Homework 4 (due on 9/27)

- Read Sections 10 and 11 for the next week.
- 9.9 Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$.
 - (a) Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$.
 - (b) Prove that if $\lim t_n = -\infty$, then $\lim s_n = -\infty$.
 - (c) Prove that if $\lim s_n$ and $\lim t_n$ exist, then $\lim s_n \leq \lim t_n$.

Hint: For (c), if $\lim s_n$ or $\lim t_n$ are both finite, you can apply a limit theorem for finite limits in lecture notes. Otherwise you can use (a) and (b).

9.13 Show

$$\lim_{n \to \infty} a^n = \begin{cases} 0, & \text{if } |a| < 1\\ 1, & \text{if } a = 1\\ +\infty, & \text{if } a > 1\\ \text{does not exist, } & \text{if } a \le -1 \end{cases}$$

Hint: For the last case, if a = -1, it discussed in class; if a < -1, you may show that (a^n) is neither bounded above nor bounded below.

9.16 (a) Prove lim ^{n⁴+8n}/_{n²+9} = +∞.
9.18 (a) Verify 1 + a + a² + ··· + aⁿ = ^{1-aⁿ⁺¹}/_{1-a} for a ≠ 1. (b) Find lim_{n→∞}(1 + a + a² + ··· + aⁿ) for |a| < 1.

(d) What is $\lim_{n\to\infty} (1 + a + a^2 + \dots + a^n)$ for $a \ge 1$?

Hint: Use Exercises 9.13 and 9.9.

- 10.7 Let S be a bounded nonempty subset of R such that $\sup S$ is not in S. Prove there is a sequence (s_n) of points in S such that $\lim s_n = \sup S$. Hint: Use the fact that for any $n \in \mathbb{N}$, $\sup S \frac{1}{n}$ is not an upper bound of S. Then use Squeeze lemma.
- 10.10 Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - (a) Find s_2 , s_3 , and s_4 .
 - (b) Use induction to show $s_n > \frac{1}{2}$ for all n.
 - (c) Show (s_n) is a decreasing sequence. Hint: Still use induction.
 - (d) Show $\lim s_n$ exists and find $\lim s_n$. Hint: $\lim s_{n+1} = \lim s_n$.
 - E1 Prove that if (s_n) is decreasing, then $\lim s_n$ exists and equals $\inf\{s_n : n \in \mathbb{N}\}$. If (s_n) is bounded below, then (s_n) converges.