint: First show {r +v2:7 € Q} CR\ Q.

Solution. We already know that v/2 is an irrational number. We then conclude that for
any 7 € Q, r + v/2 is an irrational number. In fact, if r + /2 =7/ € Q, then since Q is a
field, we get /2 =1 —r € Q, a contradiction. By the denseness of Q, there exists r € Q
such that a — V2 < r < b—\/§7 which impliesa<r+\@< b. Then z := r ++/2 is an
irrational number that we need. O

Let a,b € R. Show if a < b+ % for all n € N, then a < b. Compare Exercise 3.8.

Solution. Suppose a < b does not hold. Then a > b, and so a — b > 0. By Archimedean
Property, there is ng € N such that ng(a — b) > 1, which implies that a — b > nio and
a>b+ nio This contradicts that a < b+ % for all n € N. So a < b. The assumption of
this problem is weaker than that of Exercise 3.8. Instead of requiring that a < by for any
b1 > b, we now only requiring that a < b; for any b; with the form b; = b+ %, n € N.
But we reach the same conclusion: a < b. ]



4.16

8.1

8.2

8.3

9.1

Show sup{r € Q : r < a} = a for each a € R.

Solution. Let S = {r € Q:r < a}. Then for any r € S, r < a. So by (U2), supS < a. If
sup S # a, then sup .S < a. By the denseness of Q, there is r € Q such that sup S < r < a.
Since r < a, we get 7 € S. By (U1) we have r < sup .S, which contradicts that sup S < 7.
So sup S = a. O

(a) Prove lim # =0.

Solution. We have two ways to prove the equality. One way is to use the definition. Let
¢ > 0. By Archimedean Property, there is N € N such that % < e. Then for any n > N,

IED o= |G = 1 < L < S we get lim & = 0.
Another way is to use the limit theorem, which says that s, — 0 if and only if |s,| — 0.
Since ]#| = 1 and we proved 1 — 0 in class, we get # Y -

(e) Determine the limits of the sequence s, = %sin n, and then prove your claim.
Solution. The limit is 0. We have two ways to prove this claim. One way is to use the

definition. Let ¢ > 0. By Archimedean Property, there is N € N such that % < €.

| sinn| <
n

Then for any n > N, [Lsinn — 0| = |Lsinn| = < 1 < & < e Here we use that

|sinz| < 1. So we get lim L sinn = 0.
Another way is to use the squeeze lemma. Since |sinn| < 1, we get —% <sp < % We

have % — 0. By a limit theorem, —% — —0 = 0. By squeeze lemma, we then get s,, — 0
as well. O

Let (s,) be a sequence of nonnegative real numbers, and suppose lims, = 0. Prove
lim /s, = 0. This will complete the proof for Example 5.

Discussion. For a fixed € > 0, we need a threshold N such that for n > N, |/s, — 0| < .
Since s, and /s, are nonnegative, this is equivalent to that |s,| < €2, which is possible
for big enough n since lim s, = 0. O

Solution. Fix € > 0. Since lim s,, = 0, by definition there is NV € N such that for n > N,
|s, — 0] < €2, which then implies that |,/s, — 0| < &. So lim /s, = 0. O

(c) Using the limit Theorems 9.2 - 9.7, prove the following. Justify all steps.

17n° + 73n* — 18n% +3 17
23n5 + 13n3 - 237

lim



9.5

Solution. By multiplying n~> to both the enumerator and the denominator, we rewrite
17n5+73n1—18n2+3
23n°+13n3

as
17+ 73n"' —18n73 +3n~°
23 + 13n—2 ’
Since limn~! = 0, we get n2,n73,n5 — 0. So the enumerator converges to 17 + 73 -

0—18-04+3-0 = 17, and the denominator converges to 23 + 13 - 0 = 23. Since both
the enumerator and the denominator converge, and the latter limit is not zero, the fractal

-3

converges to % O

t2+2

Let 1 =1 and t,41 = B

for n > 1. Assume (¢,) converges and find the limit.

Solution. The proof is based on the assumption that (¢,) converges. We do not try to
prove the assumption here. We will also use the fact that, when lim ¢,, exists, the limit of
the sequence (t,+1) also exists and agrees with lim,.

2
Let L = limt,. Since t,+1 = %, by limit theorems, lim¢, 1 = L‘LFQ Since (tp41)
has the same limit as (t,), we get the equality L = % Solving the equation, we get

212 = L2 + 2 and L? = 2. There are two solutions L = v/2 and L = —v/2. The —/2 can
not be the limit of (¢,) because every term of (t,) is positive (which can be proved easily
by induction), and so limt, > 0 (Exercise 8.9 (a)). Thus, limt, = /2. O



