Homework 4 (due on 9/27)

9.9

9.12

Read Sections 10 and 11 for the next week.
Suppose there exists Ny such that s,, < t, for all n > Ny.

(a) Prove that if lim s,, = 400, then limt, = 4+oc0.
(b) Prove that if limt,, = —oo, then lim s, = —oc.

(c¢) Prove that if lim s,, and lim ¢,, exist, then lim s,, < lim#,,.

Solution. (a) Let M > 0. Since s, — +00, there is Ny € N such that n > Ny implies that
Sp > M. Let N = max{Ny, N}. If n > N, then t,, = s, > M. So t,, — +o0.

(b) Let M < 0. Since s,, — —o0, there is Ng € N such that n > Ny implies that s, < M.
Let N = max{Ny, Ns}. If n > N, then t,, = s, < M. So t,, — +00.

(c) We have to consider different cases. Case 1. lim s,, and lim¢t,, are both finite. In this
case we can apply a limit theorem to conclude that lim s, <limt,. Case 2. lim s, is not
finite. There are two subcases. Case 2.1. lims, = —oco. Then lims, < limt, always
holds because limt, takes values in R U {400, —00}, and for any a € R U {400, —o0},
—o0 < a. Case 2.2. lims,, = +oo0. Then by (a) limt,, = +o00, and so lim s,, < lim#t, still
holds. Case 3. limt,, is not finite. There are two subcases. Case 3.1. lim¢,, = +oco. Then
lim s, < limt, always holds because lim s,, takes values in R U {+00, —00}, and for any
a € RU{+00, -0}, a < +00. Case 3.2. limt,, = —oo. Then by (b) lim s, = —o0, and so
lim s,, < lim¢,, still holds. ]

Assume all s, # 0 and that the limit L = lim [ "] exists.

(a) Show that if L < 1, then lim s,, = 0. Hint: Select a so that L < a < 1 and obtain N
so that |s,1| < a|s,| for n > N. Then show |s,| < a® V|sy| for n > N.

(b) Show that if L > 1, then lim|sn| = +oco0. Hint: Apply (a) to the sequence t,, = i;
see Theorem 9.10.

Proof. (a) Since L < 1, we may choose a € (L,1). Let ¢ = a — L. Since |SZ—:1] — L,
there is N € N such that if n > N, then —e < |S’;%| — L < ¢, which implies that
|25 < @ and so |spi1| < alsy|. We now show that [s,| < a" Nisy| for n > N
by induction. The basis case is when n = N + 1, |syy1| < a|sy|. This is true by
taking n = N in |s,11] < a|s,|. Suppose |s,| < a" N|sy| for some n > N. Then
|sna1] < alsp| < a-a" N|sy| = a1 N|sy|. So |sn| < @ V|sy| holds for all n > N.
Since 0 < |s,| < a" N|sy|, and a" V|sy| — 0 because 0 < a < 1, by squeeze lemma, we
get |s,| — 0, which then implies that s, — 0.

(b) Let ¢, = i Then lim \t’;—:l\ exists and equals + if L < oo and equals 0 if L = 4oo.
In any case we have lim |t’£—:1| < 1. Applying (a) to (t,), we get ¢, — 0, and so |t,| — 0.
Since |sp| = ﬁ and |s,| > 0 for all n, we get |s,| = +o0. O



9.13

9.16

9.18

Show
0, if l[a] <1
lim a" = L, ?f a=1
n=co 400, ifa>1

does not exist, if a < —1

Proof. 1f |a| < 1, then by Theorem 9.7 (b), a”™ — 0. If a = 1, then ™ =1 for all n, and
1 1

so a” — 1 trivially. If @ > 1, then || = 1 < 1. Since 2 = ()", we get - — 0. Since
a™ > 0 for all n, we get a™ — +o00. If @ = —1, we proved in class that ((—1)") has no limit.
Finally, suppose a < —1. Then |a| > 1. So by the previous case, |a"| = |a|™ — +oc. Since
a < 0, (a™) has alternative signs. We claim that the sequence (a™) is neither bounded
above nor bounded below. For this purpose, we show that for any M € (0, 00), there are
ni,n2 € N such that ' > M and o> < —M. Since |a"| — 400, there is N € N such
that for n > N, |a"| > M. Since a" > 0 for even n and a"™ < 0 for odd n, if we choose
an even number n; and an odd number ng with ny,ny > N. Then o™ = || > M
and a™ = —|a"| < —M. So the claim is proved. Now since any sequence (sp) with a
limit is either bounded above or bounded below, we conclude that (a™) has no limit if

a < —1. O

nt48n
n2+9

(a) Prove lim = 400.

Proof. Since ”:Qfgl > 0 for all n, it suffices to show that lim 7:2::& = 0. This is true
because

n’+9 _1n+9/mt 0249x0"

nt+8n  1+8/n3 1+8%03

(a) Verify1+a+a2+--~+a”:%fora7él.
(b) Find lim, s00(1 +a +a? + -+ +a®) for |a| < 1.
(d) What is lim,, yoo(1 +a+a? +---+a") for a > 17

Proof. (a) We prove this by induction. The basis case is 1 +a = 11:‘22, which is obvious.

Suppose the statement holds for n. Then

1 1 1
1+a+a2+”.+an+an+1:1—a”+ +an+1:1—a”+ ant (1—(1)
1—a 1—a 1—a

(1 _ an—H) + (an—i-l _ an+2) B 1 — g2 1 — g{rt)+1

1—a 1—a 1—a

So the statement is also true for n + 1. Thus, it is true for all n € N.



10.7

10.10

El

(b) By (a), we need to calculate lim,,_, % Since |a| < 1, by Exercise 9.13, a1 — 0.

1—gnt! 1-0 _ 1
So 55— = 1= = 1o
(d) From a > 1 we get a” > 1", and so 1 +a +a? +---+a" > n+ 1 for all n. Since
lim(n + 1) = +o00, by Exercise 9.9 we get lim,, oo (1 +a+a? + -+ +a") = +oc. O
Let S be a bounded nonempty subset of R such that sup S is not in S. Prove there is a

sequence (sy) of points in S such that lim s, = sup S.

Proof. Since S is bounded, sup .S € R. Since sup S is the least upper bound of S, for any
n €N, supS — % is not an upper bound of S, and so there is an element in S, denoted

by sy, which is greater than sup S — % Then we get a sequence (s,) in S such that

Sp > sup S — % for any n. Since sup .S is an upper bound of S and s, € S, we also have
sup S > s, for all n. Applying Squeeze lemma to the inequalities sup .S > s, > sup .S — %
we conclude that s,, — sup S. O

Let s1 =1 and sp4+1 = %(sn +1) forn > 1.

(a) Find sg, s3, and s4.

(b) Use induction to show s, > % for all n.

(c) Show (sy,) is a decreasing sequence. Hint: Still use induction.
)

(d) Show lim s, exists and find lim s,,. Hint: lim s, 41 = lim s,,.

Solution. (a) s =3(1+1)=%,s3=23+1)=3,s4=2(3+1)= 4.

(b) The basis case is s1 = 1 > %, which is obvious. Suppose s, > % Then sp41 =
$(sn +1) > (3 + 1) = 1. So the induction step also holds. Thus, s, > % for all n.

(c) We still prove by induction. We need to show that s, > s, for all n. The basis

is 81 > s9, which is obvious since s; = 1 and sy = % Suppose S, > Sp+1. Then
Sni1 = %(sn +1) > %(Sn+]_ + 1) = spt2. So the induction step also holds. Thus,

Sn > Sp+1 for all n, and (s,) is decreasing.

(d) Since (sy,) is decreasing and bounded below, it converges to a real number, say s. Since
Sn+1 = 3(sp+1), by limit theorems, (s,11) converges to (s+1). Since lim sp41 = lim s,
we get %(8 + 1) = s. Solving this equation we get s = % Thus, lim s,, = % O

Prove that if (s,,) is decreasing, then lim s, exists and equals inf{s,, : n € N}. If (s,) is
bounded below, then (s,,) converges.

Proof. Let S = {s, : n € N} and s = inf S. Consider two cases. Case 1. S is bounded
below. In this case s € R is the biggest lower bound of S. Let € > 0. Since s is the biggest
lower bound of S, s + ¢ is not a lower bound of S. Thus, S contains an element smaller
than s + . This means, for some N € N, we have sy < s+ . Since (s,) is decreasing,



for any n > N, s, < sy < s+ ¢&. On the other hand, s, > s for all n € N since s is a
lower bound of S. So for any n > N, s +¢ > s, > s, which implies that |s, — s| < e.
Thus, (s,) converges to s. Case 2. S is not bounded below. Then s = —oco. Let M < 0.
Since S is not bounded below, M is not a lower bound of S. So S contains an element
less than M, i.e., for some N € N, we have sy < M. Since (s,) is decreasing, for any
n>N, s, <sy <M. Thus, s,, > —occ = s. ]



