
Homework 5 (due on 10/4)

10.6 (a) Let (sn) be a sequence such that |sn+1 − sn| ≤ 2−n for all n ∈ N. Prove (sn) is a
Cauchy sequence and hence a convergent sequence.

Proof. We first find an upper bound of |sn− sm| for n,m ∈ N. First, suppose n > m. We
write sn − sm =

∑n−1
k=m(sk+1 − sk). By triangle inequality, we get

|sn − sm| ≤
n−1∑
k=m

|sk+1 − sk| ≤
n−1∑
k=m

2−k =
n−m−1∑
s=0

2−(m+s) = 2−m
n−m−1∑
s=0

(
1

2
)s.

Here we used a change of index s = k −m. Using Exercise 9.18, we get

n−m−1∑
s=0

(
1

2
)s =

1− (1/2)n−m

1− 1/2
<

1

1− 1/2
= 2.

Thus, |sn− sm| < 2 ∗ 2−m. If n < m, then |sn− sm| = |sm− sn| < 2 ∗ 2−n. If n = m, then
|sn − sm| = 0. So in any case, we have |sn − sm| < 2 ∗ 2−min{n,m}.

From Theorem 9.7, we have 2 ∗ 2−n → 0. Let ε > 0. Since 2 ∗ 2−n → 0, there is N ∈ N
such that for n > N , 2 ∗ 2−n < ε. Suppose now n,m > N . Then min{n,m} > N . From
the last paragraph, we get |sn − sm| < 2 ∗ 2−min{n,m} < ε. So (sn) is a Cauchy sequence.
By Theorem 10.11, it is a convergent sequence.

• Exercise 11.2, 11.3, 11.4 for sequences (bn), (cn), (sn), (wn).

Solution. (bn): (a) (bn) itself is a monotone subsequence of (bn). (b) Since bn → 0, its set
of subsequential limits is {0}. (c) Since lim bn = 0, lim sup bn = lim inf bn = 0. (d) (bn)
converges. (e) (bn) is bounded.

(cn): (a) (cn) itself is a monotone subsequence of (cn). (b) Since cn → +∞, its set of
subsequential limits is {+∞}. (c) Since lim cn = +∞, lim sup cn = lim inf cn = +∞. (d)
(cn) diverges to +∞. (e) (cn) is not bounded.

(sn): We observe that (sn) has period 6, i.e., sn+6 = sn for all n, and (s1, s2, s3, s4, s5, s6) =
(12 ,−

1
2 ,−1,−1

2 ,
1
2 , 1). (a) Let nk = 6k, then we get a constant subsequence (s6k) =

(1, 1, . . . ) of (sn), which is monotonic. (b) The set of subsequential limits is {12 ,−
1
2 ,−1, 1}.

(c) lim sup sn is the biggest subsequential limit: 1; lim inf sn is the smallest subsequential
limit: −1. (d) (sn) neither converges nor diverges to +∞ or −∞. (e) (sn) is bounded.

(wn): (a) Let nk = 2k. Then we get an increasing subsequence (w2k) = ((−2)2k) = (4k)
of (wn). (b) The set of subsequential limits is {+∞,−∞}. (c) lim supwn = +∞ and
lim inf wn = −∞. (d) (wn) neither converges nor diverges to +∞ or −∞. (e) (wn) is
unbounded.
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11.5 Let (qn) be an enumeration of all the rationals in the interval (0, 1]. This means that
every element in Q ∩ (0, 1] appears in the sequence exactly once.

(a) Give the set of subsequential limits for (qn).

(b) Give the values of lim sup qn and lim inf qn.

Proof. (a) The set of subsequential limits for (qn) is [0, 1]. Since (qn) is bounded above
by 1, any subsequence is also bounded above by 1. By Exercise 8.9, if a subsequence has
a limit, then the limit is ≤ 1. Since (qn) is bounded below by 0, any subsequence is also
bounded below by 0. By Exercise 8.9, if a subsequence has a limit, then the limit is ≥ 0.
Thus, the set of subsequential limits of (qn) is a subset of [0, 1].

Next, we show that any x ∈ [0, 1] is a subsequential limit of (qn). By Theorem 11.2,
it suffices to show that for any ε > 0, (x − ε, x + ε) contains infinitely many elements
in (qn). Since (qn) is an enumeration of all the rationals in the interval (0, 1], this is
equivalent to that (x − ε, x + ε) ∩ (0, 1] contains infinitely many rational numbers. We
may choose 0 ≤ a < b ≤ 1 such that (a, b) ⊂ (x − ε, x + ε) ∩ (0, 1]. Then it suffices
to show that the interval (a, b) contains infinitely many rationals. To see this, we define
an = b − b−a

2n for n = 0, 1, 2, . . . . We then have b − an = b−a
2n . Since b − a > 0, we have

b − a = b − a0 > b − a1 > b − a2 > · · · > 0. Thus, a = a0 < a1 < a2 < · · · < b. So
(a0, a1), (a1, a2), (a2, a3), . . . are mutually disjoint open subintervals of (a, b). By denseness
of Q, each of them contains at least one rational. Since these intervals are mutually
disjoint, those rationals are different from each other. So (a, b) contains infinitely many
rationals. This concludes the proof of (a)

(b) Since the set of subsequential limits for (qn) is [0, 1], by Theorem 11.8, lim sup qn = 1
and lim inf qn = 0.

11.8 Use Definition 10.6 and Exercise 5.4 to prove lim inf sn = − lim sup(−sn) for every se-
quence (sn).

Proof. By definition,
lim inf sn = lim

N→∞
inf{sn : n > N};

lim sup(−sn) = lim
N→∞

sup{−sn : n > N}.

By Exercise 5.4, for every N ,

inf{sn : n > N} = − sup{−sn : n > N}.

By Theorem 9.2, we get the conclusion.

11.9 (a) Show the closed interval [a, b] is a closed set.

(b) Is there a sequence (sn) such that (0, 1) is its set of subsequential limits?
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Proof. (a) We need to show that if (sn) is a convergent sequence of points in [a, b], then
lim sn ∈ [a, b]. Since sn ≤ b for all n, by Exercise 8.0, lim sn ≤ b. Since sn ≥ a for all n,
by Exercise 8.9 again, lim sn ≥ a. Thus, lim sn ∈ [a, b].

(b) There does not exist a sequence (sn) such that (0, 1) is its set of subsequential limits.
Suppose such sequence (sn) exists. Then by Theorem 11.9, (0, 1) is a closed set. This is a
contradiction because (0, 1) is not a closed set. To see this, we construct a sequence (tn)
from (0, 1) by tn = 1

n+1 , and note that tn → 0 6∈ (0, 1).

12.4 Show lim sup(sn + tn) ≤ lim sup sn + lim sup tn for bounded sequences (sn) and (tn).

Proof. By definition,

lim sup(sn + tn) = lim
N→∞

sup{sn + tn : n > N};

lim sup sn = sup{sn : n > N};

lim sup tn = sup{tn : n > N}.

We claim that

sup{sn + tn : n > N} ≤ sup{sn : n > N}+ sup{tn : n > N}.

For any fixed n > N , we have sn ≤ sup{sn : n > N} and tn ≤ sup{tn : n > N}, and so

sn + tn ≤ sup{sn : n > N}+ sup{tn : n > N}.

Since this holds for any n > N , the claim is proved (because the RHS is an upper bound
of {sn + tn : n > N}).
Since (sn) and (tn) are bounded, (sup{sn : n > N})N converges to lim sup sn, and
(sup{tn : n > N})N converges to lim sup tn. So (sup{sn : n > N} + sup{tn : n >
N})N converges to lim sup sn + lim sup tn. Since (sup{sn + tn : n > N}) converges to
lim sup(sn + tn), by the above claim and Exercise 9.9 (c), we get the desired inequal-
ity.

12.6 Let (sn) be a bounded sequence, and let k be a nonnegative real number.

(a) Prove lim sup(ksn) = k lim sup sn.

(b) Do the same for lim inf. Hint: Use Exercise 11.8.

(c) What happens in (a) and (b) if k < 0?
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Proof. (a) Since k ≥ 0, for every N ∈ N,

sup{ksn : n > N} = k sup{sn : n > N}.

So by Theorem 9.2,

lim sup ksn = lim
N→∞

sup{ksn : n > N} = lim
N→∞

k sup{sn : n > N} = k lim sup sn.

(b) Since k ≥ 0, for every N ∈ N,

inf{ksn : n > N} = k inf{sn : n > N}.

So by Theorem 9.2,

lim inf ksn = lim
N→∞

inf{ksn : n > N} = lim
N→∞

k inf{sn : n > N} = k lim inf sn.

(c) If k < 0, then lim sup(ksn) = k lim inf sn and lim inf(ksn) = k lim sup sn. This is
because for every N ∈ N,

sup{ksn : n > N} = k inf{sn : n > N}, inf{ksn : n > N} = k sup{sn : n > N}.

12.10 Prove (sn) is bounded if and only if lim sup |sn| < +∞.

Proof. First suppose (sn) is bounded. Then there is M ∈ (0,∞) such that |sn| ≤ M
for all n. So any subsequence of (|sn|) is bounded above by M . By Exercise 8.9, any
subsequential limit of (|sn|) is bounded above by M . By Theorem 11.7, lim sup |sn| is a
subsequential limit of (|sn|). So lim sup |sn| ≤ M < +∞. On the other hand, suppose
lim sup |sn| < +∞. Let a = lim sup |sn|. By definition, a = limN→∞ sup{|sn| : n > N}.
So there is some N ∈ N such that sup{|sn| : n > N} < a + 1. Thus, {|sn| : n ∈ N} is
bounded above by max{a + 1, |s1|, |s2|, . . . , |sN |}, which is finite. So (sn) is bounded.

E1 Let (sn) be a sequence of real numbers and x ∈ R. Prove that (a) if lim sup sn > x, then
there are infinitely many n such that sn > x; (b) if there are infinitely many n such that
sn ≥ x, then lim sup sn ≥ x.

Proof. By definition, lim sup sn = limN→∞ sup{sn : n > N}. Since the sequence (sup{sn :
n > N}) is decreasing, lim sup sn can also be expressed by inf{sup{sn : n > N} : N ∈ N}.
(a) If lim sup sn > x, then for every N ∈ N, sup{sn : n > N} ≥ inf{sup{sn : n > N} : N ∈
N} = lim sup sn > x. This then implies that x is not an upper bound of {sn : n > N}.
So there is some n > N such that sn > x. Thus, for every N ∈ N, there is n > N such
that sn > x. So we conclude that there are infinitely many n such that sn > x.

(b) If there are infinitely many n such that sn ≥ x, then for any N ∈ N, there is some
n > N such that sn ≥ x, and so we have sup{sn : n > N} ≥ x. By Exercise 9.9, we get
lim sup sn = limN→∞ sup{sn : n > N} ≥ x.
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