## Homework 5 (due on 10/4)

10.6 (a) Let $\left(s_{n}\right)$ be a sequence such that $\left|s_{n+1}-s_{n}\right| \leq 2^{-n}$ for all $n \in \mathbb{N}$. Prove $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.

Proof. We first find an upper bound of $\left|s_{n}-s_{m}\right|$ for $n, m \in \mathbb{N}$. First, suppose $n>m$. We write $s_{n}-s_{m}=\sum_{k=m}^{n-1}\left(s_{k+1}-s_{k}\right)$. By triangle inequality, we get

$$
\left|s_{n}-s_{m}\right| \leq \sum_{k=m}^{n-1}\left|s_{k+1}-s_{k}\right| \leq \sum_{k=m}^{n-1} 2^{-k}=\sum_{s=0}^{n-m-1} 2^{-(m+s)}=2^{-m} \sum_{s=0}^{n-m-1}\left(\frac{1}{2}\right)^{s} .
$$

Here we used a change of index $s=k-m$. Using Exercise 9.18, we get

$$
\sum_{s=0}^{n-m-1}\left(\frac{1}{2}\right)^{s}=\frac{1-(1 / 2)^{n-m}}{1-1 / 2}<\frac{1}{1-1 / 2}=2 .
$$

Thus, $\left|s_{n}-s_{m}\right|<2 * 2^{-m}$. If $n<m$, then $\left|s_{n}-s_{m}\right|=\left|s_{m}-s_{n}\right|<2 * 2^{-n}$. If $n=m$, then $\left|s_{n}-s_{m}\right|=0$. So in any case, we have $\left|s_{n}-s_{m}\right|<2 * 2^{-\min \{n, m\}}$.

From Theorem 9.7, we have $2 * 2^{-n} \rightarrow 0$. Let $\varepsilon>0$. Since $2 * 2^{-n} \rightarrow 0$, there is $N \in \mathbb{N}$ such that for $n>N, 2 * 2^{-n}<\varepsilon$. Suppose now $n, m>N$. Then $\min \{n, m\}>N$. From the last paragraph, we get $\left|s_{n}-s_{m}\right|<2 * 2^{-\min \{n, m\}}<\varepsilon$. So $\left(s_{n}\right)$ is a Cauchy sequence. By Theorem 10.11, it is a convergent sequence.

- Exercise 11.2, 11.3, 11.4 for sequences $\left(b_{n}\right),\left(c_{n}\right),\left(s_{n}\right),\left(w_{n}\right)$.

Solution. $\left(b_{n}\right):(\mathrm{a})\left(b_{n}\right)$ itself is a monotone subsequence of $\left(b_{n}\right)$. (b) Since $b_{n} \rightarrow 0$, its set of subsequential limits is $\{0\}$. (c) Since $\lim b_{n}=0, \limsup b_{n}=\liminf b_{n}=0$. (d) ( $b_{n}$ ) converges. (e) $\left(b_{n}\right)$ is bounded.
$\left(c_{n}\right)$ : (a) $\left(c_{n}\right)$ itself is a monotone subsequence of $\left(c_{n}\right)$. (b) Since $c_{n} \rightarrow+\infty$, its set of subsequential limits is $\{+\infty\}$. (c) Since $\lim c_{n}=+\infty, \lim \sup c_{n}=\liminf c_{n}=+\infty$. (d) $\left(c_{n}\right)$ diverges to $+\infty$. (e) $\left(c_{n}\right)$ is not bounded.
$\left(s_{n}\right)$ : We observe that $\left(s_{n}\right)$ has period 6 , i.e., $s_{n+6}=s_{n}$ for all $n$, and $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right)=$ $\left(\frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2}, \frac{1}{2}, 1\right)$. (a) Let $n_{k}=6 k$, then we get a constant subsequence $\left(s_{6 k}\right)=$ $(1,1, \ldots)$ of $\left(s_{n}\right)$, which is monotonic. (b) The set of subsequential limits is $\left\{\frac{1}{2},-\frac{1}{2},-1,1\right\}$. (c) $\lim \sup s_{n}$ is the biggest subsequential limit: $1 ; \lim \inf s_{n}$ is the smallest subsequential limit: -1 . (d) $\left(s_{n}\right)$ neither converges nor diverges to $+\infty$ or $-\infty$. (e) $\left(s_{n}\right)$ is bounded.
$\left(w_{n}\right)$ : (a) Let $n_{k}=2 k$. Then we get an increasing subsequence $\left(w_{2 k}\right)=\left((-2)^{2 k}\right)=\left(4^{k}\right)$ of $\left(w_{n}\right)$. (b) The set of subsequential limits is $\{+\infty,-\infty\}$. (c) $\lim \sup w_{n}=+\infty$ and $\lim \inf w_{n}=-\infty$. (d) $\left(w_{n}\right)$ neither converges nor diverges to $+\infty$ or $-\infty$. (e) $\left(w_{n}\right)$ is unbounded.
11.5 Let $\left(q_{n}\right)$ be an enumeration of all the rationals in the interval $(0,1]$. This means that every element in $\mathbb{Q} \cap(0,1]$ appears in the sequence exactly once.
(a) Give the set of subsequential limits for $\left(q_{n}\right)$.
(b) Give the values of $\lim \sup q_{n}$ and $\lim \inf q_{n}$.

Proof. (a) The set of subsequential limits for $\left(q_{n}\right)$ is $[0,1]$. Since $\left(q_{n}\right)$ is bounded above by 1 , any subsequence is also bounded above by 1 . By Exercise 8.9, if a subsequence has a limit, then the limit is $\leq 1$. Since $\left(q_{n}\right)$ is bounded below by 0 , any subsequence is also bounded below by 0 . By Exercise 8.9, if a subsequence has a limit, then the limit is $\geq 0$. Thus, the set of subsequential limits of $\left(q_{n}\right)$ is a subset of $[0,1]$.
Next, we show that any $x \in[0,1]$ is a subsequential limit of $\left(q_{n}\right)$. By Theorem 11.2, it suffices to show that for any $\varepsilon>0,(x-\varepsilon, x+\varepsilon)$ contains infinitely many elements in $\left(q_{n}\right)$. Since $\left(q_{n}\right)$ is an enumeration of all the rationals in the interval $(0,1]$, this is equivalent to that $(x-\varepsilon, x+\varepsilon) \cap(0,1]$ contains infinitely many rational numbers. We may choose $0 \leq a<b \leq 1$ such that $(a, b) \subset(x-\varepsilon, x+\varepsilon) \cap(0,1]$. Then it suffices to show that the interval $(a, b)$ contains infinitely many rationals. To see this, we define $a_{n}=b-\frac{b-a}{2^{n}}$ for $n=0,1,2, \ldots$. We then have $b-a_{n}=\frac{b-a}{2^{n}}$. Since $b-a>0$, we have $b-a=b-a_{0}>b-a_{1}>b-a_{2}>\cdots>0$. Thus, $a=a_{0}<a_{1}<a_{2}<\cdots<b$. So $\left(a_{0}, a_{1}\right),\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right), \ldots$ are mutually disjoint open subintervals of $(a, b)$. By denseness of $\mathbb{Q}$, each of them contains at least one rational. Since these intervals are mutually disjoint, those rationals are different from each other. So ( $a, b$ ) contains infinitely many rationals. This concludes the proof of (a)
(b) Since the set of subsequential limits for $\left(q_{n}\right)$ is $[0,1]$, by Theorem $11.8, \lim \sup q_{n}=1$ and $\liminf q_{n}=0$.
11.8 Use Definition 10.6 and Exercise 5.4 to prove $\liminf s_{n}=-\lim \sup \left(-s_{n}\right)$ for every sequence $\left(s_{n}\right)$.

Proof. By definition,

$$
\begin{aligned}
\liminf s_{n} & =\lim _{N \rightarrow \infty} \inf \left\{s_{n}: n>N\right\} \\
\lim \sup \left(-s_{n}\right) & =\lim _{N \rightarrow \infty} \sup \left\{-s_{n}: n>N\right\}
\end{aligned}
$$

By Exercise 5.4, for every $N$,

$$
\inf \left\{s_{n}: n>N\right\}=-\sup \left\{-s_{n}: n>N\right\}
$$

By Theorem 9.2, we get the conclusion.
11.9 (a) Show the closed interval $[a, b]$ is a closed set.
(b) Is there a sequence $\left(s_{n}\right)$ such that $(0,1)$ is its set of subsequential limits?

Proof. (a) We need to show that if $\left(s_{n}\right)$ is a convergent sequence of points in $[a, b]$, then $\lim s_{n} \in[a, b]$. Since $s_{n} \leq b$ for all $n$, by Exercise 8.0, $\lim s_{n} \leq b$. Since $s_{n} \geq a$ for all $n$, by Exercise 8.9 again, $\lim s_{n} \geq a$. Thus, $\lim s_{n} \in[a, b]$.
(b) There does not exist a sequence $\left(s_{n}\right)$ such that $(0,1)$ is its set of subsequential limits. Suppose such sequence $\left(s_{n}\right)$ exists. Then by Theorem $11.9,(0,1)$ is a closed set. This is a contradiction because $(0,1)$ is not a closed set. To see this, we construct a sequence $\left(t_{n}\right)$ from $(0,1)$ by $t_{n}=\frac{1}{n+1}$, and note that $t_{n} \rightarrow 0 \notin(0,1)$.
12.4 Show $\lim \sup \left(s_{n}+t_{n}\right) \leq \lim \sup s_{n}+\lim \sup t_{n}$ for bounded sequences $\left(s_{n}\right)$ and $\left(t_{n}\right)$.

Proof. By definition,

$$
\begin{gathered}
\lim \sup \left(s_{n}+t_{n}\right)=\lim _{N \rightarrow \infty} \sup \left\{s_{n}+t_{n}: n>N\right\} \\
\limsup s_{n}=\sup \left\{s_{n}: n>N\right\} \\
\limsup t_{n}=\sup \left\{t_{n}: n>N\right\}
\end{gathered}
$$

We claim that

$$
\sup \left\{s_{n}+t_{n}: n>N\right\} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\} .
$$

For any fixed $n>N$, we have $s_{n} \leq \sup \left\{s_{n}: n>N\right\}$ and $t_{n} \leq \sup \left\{t_{n}: n>N\right\}$, and so

$$
s_{n}+t_{n} \leq \sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>N\right\}
$$

Since this holds for any $n>N$, the claim is proved (because the RHS is an upper bound of $\left\{s_{n}+t_{n}: n>N\right\}$ ).
Since $\left(s_{n}\right)$ and $\left(t_{n}\right)$ are bounded, $\left(\sup \left\{s_{n}: n>N\right\}\right)_{N}$ converges to $\limsup s_{n}$, and $\left(\sup \left\{t_{n}: n>N\right\}\right)_{N}$ converges to $\lim \sup t_{n}$. So $\left(\sup \left\{s_{n}: n>N\right\}+\sup \left\{t_{n}: n>\right.\right.$ $N\})_{N}$ converges to $\limsup s_{n}+\limsup t_{n}$. Since $\left(\sup \left\{s_{n}+t_{n}: n>N\right\}\right)$ converges to $\lim \sup \left(s_{n}+t_{n}\right)$, by the above claim and Exercise 9.9 (c), we get the desired inequality.
12.6 Let $\left(s_{n}\right)$ be a bounded sequence, and let $k$ be a nonnegative real number.
(a) Prove $\limsup \left(k s_{n}\right)=k \lim \sup s_{n}$.
(b) Do the same for liminf. Hint: Use Exercise 11.8.
(c) What happens in (a) and (b) if $k<0$ ?

Proof. (a) Since $k \geq 0$, for every $N \in \mathbb{N}$,

$$
\sup \left\{k s_{n}: n>N\right\}=k \sup \left\{s_{n}: n>N\right\} .
$$

So by Theorem 9.2,

$$
\limsup k s_{n}=\lim _{N \rightarrow \infty} \sup \left\{k s_{n}: n>N\right\}=\lim _{N \rightarrow \infty} k \sup \left\{s_{n}: n>N\right\}=k \lim \sup s_{n} .
$$

(b) Since $k \geq 0$, for every $N \in \mathbb{N}$,

$$
\inf \left\{k s_{n}: n>N\right\}=k \inf \left\{s_{n}: n>N\right\}
$$

So by Theorem 9.2,

$$
\liminf k s_{n}=\lim _{N \rightarrow \infty} \inf \left\{k s_{n}: n>N\right\}=\lim _{N \rightarrow \infty} k \inf \left\{s_{n}: n>N\right\}=k \liminf s_{n}
$$

(c) If $k<0$, then $\limsup \left(k s_{n}\right)=k \liminf s_{n}$ and $\lim \inf \left(k s_{n}\right)=k \limsup s_{n}$. This is because for every $N \in \mathbb{N}$,

$$
\sup \left\{k s_{n}: n>N\right\}=k \inf \left\{s_{n}: n>N\right\}, \quad \inf \left\{k s_{n}: n>N\right\}=k \sup \left\{s_{n}: n>N\right\}
$$

12.10 Prove $\left(s_{n}\right)$ is bounded if and only if $\lim \sup \left|s_{n}\right|<+\infty$.

Proof. First suppose $\left(s_{n}\right)$ is bounded. Then there is $M \in(0, \infty)$ such that $\left|s_{n}\right| \leq M$ for all $n$. So any subsequence of $\left(\left|s_{n}\right|\right)$ is bounded above by $M$. By Exercise 8.9, any subsequential limit of $\left(\left|s_{n}\right|\right)$ is bounded above by $M$. By Theorem 11.7, $\lim \sup \left|s_{n}\right|$ is a subsequential limit of $\left(\left|s_{n}\right|\right)$. So $\lim \sup \left|s_{n}\right| \leq M<+\infty$. On the other hand, suppose $\lim \sup \left|s_{n}\right|<+\infty$. Let $a=\lim \sup \left|s_{n}\right|$. By definition, $a=\lim _{N \rightarrow \infty} \sup \left\{\left|s_{n}\right|: n>N\right\}$. So there is some $N \in \mathbb{N}$ such that $\sup \left\{\left|s_{n}\right|: n>N\right\}<a+1$. Thus, $\left\{\left|s_{n}\right|: n \in \mathbb{N}\right\}$ is bounded above by $\max \left\{a+1,\left|s_{1}\right|,\left|s_{2}\right|, \ldots,\left|s_{N}\right|\right\}$, which is finite. So $\left(s_{n}\right)$ is bounded.

E1 Let $\left(s_{n}\right)$ be a sequence of real numbers and $x \in \mathbb{R}$. Prove that (a) if $\lim \sup s_{n}>x$, then there are infinitely many $n$ such that $s_{n}>x$; (b) if there are infinitely many $n$ such that $s_{n} \geq x$, then $\lim \sup s_{n} \geq x$.

Proof. By definition, $\lim \sup s_{n}=\lim _{N \rightarrow \infty} \sup \left\{s_{n}: n>N\right\}$. Since the sequence $\left(\sup \left\{s_{n}\right.\right.$ : $n>N\}$ ) is decreasing, $\lim \sup s_{n}$ can also be expressed by $\inf \left\{\sup \left\{s_{n}: n>N\right\}: N \in \mathbb{N}\right\}$.
(a) If $\lim \sup s_{n}>x$, then for every $N \in \mathbb{N}$, $\sup \left\{s_{n}: n>N\right\} \geq \inf \left\{\sup \left\{s_{n}: n>N\right\}: N \in\right.$ $\mathbb{N}\}=\lim \sup s_{n}>x$. This then implies that $x$ is not an upper bound of $\left\{s_{n}: n>N\right\}$. So there is some $n>N$ such that $s_{n}>x$. Thus, for every $N \in \mathbb{N}$, there is $n>N$ such that $s_{n}>x$. So we conclude that there are infinitely many $n$ such that $s_{n}>x$.
(b) If there are infinitely many $n$ such that $s_{n} \geq x$, then for any $N \in \mathbb{N}$, there is some $n>N$ such that $s_{n} \geq x$, and so we have $\sup \left\{s_{n}: n>N\right\} \geq x$. By Exercise 9.9, we get $\limsup s_{n}=\lim _{N \rightarrow \infty} \sup \left\{s_{n}: n>N\right\} \geq x$.

