
Homework 4 (due on 9/27)

• Read Sections 10 and 11 for the next week.

9.9 Suppose there exists N0 such that sn ≤ tn for all n > N0.

(a) Prove that if lim sn = +∞, then lim tn = +∞.

(b) Prove that if lim tn = −∞, then lim sn = −∞.

(c) Prove that if lim sn and lim tn exist, then lim sn ≤ lim tn.

Solution. (a) Let M > 0. Since sn → +∞, there is Ns ∈ N such that n > Ns implies that
sn > M . Let N = max{N0, Ns}. If n > N , then tn = sn > M . So tn → +∞.

(b) Let M < 0. Since sn → −∞, there is Ns ∈ N such that n > Ns implies that sn < M .
Let N = max{N0, Ns}. If n > N , then tn = sn < M . So tn → +∞.

(c) We have to consider different cases. Case 1. lim sn and lim tn are both finite. In this
case we can apply a limit theorem to conclude that lim sn ≤ lim tn. Case 2. lim sn is not
finite. There are two subcases. Case 2.1. lim sn = −∞. Then lim sn ≤ lim tn always
holds because lim tn takes values in R ∪ {+∞,−∞}, and for any a ∈ R ∪ {+∞,−∞},
−∞ ≤ a. Case 2.2. lim sn = +∞. Then by (a) lim tn = +∞, and so lim sn ≤ lim tn still
holds. Case 3. lim tn is not finite. There are two subcases. Case 3.1. lim tn = +∞. Then
lim sn ≤ lim tn always holds because lim sn takes values in R ∪ {+∞,−∞}, and for any
a ∈ R∪ {+∞,−∞}, a ≤ +∞. Case 3.2. lim tn = −∞. Then by (b) lim sn = −∞, and so
lim sn ≤ lim tn still holds.

9.12 Assume all sn 6= 0 and that the limit L = lim | sn+1

sn
| exists.

(a) Show that if L < 1, then lim sn = 0. Hint: Select a so that L < a < 1 and obtain N
so that |sn+1| < a|sn| for n ≥ N . Then show |sn| < an−N |sN | for n > N .

(b) Show that if L > 1, then lim |sn| = +∞. Hint: Apply (a) to the sequence tn = 1
sn

;
see Theorem 9.10.

Proof. (a) Since L < 1, we may choose a ∈ (L, 1). Let ε = a − L. Since | sn+1

sn
| → L,

there is N ∈ N such that if n ≥ N , then −ε < | sn+1

sn
| − L < ε, which implies that

| sn+1

sn
| < a and so |sn+1| < a|sn|. We now show that |sn| < an−N |sN | for n > N

by induction. The basis case is when n = N + 1, |sN+1| < a|sN |. This is true by
taking n = N in |sn+1| < a|sn|. Suppose |sn| < an−N |sN | for some n > N . Then
|sn+1| < a|sn| < a · an−N |sN | = an+1−N |sN |. So |sn| < an−N |sN | holds for all n > N .
Since 0 ≤ |sn| ≤ an−N |sN |, and an−N |sN | → 0 because 0 < a < 1, by squeeze lemma, we
get |sn| → 0, which then implies that sn → 0.

(b) Let tn = 1
sn

. Then lim | tn+1

tn
| exists and equals 1

L if L < ∞ and equals 0 if L = +∞.

In any case we have lim | tn+1

tn
| < 1. Applying (a) to (tn), we get tn → 0, and so |tn| → 0.

Since |sn| = 1
|tn| and |sn| > 0 for all n, we get |sn| → +∞.
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9.13 Show

lim
n→∞

an =


0, if |a| < 1
1, if a = 1
+∞, if a > 1
does not exist, if a ≤ −1

Proof. If |a| < 1, then by Theorem 9.7 (b), an → 0. If a = 1, then an = 1 for all n, and
so an → 1 trivially. If a > 1, then | 1a | = 1

a < 1. Since 1
an = ( 1a)n, we get 1

an → 0. Since
an > 0 for all n, we get an → +∞. If a = −1, we proved in class that ((−1)n) has no limit.
Finally, suppose a < −1. Then |a| > 1. So by the previous case, |an| = |a|n → +∞. Since
a < 0, (an) has alternative signs. We claim that the sequence (an) is neither bounded
above nor bounded below. For this purpose, we show that for any M ∈ (0,∞), there are
n1, n2 ∈ N such that an1 > M and an2 < −M . Since |an| → +∞, there is N ∈ N such
that for n > N , |an| > M . Since an > 0 for even n and an < 0 for odd n, if we choose
an even number n1 and an odd number n2 with n1, n2 > N . Then an1 = |an1 | > M
and an2 = −|an2 | < −M . So the claim is proved. Now since any sequence (sn) with a
limit is either bounded above or bounded below, we conclude that (an) has no limit if
a < −1.

9.16 (a) Prove lim n4+8n
n2+9

= +∞.

Proof. Since n4+8n
n2+9

> 0 for all n, it suffices to show that lim n2+9
n4+8n

= 0. This is true
because

n2 + 9

n4 + 8n
=

1/n2 + 9/n4

1 + 8/n3
→ 02 + 9 ∗ 04

1 + 8 ∗ 03
= 0.

9.18 (a) Verify 1 + a + a2 + · · ·+ an = 1−an+1

1−a for a 6= 1.

(b) Find limn→∞(1 + a + a2 + · · ·+ an) for |a| < 1.

(d) What is limn→∞(1 + a + a2 + · · ·+ an) for a ≥ 1?

Proof. (a) We prove this by induction. The basis case is 1 + a = 1−a2
1−a , which is obvious.

Suppose the statement holds for n. Then

1 + a + a2 + · · ·+ an + an+1 =
1− an+1

1− a
+ an+1 =

1− an+1

1− a
+

an+1(1− a)

1− a

=
(1− an+1) + (an+1 − an+2)

1− a
=

1− an+2

1− a
=

1− a(n+1)+1

1− a
.

So the statement is also true for n + 1. Thus, it is true for all n ∈ N.
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(b) By (a), we need to calculate limn→∞
1−an+1

1−a . Since |a| < 1, by Exercise 9.13, an+1 → 0.

So 1−an+1

1−a → 1−0
1−a = 1

1−a .

(d) From a ≥ 1 we get an ≥ 1n, and so 1 + a + a2 + · · · + an ≥ n + 1 for all n. Since
lim(n + 1) = +∞, by Exercise 9.9 we get limn→∞(1 + a + a2 + · · ·+ an) = +∞.

10.7 Let S be a bounded nonempty subset of R such that supS is not in S. Prove there is a
sequence (sn) of points in S such that lim sn = supS.

Proof. Since S is bounded, supS ∈ R. Since supS is the least upper bound of S, for any
n ∈ N, supS − 1

n is not an upper bound of S, and so there is an element in S, denoted
by sn, which is greater than supS − 1

n . Then we get a sequence (sn) in S such that
sn > supS − 1

n for any n. Since supS is an upper bound of S and sn ∈ S, we also have
supS ≥ sn for all n. Applying Squeeze lemma to the inequalities supS ≥ sn > supS − 1

n
we conclude that sn → supS.

10.10 Let s1 = 1 and sn+1 = 1
3(sn + 1) for n ≥ 1.

(a) Find s2, s3, and s4.

(b) Use induction to show sn > 1
2 for all n.

(c) Show (sn) is a decreasing sequence. Hint: Still use induction.

(d) Show lim sn exists and find lim sn. Hint: lim sn+1 = lim sn.

Solution. (a) s2 = 1
3(1 + 1) = 2

3 , s3 = 1
3(23 + 1) = 5

9 , s4 = 1
3(59 + 1) = 14

27 .

(b) The basis case is s1 = 1 > 1
2 , which is obvious. Suppose sn > 1

2 . Then sn+1 =
1
3(sn + 1) > 1

3(12 + 1) = 1
2 . So the induction step also holds. Thus, sn > 1

2 for all n.

(c) We still prove by induction. We need to show that sn ≥ sn+1 for all n. The basis
is s1 ≥ s2, which is obvious since s1 = 1 and s2 = 2

3 . Suppose sn ≥ sn+1. Then
sn+1 = 1

3(sn + 1) ≥ 1
3(sn+1 + 1) = sn+2. So the induction step also holds. Thus,

sn ≥ sn+1 for all n, and (sn) is decreasing.

(d) Since (sn) is decreasing and bounded below, it converges to a real number, say s. Since
sn+1 = 1

3(sn+1), by limit theorems, (sn+1) converges to 1
3(s+1). Since lim sn+1 = lim sn,

we get 1
3(s + 1) = s. Solving this equation we get s = 1

2 . Thus, lim sn = 1
2 .

E1 Prove that if (sn) is decreasing, then lim sn exists and equals inf{sn : n ∈ N}. If (sn) is
bounded below, then (sn) converges.

Proof. Let S = {sn : n ∈ N} and s = inf S. Consider two cases. Case 1. S is bounded
below. In this case s ∈ R is the biggest lower bound of S. Let ε > 0. Since s is the biggest
lower bound of S, s + ε is not a lower bound of S. Thus, S contains an element smaller
than s + ε. This means, for some N ∈ N, we have sN < s + ε. Since (sn) is decreasing,
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for any n > N , sn ≤ sN < s + ε. On the other hand, sn ≥ s for all n ∈ N since s is a
lower bound of S. So for any n > N , s + ε > sn ≥ s, which implies that |sn − s| < ε.
Thus, (sn) converges to s. Case 2. S is not bounded below. Then s = −∞. Let M < 0.
Since S is not bounded below, M is not a lower bound of S. So S contains an element
less than M , i.e., for some N ∈ N, we have sN < M . Since (sn) is decreasing, for any
n > N , sn ≤ sN < M . Thus, sn → −∞ = s.
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