Homework 4 (due on $9 / 27$)

- Read Sections 10 and 11 for the next week.
9.9 Suppose there exists N_{0} such that $s_{n} \leq t_{n}$ for all $n>N_{0}$.
(a) Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
(b) Prove that if $\lim t_{n}=-\infty$, then $\lim s_{n}=-\infty$.
(c) Prove that if $\lim s_{n}$ and $\lim t_{n}$ exist, then $\lim s_{n} \leq \lim t_{n}$.

Solution. (a) Let $M>0$. Since $s_{n} \rightarrow+\infty$, there is $N_{s} \in \mathbb{N}$ such that $n>N_{s}$ implies that $s_{n}>M$. Let $N=\max \left\{N_{0}, N_{s}\right\}$. If $n>N$, then $t_{n}=s_{n}>M$. So $t_{n} \rightarrow+\infty$.
(b) Let $M<0$. Since $s_{n} \rightarrow-\infty$, there is $N_{s} \in \mathbb{N}$ such that $n>N_{s}$ implies that $s_{n}<M$. Let $N=\max \left\{N_{0}, N_{s}\right\}$. If $n>N$, then $t_{n}=s_{n}<M$. So $t_{n} \rightarrow+\infty$.
(c) We have to consider different cases. Case $1 . \lim s_{n}$ and $\lim t_{n}$ are both finite. In this case we can apply a limit theorem to conclude that $\lim s_{n} \leq \lim t_{n}$. Case 2 . $\lim s_{n}$ is not finite. There are two subcases. Case 2.1. $\lim s_{n}=-\infty$. Then $\lim s_{n} \leq \lim t_{n}$ always holds because $\lim t_{n}$ takes values in $\mathbb{R} \cup\{+\infty,-\infty\}$, and for any $a \in \mathbb{R} \cup\{+\infty,-\infty\}$, $-\infty \leq a$. Case 2.2. $\lim s_{n}=+\infty$. Then by (a) $\lim t_{n}=+\infty$, and so $\lim s_{n} \leq \lim t_{n}$ still holds. Case $3 . \lim t_{n}$ is not finite. There are two subcases. Case 3.1. $\lim t_{n}=+\infty$. Then $\lim s_{n} \leq \lim t_{n}$ always holds because $\lim s_{n}$ takes values in $\mathbb{R} \cup\{+\infty,-\infty\}$, and for any $a \in \mathbb{R} \cup\{+\infty,-\infty\}, a \leq+\infty$. Case 3.2. $\lim t_{n}=-\infty$. Then by (b) $\lim s_{n}=-\infty$, and so $\lim s_{n} \leq \lim t_{n}$ still holds.
9.12 Assume all $s_{n} \neq 0$ and that the limit $L=\lim \left|\frac{s_{n+1}}{s_{n}}\right|$ exists.
(a) Show that if $L<1$, then $\lim s_{n}=0$. Hint: Select a so that $L<a<1$ and obtain N so that $\left|s_{n+1}\right|<a\left|s_{n}\right|$ for $n \geq N$. Then show $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for $n>N$.
(b) Show that if $L>1$, then $\lim |s n|=+\infty$. Hint: Apply (a) to the sequence $t_{n}=\frac{1}{s_{n}}$; see Theorem 9.10.

Proof. (a) Since $L<1$, we may choose $a \in(L, 1)$. Let $\varepsilon=a-L$. Since $\left|\frac{s_{n+1}}{s_{n}}\right| \rightarrow L$, there is $N \in \mathbb{N}$ such that if $n \geq N$, then $-\varepsilon<\left|\frac{s_{n+1}}{s_{n}}\right|-L<\varepsilon$, which implies that $\left|\frac{s_{n+1}}{s_{n}}\right|<a$ and so $\left|s_{n+1}\right|<a\left|s_{n}\right|$. We now show that $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for $n>N$ by induction. The basis case is when $n=N+1,\left|s_{N+1}\right|<a\left|s_{N}\right|$. This is true by taking $n=N$ in $\left|s_{n+1}\right|<a\left|s_{n}\right|$. Suppose $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ for some $n>N$. Then $\left|s_{n+1}\right|<a\left|s_{n}\right|<a \cdot a^{n-N}\left|s_{N}\right|=a^{n+1-N}\left|s_{N}\right|$. So $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|$ holds for all $n>N$. Since $0 \leq\left|s_{n}\right| \leq a^{n-N}\left|s_{N}\right|$, and $a^{n-N}\left|s_{N}\right| \rightarrow 0$ because $0<a<1$, by squeeze lemma, we get $\left|s_{n}\right| \rightarrow 0$, which then implies that $s_{n} \rightarrow 0$.
(b) Let $t_{n}=\frac{1}{s_{n}}$. Then $\lim \left|\frac{t_{n+1}}{t_{n}}\right|$ exists and equals $\frac{1}{L}$ if $L<\infty$ and equals 0 if $L=+\infty$. In any case we have $\lim \left|\frac{t_{n+1}}{t_{n}}\right|<1$. Applying (a) to $\left(t_{n}\right)$, we get $t_{n} \rightarrow 0$, and so $\left|t_{n}\right| \rightarrow 0$. Since $\left|s_{n}\right|=\frac{1}{\left|t_{n}\right|}$ and $\left|s_{n}\right|>0$ for all n, we get $\left|s_{n}\right| \rightarrow+\infty$.
9.13 Show

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}0, & \text { if }|a|<1 \\ 1, & \text { if } a=1 \\ +\infty, & \text { if } a>1 \\ \text { does not exist, } & \text { if } a \leq-1\end{cases}
$$

Proof. If $|a|<1$, then by Theorem 9.7 (b), $a^{n} \rightarrow 0$. If $a=1$, then $a^{n}=1$ for all n, and so $a^{n} \rightarrow 1$ trivially. If $a>1$, then $\left|\frac{1}{a}\right|=\frac{1}{a}<1$. Since $\frac{1}{a^{n}}=\left(\frac{1}{a}\right)^{n}$, we get $\frac{1}{a^{n}} \rightarrow 0$. Since $a^{n}>0$ for all n, we get $a^{n} \rightarrow+\infty$. If $a=-1$, we proved in class that $\left((-1)^{n}\right)$ has no limit. Finally, suppose $a<-1$. Then $|a|>1$. So by the previous case, $\left|a^{n}\right|=|a|^{n} \rightarrow+\infty$. Since $a<0,\left(a^{n}\right)$ has alternative signs. We claim that the sequence $\left(a^{n}\right)$ is neither bounded above nor bounded below. For this purpose, we show that for any $M \in(0, \infty)$, there are $n_{1}, n_{2} \in \mathbb{N}$ such that $a^{n_{1}}>M$ and $a^{n_{2}}<-M$. Since $\left|a^{n}\right| \rightarrow+\infty$, there is $N \in \mathbb{N}$ such that for $n>N,\left|a^{n}\right|>M$. Since $a^{n}>0$ for even n and $a^{n}<0$ for odd n, if we choose an even number n_{1} and an odd number n_{2} with $n_{1}, n_{2}>N$. Then $a^{n_{1}}=\left|a^{n_{1}}\right|>M$ and $a^{n_{2}}=-\left|a^{n_{2}}\right|<-M$. So the claim is proved. Now since any sequence $\left(s_{n}\right)$ with a limit is either bounded above or bounded below, we conclude that (a^{n}) has no limit if $a<-1$.
9.16 (a) Prove $\lim \frac{n^{4}+8 n}{n^{2}+9}=+\infty$.

Proof. Since $\frac{n^{4}+8 n}{n^{2}+9}>0$ for all n, it suffices to show that $\lim \frac{n^{2}+9}{n^{4}+8 n}=0$. This is true because

$$
\frac{n^{2}+9}{n^{4}+8 n}=\frac{1 / n^{2}+9 / n^{4}}{1+8 / n^{3}} \rightarrow \frac{0^{2}+9 * 0^{4}}{1+8 * 0^{3}}=0
$$

9.18 (a) Verify $1+a+a^{2}+\cdots+a^{n}=\frac{1-a^{n+1}}{1-a}$ for $a \neq 1$.
(b) Find $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $|a|<1$.
(d) What is $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)$ for $a \geq 1$?

Proof. (a) We prove this by induction. The basis case is $1+a=\frac{1-a^{2}}{1-a}$, which is obvious. Suppose the statement holds for n. Then

$$
\begin{aligned}
1+a+ & a^{2}+\cdots+a^{n}+a^{n+1}=\frac{1-a^{n+1}}{1-a}+a^{n+1}=\frac{1-a^{n+1}}{1-a}+\frac{a^{n+1}(1-a)}{1-a} \\
& =\frac{\left(1-a^{n+1}\right)+\left(a^{n+1}-a^{n+2}\right)}{1-a}=\frac{1-a^{n+2}}{1-a}=\frac{1-a^{(n+1)+1}}{1-a} .
\end{aligned}
$$

So the statement is also true for $n+1$. Thus, it is true for all $n \in \mathbb{N}$.
(b) By (a), we need to calculate $\lim _{n \rightarrow \infty} \frac{1-a^{n+1}}{1-a}$. Since $|a|<1$, by Exercise $9.13, a^{n+1} \rightarrow 0$. So $\frac{1-a^{n+1}}{1-a} \rightarrow \frac{1-0}{1-a}=\frac{1}{1-a}$.
(d) From $a \geq 1$ we get $a^{n} \geq 1^{n}$, and so $1+a+a^{2}+\cdots+a^{n} \geq n+1$ for all n. Since $\lim (n+1)=+\infty$, by Exercise 9.9 we get $\lim _{n \rightarrow \infty}\left(1+a+a^{2}+\cdots+a^{n}\right)=+\infty$.
10.7 Let S be a bounded nonempty subset of R such that $\sup S$ is not in S. Prove there is a sequence $\left(s_{n}\right)$ of points in S such that $\lim s_{n}=\sup S$.

Proof. Since S is bounded, sup $S \in \mathbb{R}$. Since sup S is the least upper bound of S, for any $n \in \mathbb{N}$, $\sup S-\frac{1}{n}$ is not an upper bound of S, and so there is an element in S, denoted by s_{n}, which is greater than $\sup S-\frac{1}{n}$. Then we get a sequence $\left(s_{n}\right)$ in S such that $s_{n}>\sup S-\frac{1}{n}$ for any n. Since $\sup S$ is an upper bound of S and $s_{n} \in S$, we also have $\sup S \geq s_{n}$ for all n. Applying Squeeze lemma to the inequalities $\sup S \geq s_{n}>\sup S-\frac{1}{n}$ we conclude that $s_{n} \rightarrow \sup S$.
10.10 Let $s_{1}=1$ and $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$ for $n \geq 1$.
(a) Find s_{2}, s_{3}, and s_{4}.
(b) Use induction to show $s_{n}>\frac{1}{2}$ for all n.
(c) Show $\left(s_{n}\right)$ is a decreasing sequence. Hint: Still use induction.
(d) Show $\lim s_{n}$ exists and find $\lim s_{n}$. Hint: $\lim s_{n+1}=\lim s_{n}$.

Solution. (a) $s_{2}=\frac{1}{3}(1+1)=\frac{2}{3}, s_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9}, s_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27}$.
(b) The basis case is $s_{1}=1>\frac{1}{2}$, which is obvious. Suppose $s_{n}>\frac{1}{2}$. Then $s_{n+1}=$ $\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}$. So the induction step also holds. Thus, $s_{n}>\frac{1}{2}$ for all n.
(c) We still prove by induction. We need to show that $s_{n} \geq s_{n+1}$ for all n. The basis is $s_{1} \geq s_{2}$, which is obvious since $s_{1}=1$ and $s_{2}=\frac{2}{3}$. Suppose $s_{n} \geq s_{n+1}$. Then $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right) \geq \frac{1}{3}\left(s_{n+1}+1\right)=s_{n+2}$. So the induction step also holds. Thus, $s_{n} \geq s_{n+1}$ for all n, and $\left(s_{n}\right)$ is decreasing.
(d) Since $\left(s_{n}\right)$ is decreasing and bounded below, it converges to a real number, say s. Since $s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$, by limit theorems, $\left(s_{n+1}\right)$ converges to $\frac{1}{3}(s+1)$. Since $\lim s_{n+1}=\lim s_{n}$, we get $\frac{1}{3}(s+1)=s$. Solving this equation we get $s=\frac{1}{2}$. Thus, $\lim s_{n}=\frac{1}{2}$.

E1 Prove that if $\left(s_{n}\right)$ is decreasing, then $\lim s_{n}$ exists and equals $\inf \left\{s_{n}: n \in \mathbb{N}\right\}$. If $\left(s_{n}\right)$ is bounded below, then $\left(s_{n}\right)$ converges.

Proof. Let $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ and $s=\inf S$. Consider two cases. Case 1. S is bounded below. In this case $s \in \mathbb{R}$ is the biggest lower bound of S. Let $\varepsilon>0$. Since s is the biggest lower bound of $S, s+\varepsilon$ is not a lower bound of S. Thus, S contains an element smaller than $s+\varepsilon$. This means, for some $N \in \mathbb{N}$, we have $s_{N}<s+\varepsilon$. Since $\left(s_{n}\right)$ is decreasing,
for any $n>N, s_{n} \leq s_{N}<s+\varepsilon$. On the other hand, $s_{n} \geq s$ for all $n \in \mathbb{N}$ since s is a lower bound of S. So for any $n>N, s+\varepsilon>s_{n} \geq s$, which implies that $\left|s_{n}-s\right|<\varepsilon$. Thus, $\left(s_{n}\right)$ converges to s. Case 2. S is not bounded below. Then $s=-\infty$. Let $M<0$. Since S is not bounded below, M is not a lower bound of S. So S contains an element less than M, i.e., for some $N \in \mathbb{N}$, we have $s_{N}<M$. Since $\left(s_{n}\right)$ is decreasing, for any $n>N, s_{n} \leq s_{N}<M$. Thus, $s_{n} \rightarrow-\infty=s$.

