Homework 4 (due on $9 / 27$)

- Read Sections 10 and 11 for the next week.
9.9 Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.
(a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
(b) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.
(c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Hint: For (c), if $\lim s_{n}$ or $\lim t_{n}$ are both finite, you can apply a limit theorem for finite limits in lecture notes. Otherwise you can use (a) and (b).
9.13 Show

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}0, & \text { if }|a|<1 \\ 1, & \text { if } a=1 \\ +\infty, & \text { if } a>1 \\ \text { does not exist, } & \text { if } a \leq-1\end{cases}
$$

Hint: For the last case, if $a=-1$, it discussed in class; if $a<-1$, you may show that $\left(a^{n}\right)$ is neither bounded above nor bounded below.
9.16 (a) Prove $\lim \frac{n^{4}+8 n}{n^{2}+9}=+\infty$.
9.18 (a) Verify $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$ for $a \neq 1$.
(b) Find $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $|a|<1$.
(d) What is $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $a \geq 1$?

Hint: Use Exercises 9.13 and 9.9.
10.7 Let S be a bounded nonempty subset of R such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$. Hint: Use the fact that for any $n \in \mathbb{N}$, $\sup S-\frac{1}{n}$ is not an upper bound of S. Then use Squeeze lemma.
10.10 Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3}, and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n.
(c) Show $\left(s_{n}\right)$ is a decreasing sequence. Hint: Still use induction.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$. $\operatorname{Hint}: \lim s_{n+1}=\lim s_{n}$.

E1 Prove that if $\left(s_{n}\right)$ is decreasing, then $\lim s_{n}$ exists and equals $\inf \left\{s_{n}: n \in \mathbb{N}\right\}$. If $\left(s_{n}\right)$ is bounded below, then $\left(s_{n}\right)$ converges.

