Homework 3 (due on 9/20)

We will frequently use the following facts about $\sup S$ and $\inf S$. They hold true no matter whether or not S is bounded above or bounded below. They have been proved in class. So you can use them directly in homework or exams. For your convenience, we now include a proof of each statement.

Let S be a nonempty subset of \mathbb{R}. Then we have the following statements.
(U1) For any $s \in S, s \leq \sup S$. Proof: If S is bounded above, this holds because $\sup S$ is an upper bound of S. If S is not bounded above, this holds because $\sup S=+\infty$, and $+\infty>x$ for any $x \in \mathbb{R}$.
(U2) Let $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. If for any $s \in S, s \leq a$, then $\sup S \leq a$. Proof: If $a=+\infty$, then $\sup S \leq a$ always holds because $\sup S$ is either $+\infty$ or a real number. If $a \in \mathbb{R}$, then the condition means that a is an upper bound of S. So S is bounded above, and $\sup S$ is the smallest upper bound of S. So we have $\sup S \leq a$. Finally, a could not be $-\infty$ because $-\infty<x$ for any $x \in \mathbb{R}$. Remark: The converse is also true. If $\sup S \leq a$, then for any $s \in S$, by (U1) $s \leq \sup S \leq a$.
(L1) For any $s \in S, s \geq \inf S$. Proof: If S is bounded below, this holds because $\inf S$ is a lower bound of S. If S is not bounded below, this holds because inf $S=-\infty$, and $-\infty<x$ for any $x \in \mathbb{R}$.
(L2) Let $a \in \mathbb{R} \cup\{+\infty,-\infty\}$. If for any $s \in S, s \geq a$, then $\inf S \geq a$. Proof: If $a=-\infty$, then $\inf S \geq a$ always holds because $\inf S$ is either $-\infty$ or a real number. If $a \in \mathbb{R}$, then the condition means that a is a lower bound of S. So S is bounded below, and $\inf S$ is the biggest lower bound of S. So we have $\inf S \geq a$. Finally, a could not be $+\infty$ because $+\infty>x$ for any $x \in \mathbb{R}$. Remark: The converse is also true. If $\inf S \geq a$, then for any $s \in S$, by (L1) $s \geq \inf S \geq a$.
$4.7 \& 5.6$ Let S and T be nonempty subsets of \mathbb{R}.
(a) Prove if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
(b) Prove $\sup (S \cup T)=\max \{\sup S, \sup T\}$.

Note: S and T may or may not be bounded above or below. In part (b), do not assume $S \subseteq T$.

Solution. (a) For every $s \in S$, we have $s \in T$, and so by (U1), $s \leq \sup T$. Since this inequality holds for every $s \in S$, by (U2) we have $\sup S \leq \sup T$. For every $s \in S$, we have $s \in T$, and so by (L1), $s \geq \inf T$. Since this inequality holds for every $s \in S$, by (L2) we have $\inf S \geq \inf T$. Since S is nonempty, we may pick $s_{0} \in S$. By (U1) and (L1), $\inf S \leq s_{0}$ and $s_{0} \leq \sup S$. So $\inf S \leq \sup S$.
(b) Since S and T are subsets of $S \cup T$, we get $\sup S, \sup T \leq \sup (S \cup T)$ by (a). So $\max \{\sup S, \sup T\} \leq \sup (S \cup T)$. For any $s \in S, s \leq \sup S \leq \max \{\sup S, \sup T\}$; and for any $t \in T, t \leq \sup T \leq \max \{\sup S, \sup T\}$. Thus, for any $x \in S \cup T, x \leq$ $\max \{\sup S, \sup T\}$. By (U2) we get $\sup (S \cup T) \leq \max \{\sup S, \sup T\}$. So we have $\sup (S \cup T)=\max \{\sup S, \sup T\}$.
4.18 Let S and T be nonempty subsets of \mathbb{R} with the following property: $s \leq t$ for all $s \in S$ and $t \in T$.
(a) Observe S is bounded above and T is bounded below.
(b) Prove $\sup S \leq \inf T$.
(c) Give an example of such sets S and T where $S \cap T$ is nonempty.
(d) Give an example of sets S and T where $\sup S=\inf T$ and $S \cap T$ is the empty set.

Solution. (a) By assumption, any $t \in T$ is an upper bound of S, and any $s \in S$ is a lower bound of T. Since S and T are not empty, we conclude that S is bounded above and T is bounded below.
(b) Fix $t \in T$. Since $s \leq t$ for every $s \in S$, by (U2) we get $\sup S \leq t$. Now $\sup S \leq t$ for every $t \in T$. By (L2) we get $\sup S \leq \inf T$.
(c) $S=(-\infty, 0)$ and $T=(0, \infty)$.
(c) $S=(-\infty, 0]$ and $T=[0, \infty)$. Note that $\sup S=0=\inf T$.
4.12 The elements of $\mathbb{R} \backslash \mathbb{Q}$ are called irrational numbers. Prove if $a<b$, then there exists $x \in \mathbb{R} \backslash \mathbb{Q}$ such that $a<x<b$. Hint: First show $\{r+\sqrt{2}: r \in \mathbb{Q}\} \subseteq \mathbb{R} \backslash \mathbb{Q}$.

Solution. We already know that $\sqrt{2}$ is an irrational number. We then conclude that for any $r \in \mathbb{Q}, r+\sqrt{2}$ is an irrational number. In fact, if $r+\sqrt{2}=r^{\prime} \in \mathbb{Q}$, then since \mathbb{Q} is a field, we get $\sqrt{2}=r^{\prime}-r \in \mathbb{Q}$, a contradiction. By the denseness of \mathbb{Q}, there exists $r \in \mathbb{Q}$ such that $a-\sqrt{2}<r<b-\sqrt{2}$, which implies $a<r+\sqrt{2}<b$. Then $x:=r+\sqrt{2}$ is an irrational number that we need.
4.15 Let $a, b \in \mathbb{R}$. Show if $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$, then $a \leq b$. Compare Exercise 3.8.

Solution. Suppose $a \leq b$ does not hold. Then $a>b$, and so $a-b>0$. By Archimedean Property, there is $n_{0} \in \mathbb{N}$ such that $n_{0}(a-b)>1$, which implies that $a-b>\frac{1}{n_{0}}$ and $a>b+\frac{1}{n_{0}}$. This contradicts that $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$. So $a \leq b$. The assumption of this problem is weaker than that of Exercise 3.8. Instead of requiring that $a<b_{1}$ for any $b_{1}>b$, we now only requiring that $a<b_{1}$ for any b_{1} with the form $b_{1}=b+\frac{1}{n}, n \in \mathbb{N}$. But we reach the same conclusion: $a \leq b$.
4.16 Show $\sup \{r \in \mathbb{Q}: r<a\}=a$ for each $a \in \mathbb{R}$.

Solution. Let $S=\{r \in \mathbb{Q}: r<a\}$. Then for any $r \in S, r<a$. So by (U2), $\sup S \leq a$. If $\sup S \neq a$, then $\sup S<a$. By the denseness of \mathbb{Q}, there is $r \in \mathbb{Q}$ such that $\sup S<r<a$. Since $r<a$, we get $r \in S$. By (U1) we have $r \leq \sup S$, which contradicts that $\sup S<r$. So $\sup S=a$.
8.1 (a) Prove $\lim \frac{(-1)^{n}}{n}=0$.

Solution. We have two ways to prove the equality. One way is to use the definition. Let $\varepsilon>0$. By Archimedean Property, there is $N \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$. Then for any $n>N$, $\left|\frac{(-1)^{n}}{n}-0\right|=\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}<\frac{1}{N}<\varepsilon$. So we get $\lim \frac{(-1)^{n}}{n}=0$.
Another way is to use the limit theorem, which says that $s_{n} \rightarrow 0$ if and only if $\left|s_{n}\right| \rightarrow 0$. Since $\left|\frac{(-1)^{n}}{n}\right|=\frac{1}{n}$, and we proved $\frac{1}{n} \rightarrow 0$ in class, we get $\frac{(-1)^{n}}{n} \rightarrow 0$.
8.2 (e) Determine the limits of the sequence $s_{n}=\frac{1}{n} \sin n$, and then prove your claim.

Solution. The limit is 0 . We have two ways to prove this claim. One way is to use the definition. Let $\varepsilon>0$. By Archimedean Property, there is $N \in \mathbb{N}$ such that $\frac{1}{N}<\varepsilon$. Then for any $n>N,\left|\frac{1}{n} \sin n-0\right|=\left|\frac{1}{n} \sin n\right|=\frac{|\sin n|}{n} \leq \frac{1}{n}<\frac{1}{N}<\varepsilon$. Here we use that $|\sin x| \leq 1$. So we get $\lim \frac{1}{n} \sin n=0$.
Another way is to use the squeeze lemma. Since $|\sin n| \leq 1$, we get $-\frac{1}{n} \leq s_{n} \leq \frac{1}{n}$. We have $\frac{1}{n} \rightarrow 0$. By a limit theorem, $-\frac{1}{n} \rightarrow-0=0$. By squeeze lemma, we then get $s_{n} \rightarrow 0$ as well.
8.3 Let $\left(s_{n}\right)$ be a sequence of nonnegative real numbers, and suppose $\lim s_{n}=0$. Prove $\lim \sqrt{s_{n}}=0$. This will complete the proof for Example 5.

Discussion. For a fixed $\varepsilon>0$, we need a threshold N such that for $n>N,\left|\sqrt{s_{n}}-0\right|<\varepsilon$. Since s_{n} and $\sqrt{s_{n}}$ are nonnegative, this is equivalent to that $\left|s_{n}\right|<\varepsilon^{2}$, which is possible for big enough n since $\lim s_{n}=0$.

Solution. Fix $\varepsilon>0$. Since $\lim s_{n}=0$, by definition there is $N \in \mathbb{N}$ such that for $n>N$, $\left|s_{n}-0\right|<\varepsilon^{2}$, which then implies that $\left|\sqrt{s_{n}}-0\right|<\varepsilon$. So $\lim \sqrt{s_{n}}=0$.
9.1 (c) Using the limit Theorems 9.2-9.7, prove the following. Justify all steps.

$$
\lim \frac{17 n^{5}+73 n^{4}-18 n^{2}+3}{23 n^{5}+13 n^{3}}=\frac{17}{23} .
$$

Solution. By multiplying n^{-5} to both the enumerator and the denominator, we rewrite $\frac{17 n^{5}+73 n^{4}-18 n^{2}+3}{23 n^{5}+13 n^{3}}$ as

$$
\frac{17+73 n^{-1}-18 n^{-3}+3 n^{-5}}{23+13 n^{-2}} .
$$

Since $\lim n^{-1}=0$, we get $n^{-2}, n^{-3}, n^{-5} \rightarrow 0$. So the enumerator converges to $17+73$. $0-18 \cdot 0+3 \cdot 0=17$, and the denominator converges to $23+13 \cdot 0=23$. Since both the enumerator and the denominator converge, and the latter limit is not zero, the fractal converges to $\frac{17}{23}$.
9.5 Let $t_{1}=1$ and $t_{n+1}=\frac{t_{n}^{2}+2}{2 t_{n}}$ for $n \geq 1$. Assume $\left(t_{n}\right)$ converges and find the limit.

Solution. The proof is based on the assumption that $\left(t_{n}\right)$ converges. We do not try to prove the assumption here. We will also use the fact that, when $\lim t_{n}$ exists, the limit of the sequence $\left(t_{n+1}\right)$ also exists and agrees with $\lim t_{n}$.
Let $L=\lim t_{n}$. Since $t_{n+1}=\frac{t_{n}^{2}+2}{2 t_{n}}$, by limit theorems, $\lim t_{n+1}=\frac{L^{2}+2}{2 L}$. Since $\left(t_{n+1}\right)$ has the same limit as $\left(t_{n}\right)$, we get the equality $L=\frac{L^{2}+2}{2 L}$. Solving the equation, we get $2 L^{2}=L^{2}+2$ and $L^{2}=2$. There are two solutions $L=\sqrt{2}$ and $L=-\sqrt{2}$. The $-\sqrt{2}$ can not be the limit of $\left(t_{n}\right)$ because every term of $\left(t_{n}\right)$ is positive (which can be proved easily by induction), and so $\lim t_{n} \geq 0$ (Exercise 8.9 (a)). Thus, $\lim t_{n}=\sqrt{2}$.

